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1 Introduction

We consider a dynamic random field. On each of a discrete array of sites
is located a hyperbolic dynamical system perturbed by noise. We assume
that the dynamics are identical, with a unimodal limit cycle and that the
perturbations are independent, centered, and with the same distribution. In
addition the individual processes are coupled with one another in a homo-
geneous pattern. The coupling may be global, in which case we are thinking
of a mean-field type of system. Or the coupling may be local, the coupling
strength between each site and its neighbors attenuating with distance.

The application we have in mind is to cycling populations of animals,
where the log of each local population increases roughly linearly to an ap-
parent critical point from which it falls precipitously to a minimum. The
data is discrete in space and time, being based on periodic reports from
catchment or reporting regions. In a previous study [1] we focussed on data
from Canadian lynx populations. Lynx population cycles are known to follow
those of snowshoe hare. Previous analyses of this data have been concerned
with inferring the length and regularity of the evident population cycles. We
consider in [1] the very different challenge of estimating a parameter iden-
tified as strength of coupling among populations. That paper is primarily
addressed to data analysis and interpretation.

The emphasis in this report is on the steps involved in arriving at a
suitable model and estimator. We explore some of the difficulties posed by
this rather unusual problem. In forthcoming studies we, with colleagues, will
apply the method described here to cycling population data from Canadian
muskrat and mink, and from the greysided vole of Hokkaido.
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2 Development of a Coupled Evolving Phase Field
Model

To begin, let us introduce a general definition of synchronization applicable
to random fields. Let X = {Xa,i € I,t = 0,1,2,...} denote the values at
site i and time t of a dynamic random field. Let S = {£(•)*, t > 0} denote a
real-valued functional or collection of functionals of {Xis, i € / , s < *}. Note
that we allow S evaluated at time t to depend on data up to and including
time t. Define S'-synchronization to mean {SX)t = 0, almost surely, for t in
some time-set T. This gives us a flexible definition of exact synchronization.
But a random field will not be exactly synchronized. In order to formulate a
statistically useful definition we need to allow for and to measure departures
from synchronization. For example, we probably want the mean and variance
of S applied to random data to be small. We are led to the following:
Definition. A dynamic random field X departs from 5-synchronization by
no more than e over the time interval T if E(SX)Ί < e for all t eT.

One might use other norms, e.g. Lι or Kullbach-Leibler instead of L2.
However this definition has a familiar form and is computationally conve-
nient.

At each site i in an array of sites / is located a "skeleton" process which,
in the absence of any noise or coupling can be written

-ΪM+i = HXith i e /, t = 0,1,2,.... (2.1)

In this treatment we write the dynamics as of first order in discrete time.
We assume there is a unimodal limit cycle t(t),t = 0, . . . ,p , ^(0) = t{p),
where, since / is the same for each i, the form of the cycle, ί^ and its period,
p, are the same for each site i. For definiteness let ^(0) be the minimum
point of the unimodal cycle. If we picture the deterministic field (1) running
in equilibrium, we see the periodic cycle ί{ ) being executed at each site,
the only difference between sites being the phase, which will differ if the
initial points X^o were not identical. Now suppose we watch, instead, the
stochastic field,

X^t+ι=f(Xit) + eiu t 6 / , t = 0 , l , 2 , . . . (2.2)

where en represents a small, identically distributed, centered noise. A the-
orem of deterministic dynamics called the "shadowing lemma" implies that
the stochastic paths of (2) shadow the paths of (1), where "shadow" means
that they remain in a distributional neighborhood of the deterministic path
up to a time shift. The differences among the paths at the various sites,
then, in addition to the small width of this neighborhood, are the phases,
which change in a random way. The neighborhood width depends on the



INFERENCE FOR SYNCHRONIZATION 207

noise variance. This picture motivates a model for coupling based on the
randomly evolving phases of the components.

