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Abstract

We consider the problem of predicting a spatial stationary process over
a fixed unit region [0, l]d, d > 1. We derive a linear nonparametric predictor
using an extended linear interpolation formula based on a regular sampling
design of size md. Under some appropriate assumption on the spectral den-
sity, we give the rate of convergence of the corresponding integrated mean
squared error when the observations get dense in the whole region.
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1 Introduction and Results

The prediction of a spatial process from its observations at chosen sites is
relevant to problems related to geology and environment, known as kriging.
Parametric methods have been used to predict a process by means of a linear
model. The best linear unbiased estimator of the underlying parameter was
studied by many authors such as Cressie (1993), Matern (1986), Sacks, Welch
and Mitchell (1989).We wish to predict the process X(t),t € [0, l)d from
observations based on a systematic (regular) sampling design in the unit
region [0, ΐ\d which is divided into md grids each of equal size 1/m. The best
linear predictor depends on the inverse of a covariance matrix generated
by the md observations and thus this maybe subject to serious numerical
unstabilities. We consider in this paper a nonparametric approach to predict
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the process X(t),t E [0, l]d. We consider a weakly stationary process with
a spectral density φx that satisfies for q > 1

/ \ωi\^\ωj\^φx(ω)dω

For ςr = 1, the predictor X(t) when t belongs to a given grid is derived
by applying an extended Lagrange interpolation formula in each direction.
When t = (t\...,td)e[±ϊ±±£[ for some k = (A*,... ,fcd) e { 0 , . . . , m -
l} d then the predictor is obtained by applying the Lagrange interpolation
formula for every tι e (t^jt^+i) = (ki/m,(ki + ΐ)/m),ki = 0, ...,ra,2 =

where Cd(t,k,j) = m d Πf = 1 (- l)* = (f - tki+ji) and tk = (tkl,.. . ,**,). The
whole process can then be reconstructed for every t G [0, l]d and the error
of prediction is measured through an integrated mean squared error:

IMSE =[...[ {E(X(t) - X(t))2dt.
J J [o,i]d

In the one-dimensional case d = 1 we obtain the classical interpolation for-
mula which was used by Su and Cambanis (1993), Muller and Ritter (1997)
for predicting a second order stochastic process. For higher dimension d,
Stein (1993,1995) considered the prediction of integrals of spatial processes
and studied the asymptotic properties of the mean squared error of approx-
imation. In his book, Stein (1999) gives a summary of his results and some
discussions on spatial interpolation.

When the observations get dense in the whole region (infill asymptotics),
the following theorem gives the rate of convergence of the integrated mean
squared error and the corresponding asymptotic constant in terms of the
spectral density.

Theorem 1. If a regular sampling design of size n = md is used, and if
the spectral density φx of the process X satisfies

\ωi\2\ωj\2φχ(ω)dω < oo,ϊ,j = 1,... ,d,

then as m —> oo

mA(IMSE) —>^z[ hd{ω)φx{ω)dω

where hd(ω) = (Σf=ιω2)2 — ^]
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Example. In the practical case d = 2, the spectral density φχ(ω) =
(l+M2)4 satisfies the condition of the theorem for q — 1. In this case the
rate is of order n~2 and the asymptotic constant will have ^2(^
ω\

The rate of convergence for the predictor X(t) cannot be faster than
n~~4/d for smoother process q > 1. However the rate is improved by using
a more sophisticated linear predictor which is constructed by applying the
extension of the Newton's rules formulae to a spatial case up to some ap-
propriate order, see Benhenni and Cambanis (1992), Benhenni (1998) for
d=l.

For any positive integer i, let Δz be the increment of the ith order operator

= Σ (r) (-iΓ7* 9 (*Jb+r)., 0 < k + i < m.
0r=0

We define recursively the d-dimensional finite difference operator:

^S ^^-'^g(tkl,... ,

When t e [ ^ , &±ϊί[ for some k = (ku..., kd) € {0,. . . , m - l}d then the
predictor is:

where

and W{(u) = u(u — 1). . . (u — i + 1), i > 1, wo(u) = 1

Theorem 2. If a systematic sampling design of size n = md is used, and
if the spectral density φx of the process X satisfies for q > 1

/ \ωi\
2^\ωj\^φx(ω)dω < oo,i, j = 1,..., d,

then asm->oo

?where ΛdΛ(α;) = Σ?=i ^ /ί <(«)d« +

For high dimension d and low regularity q the rate of convergence n~iqld

becomes slower. Therefore in this case the above predictors may not be very
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efficient. It would then be interesting to study the interplay between the
dimensionality and the regularity of some specific processes. It is a harder
problem to study whether these predictors are asymptotically optimal within
the class of systematic samplings. That is whether the above predictors have
the same asymptotic performance as the optimal linear predictors for any
fixed sample size n. This is true for d = 1 and 9 = 1 , see Su and Cambanis
(1993).

The same rules can be applied to predict the partial quadratic mean
derivatives X^1'•'•?<*) (t) of the process under stronger condition on the ex-
isting derivatives.