We now move our attention from the evolving random field of population
levels, (2), to a corresponding evolving random field of phases. Going back to
the deterministic model (1) we can unambiguously define the phase φa at site
2, time £, to be the time fraction of the current cycle, ^(0),... ,^(p), which
has been accomplished at time t. Then each phase φu is in the interval
[0,1). The arithmetic for phases is modi. We think of the set of points
{Φit,i G /} as a set on the circle of circumference 1. As time advances
the points progress around the circle. Since in fact we wish to consider the
phase field associated with the stochastic field (2), where the "limit cycle" is
a stochastic perturbation of the deterministic one, we may not see a unique
minimum for each cycle, and the definition of φu may be ambiguous. We
will assume that the noise en is small enough so that the ambiguity can be
resolved by a device described in the next section. For the moment let us
ignore this problem and assume that in the stochastic model the phase φn
is defined as the fraction of the current orbit which has been traversed at
time t by each path X{ of the stochastic field (2). We describe the structure
of the phase field φa, i G /, t = 0,1,2,..., by writing

Φiί+\ = Φit + 9it + tit mod 1, (2.3)

where gu is the fraction of the current orbit traversed at site i at time t.
Now we introduce a hypothetical coupling force into the phase field which

will shift the phase at each site i and time t in the direction of the "mean
phase". For this purpose we need to devise an appropriate definition of mean
for a set of random points on a circle.

As mentioned above we identify the phase values with points on a circle
of circumference 1. Between points x,y on this circle, let Δ(x,y) denote
the signed smallest arc measured counter-clockwise between them. Then
Δ(x,y) is positive or negative according to whether x leads or lags y, and

(x,y)|<0.5.
For each set of phases φu with t fixed, let φt be a solution of

ψ t ) = 0 . (2.4)

Then φt is almost surely uniquely defined and can be interpreted as the mean
phase at time t on the circle, or equivalently on [0,1) mod 1. To model phase
coupling among sites i in the array /, we insert a coupling term in expression
(3) which moves the phases at time t + 1 in the direction of the mean phase
at time t, and write

Φi,t+i = Φit + 9it ~ cA{φiu φt) + eit mod 1, i e /, ί = 0,1,. . . . (2.5)
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The coupling strength c can take values in [0,1). Expression (5) says that
in each time step, from t to t + 1, three changes occur in the phase at each
site:

(a) it advances according to phase dynamic ga inherited from the limit
cycle of the "skeleton" process (1),

(b) it is shifted in the direction of the mean of the phases as defined by (4)
by a proportion c of its distance from this mean, and

(c) it is perturbed by a centered random effect.

About the en we assume only that for each t they are conditionally in-
dependent given the past of the process {φu}, with the same conditional
distribution for each i and t.

In order to simplify our computations we would like to omit the modi
in relation (5). This is possible if it does not happen, or happens only
rarely, that the combined effect of (a), (b), and (c) at a particular time-
step t is large enough that the phase increment at a single step exceeds
1. In the model we make this assumption. If it is occasionally violated in
the data we make an appropriate adjustment. Assuming, then, that the
noise is sufficiently small relative to the coupling, (5) can be written as

+ i , ^ + 1 ) = (1 - c)Δ(φiuφt) + eit + {git - φt+i + Φt), <2 ^

The last grouped term in (6) has mean 0 as can be seen from considerations
of symmetry. In addition, for each t the various values in i are conditionally
independent given the past of the phase field. We have assumed that the
noise increments en are small and centered and conditionally independent
given the past of the phase field. Without altering this assumption we can
regard the last grouped term in (6) as part of the noise and write (6) as

Δ(&, t +i, φt+ι) = (1 - c)A{φiu φt) + ηiu i E /, t = 0,1, . . . . (2.7)

Relation (7) describes a stochastic process of ARl-type. It differs from
the usual AR1 model in that the process is a vector-valued function of a
distinct vector process. The underlying process has vectors of phases as its
values, whereas the process defined by (7) has values which are vectors of
differences of these phases from the evolving central phase. Nevertheless
the least squares type estimator is consistent for (1 — c) and that is what
we used in [1]. One needs to know that there is a stationary law for the
process defined by (7). This can be shown by an argument along the lines
of arguments in Meyn and Tweedie's book [2], The fact that the state space
is bounded simplifies the situation.
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If we wish to model local rather than global coupling, then the central
phase as seen from site i should be computed from the phases at sites near
i. We then define the local centre of phases at i, to be the almost surely
unique phase φit which is the solution of