I f * e [ £ > ί ί ^ [ f o r s o m e k = (*i> i*d) Ξ { 0 , . . . , m - l}d then the
predictor is:

Corollary. If a systematic sampling design of size n = md is used, and
if the spectral density φx of the process X satisfies for q > 1

I 9d{ω)\ωi\
2^\ωj\^φχ(ω)dω < oo,

with i,j = 1,... ,d where <7d(ω) = Πf= 1ωf, then a s m - ^ o o

m^(IMSE) —> / gd(ω)hdΛ{ω)φχ(ω)dω

where hdΛ(ω) = Σι=i <*? /o ^ ( 1 1 ) ^ + 2 Σ Σ,i<ι<v<#>?«${& w2q(u)du)2.

2 Proofs

Proof of theorem 1
The stationary spatial process X(t), t E [0, \}d can be expressed by

Cramer's representation:

X(t) = [ eiωttdW{ω)

where W is a process with orthogonal increments associated to the spectral
measure with Radon-Nikodym derivative φx with respect to the Lebesgue
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measure. Then the prediction error can be written as:

E(X(t) - X(t))2 = 1^ \Rd{t,\i)\2φx{ω)dω

where

jRd(t, k) = exp {-iω't) - Cd(t, k, j) exp (-iu/ίk +i-j)

The Taylor expansion up to order two for every tι G (£fcπ£fcz+i) in the
neighborhood of t^ gives:

exp (-turf) = expi-iωit^il-iiωi^-t^+iiωt)2^ _ ^ L + o ( ( t z - t f c / ) 2 ) } .

Then

exp (—iω't) =

Likewise for t = ίk+i-j? w e have:

exp ( - ώ V i - j ) = exp (-z
ι=i m 1=1

The remainder can then be expressed as:

where

Λι(t,k) = l -
1=1

- ΣΣ

J=(ji,. J«ι)€{O,l}''
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and

d d (Λ Λ \

jBrf(t,k) = — 2_^ω\(t — tkt) +m V> Cd(t 5k,j)

L e m m a . For every positive integer d, and every t = (i1,...,*4*) G
f o r s o m e k = (fci,..., fed) € {0 , . . . ,m - l } d we have:

(0 Σ cd(t,k,j) = i.
j=ϋi . j<i)e{o,i}d

(it) B d ( t , k ) = 0 .

Proof, (i) and (ii) are proved by using the definition of Cd(t,k,j):

(0 Σ Q(t,k,j) = m ^ i
}=(h,-Jd)e{o,i}d

ίίί* - tki) - (f - tki+ι) = 1.

(a) Σ ι
=0i> jd)e{o,i}<i »=i

Σ n?=ifi

1=1

from (i).

Concentrating on Ad(t,k), using the Lemma, we have:

Λi(t,k) = l - m d

1=1 L

- YΣ^v^vtf-t^W' -tkv)
x {l-m d"2
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Then again using the Lemma with the appropriate orders, we have

Ad(t, k) = - £ ί i ( ί ' - tkι){(tι - tkι) - 1 + o((tι - tkι) -1)}.

Now we write:

/ " • / i t +11=1 d

Λ 2(t,k)(t)dί

Using that / t^
ί + 1 (ίz - ί ^ ) 1 ^ = ( i + 1 )

1

m ,+i, we have

{[tkrtkι+1],ι=ι,...d}

The final result follows from the assumption of the theorem.

Proof of theorem 2. Let /(t) = exp (—iω't) and

/(t) = Σ C r

d(t,k ϊii ϊ... ϊid)Δ< 1 " ^ / ( ί k )

Then the prediction error can be written as:

E(X(t) - X(t))2 = I |/(t) - f{t)\2φx{ω)dω.

We apply the Newton's formulae for / with respect to each argument up to

order (2q — 1) and we obtain for any d > 1:

where putting Co(t,k) = 1

d

Λ29 f
A*1 iι-^° ° J iti. fu f, / ί + 1 td)
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where ξι € (tkι,t
ι),l = 1, . . . ,d. This can also be written as:

2 9 ( m ( ί ' - tkι))^f(tkl,.. .,tkι_l,ξι,1>+\ ...,
ι=ι στ

d

Σ Cί-i(t,k,t1,...,»<_i)t«2ϊ(m(t/-ί*J))
1=1

i-°
It is clear that for some ij ^ 0, C/_i(t,k, 2χ,... ,ii-i)w2q{m(tι—t^)) = O(^).

This implies that:

Rd,q(t,k) = J2w2q(m(tι - tkι))ζf(tkl,... ,ifc|_1,6,ίi+\ ... ,td) + O(-)

Now we have that / ( t ) = Π j ^ e x p ί i α ; ^ ) so that ^ / ( t ) = (iωι)2(*f (t).

Using the Taylor expansion we have: ^ / - ( t ) = {i^ι)2q exp(i Σ f = i ω/^/){l —

Y^f=ι(iωι)(tι —tfcz)(l-ho(l))}. Moreover since the intermediate points satisfy

ζl = ίjbj + °(1)5 it follows that:

d d

^w2q(m(tι-tkι)){iωι)
2qexp{i^2

1=1 1=1

Therefore

1=1

Now we write:

[o,i]d

^ / / l/(t)-/(t)|2Λ

* ί + 1
Since /tfc*

ί+1 w2q(rn(tι - tkι))dtι = i $ w2q{u)du, we obtain

The final result follows from the assumption of the theorem.
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