<HjΔ{φju Φit) = 0, i e J, t = 0,1, . . . , (2.8)
3

where the numbers α^ are weights reflecting the fraction of the total coupling

at site i to be attributed to interaction between sites i and j , Σ aij — 1. We
_ _ 3

arrive at a version of (7) with φit replacing φt in each equation. If edge
effects are disregarded, and if α^ depends only on i — j , the system remains
spatially homogeneous in law. In any case, a stationary distribution exists
for the process and the least-squares-type estimator is consistent for 1 — c.

Let us return to the notion of departure from 5-synchronization by no
more that e, as defined early in this section. Perfect synchronization corre-
sponds to departure zero, and higher levels of departure correspond to less
synchronization. The synchronization measure we choose here is the mean-
square deviation of the phase field from its mean φt, or φit, as defined by (4)
or (8),

The departure from synchronization, then, is defined as

E{SX)2

t = ±-ΣEA(φiuφt)
2. (2.10)

3 Estimation

In an initial application of the model presented here [1], we study synchro-
nization in the well-known Canadian lynx data sets. Here we summarize a
few of the results and refer to [1] for the full treatment and references.

The first data set was compiled by Elton and Nicholson, in 1942, [4]
spans the years 1821 to 1891 and is organized over six trading regions of
the Hudson's Bay Company. The second data set, compiled by Statistics
Canada, [5] is organized over eight Canadian provinces and territories and
spans the years 1919-1990. We used estimators of (1 - c) and σ2 where
η is the noise increment in (7), which are analogous to well-known linear
estimators for parameters of AR1 time series.

The data analysis involves two difficulties peculiar to the phase-coupled
model (7). As mentioned earlier it was not possible to identify uniquely
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the time points where minima of cycles occur in the data. Our treatment
in [1] involves identifying the sets of possible minima and repeating the
estimation procedure many times using random choices from these sets. We
are exploring other possible ways to handle this problem in other data sets. A
second difficulty involves discontinuities in the function A(φu,φt) at ±0.5,
and a very few instances where A(φt+1^φt) < 0. Our handling of these
is detailed in [1]. We mention these problems here to indicate the novel
difficulties posed by data analysis in this context.

The estimators we use for θ — 1 — c and for σ% are

θ = ϊ=i-ί=i
n i\ — l _

2^ i\{φit,Φty
i=\ t=l

(3.1)

/n(iV - 1) - 2.

We can distinguish by looking at the residuals from these estimates the
times at which synchrony is maintained by intermittent synchronizing events
from the time periods of constant phase-coupling dynamics as expressed in
expression (7). At the times of synchronizing events we see outliers in the
residuals, whereas corresponding to periods of consistent coupling, data is
clustered around the regression line. Times, thus detected, of synchronizing
events correspond to times of decrease of the estimator (9) of asynchrony.

The coupling estimates we obtained were c ~ 0.054 for the earlier data set
and c ~ 0.011 for the later one. With local weighting the estimate doubled to
c ~ 0.096 for the earlier data set and remained about the same at c ~ 0.005
for the later data set. The numbers for the earlier data set are significant
according to tests using the estimated variances, and are significantly greater
than estimates produced from simulated cycles with randomized phases from
a model fitted to this data. Thus, although the estimates c from the lynx
data seem small, we believe that they measure the phenomenon of coupling
as intended.

An alternative statistical approach to the study of synchronization of
population cycles uses the correlation structure of the logged abundance
data as in e.g. Jolliffe [3]. With this method, amplitude variability may
confound the detection of synchronization. Further, since phase coupling
is not modelled, correlational methods measure phase coupling only very
indirectly.
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