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Abstract
Current methods of estimating the memory parameter, d, of a long-

range dependent stationary time series are reviewed, and a new method of
estimating d by fitting a fractionally-differenced autoregression of order p is
introduced. Under the assumption that p approaches infinity simultaneously
with the observed series length, n, the estimators are shown to be consistent
both when the innovations have finite variance and when their distribution
follows an infinite-variance stable law with exponent α £ (1,2). The relative
finite sample behaviour of the estimators is investigated by a simulation
study and by an application to a real data set involving ethernet traffic.

1 Introduction

Let {Xt} be a discrete-time covariance-stationary process with 0 mean, co-
variance function R(u) = E(XtXt+u) {t, u = 0, ±1,...) and spectral density
function /(λ). Then, {Xt} is said to exhibit long-memory with memory
parameter d, 0 < d < 0.5, if /(λ) may be written as

/(λ) = |λΓ2 dL(l/λ) (1.1)

where L(λ) is slowly varying at infinity. A characterizing property of a
long-memory time series is that its covariance function is not absolutely
summable. By contrast, {Xt} is said to be a short-memory process if its
covariance function is absolutely summable, implying that /(λ) is continuous
and bounded on [O,τr].

Although the definition (1.1) above is classical, it does not readily extend
to processes which are not covariance-stationary, see Heyde and Yang (1997)
and Hall (1997). Nevertheless, in what follows, we use this definition for
ease of exposition, though in Section 3, when considering the class of stable
processes with infinite variance, we restrict the admissible values of d.
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For general surveys discussing stochastic properties of long-memory pro-
cesses, see Hosking (1981), Granger and Joyeux (1980), Andel (1986) and
Beran (1992, 1994), among others. This class of processes has been found to
be useful for modelling time series occurring in many fields of applications,
including Hydrology, Geophysics, Economics, Ecology and telecommunica-
tion traffic, see Willinger et al. (1995) for a discussion of the last application.
In recent years, there has also been much development on the general ques-
tion of estimating the long-memory parameter, d, from a finite realization
of length n from {Xt}> An objective of this paper is to provide an overview
of these developments and also to study the empirical behaviour of a new
method of estimating d by fitting fractional autoregressive, FAR, models; a
consistency result for the estimator is also established. The FAR method
may be viewed as an extension to the class of long-memory processes of the
well-known autoregeressive model fitting approach of estimating the spec-
tral density, the linear predictor and related parameters of a short-memory
stationary process with a bounded spectral density; see Parzen (1969), Berk
(1974), Shibata(1980, 1981), Bhansali(1978, 1980), among others. Now,
however, the spectral density is unbounded and the theory developed by
these authors does not apply. A related reference is Bardet et al. (1999)
who review the current state of the art for estimating d from a slightly
different perspective.

2 An Overview of the Current Methods for Esti-
mating d

The existing methods for estimating d may be grouped under four broad
headings: graphical, parametric, non-parametric and semi-parametric.

Two of the early methods for estimating d are graphical and are based on
the use of the R/S statistic and/or the variance-time plot; see, e.g. Leland
et al. (1994). A main difficulty in using the graphical methods is that,
especially for moderate values of n, they typically have large biases; their
asymptotic behaviour has recently been investigated by Giraitis et al. (1999).

A commonly-used parametric method estimates d by postulating that
{Xt} follows a fractional autoregressive moving average model of order (p, d, q),
ARFIMA(p, d, q), i.e., the dth fractional difference follows a standard ARM A
model. On the assumption that the order (p, q) is known a priori, the model
parameters, θ(p, q), say, including d, are estimated by a likelihood procedure.
The resulting estimates, θ(p,q), say, are known to be asymptotically effi-
cient, in the sense that, under appropriate regularity conditions, a s n - ) oo,
nιl2{θ{p, q) — θ(p, q)} converges in distribution to a Normal random variable
with a 0 mean vector and covariance matrix W, where W~ι denotes the cor-
responding Fisher information matrix. This result was established by Fox
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and Taqqu (1986) for the estimate obtained by adopting the Whittle approx-
imation to the likelihood function; see also Giraitis and Surgailis (1990) for
an extension to non-Gaussian processes and an alternative proof. Dahlhaus
(1989) extended the result to exact maximum likelihood estimates of θ(p, q)\
also, Beran (1995) considers the use of an 'autoregressive' approximation to
the likelihood function and allows for all d G (—0.5, oo), where a value of
d > 0.5 would indicate that {Xt} is a non-stationary accumulated process
considered by Box and Jenkins (1970) and {Xt} could be transformed to
a stationary and possibly a long-memory process by differencing it an ap-
propriate number of times. The algorithmic aspects of how to compute the
likelihood estimates are discussed by Hosking (1984), Haslett and Raftery
(1989), Sowell (1992), among others. Pai and Ravishanker (1996, 1998) and
Ravishanker and Ray (1997) consider a Bayesian approach to the estimation
of θ(p, q), while Chan and Palma (1998) investigate the use of a state space
approach and discuss how this approach is particularly useful for time series
with missing observations.

A main difficulty in implementing the parametric approach, however, is
that the order (p, q) is invariably unknown, and, for an observed time se-
ries, there may not even be a 'true' value of this order. The simulation
results of Taqqu and Teverovsky (1998) demonstrate that the parametric
method may not be improved upon when the order (p, q) is correctly spec-
ified but it performs rather poorly when the order is misspecified. Beran
et al. (1998) consider the question of model selection for the class of frac-
tional autoregressive, FAR(p,d), models with p finite and d G (—0.5,oo)
and derive an appropriate version of the Akaike information criterion, AIC,
for this class of processes and show that it is of the same form as in the
standard short-memory situation, but with d treated as an additional pa-
rameter. Asymptotic sampling properties of the order selected by AIC are
also studied and in particular it is shown that, as in the short- memory case,
whereas AIC does not provide a consistent order selection procedure for this
class of processes, the corresponding versions of the BIC and HIC criteria
of Schwarz (1978) and Hannan and Quinn (1979) do so. A related reference
is Crato and Ray (1996) who carry out an extensive simulation study for
investigating the empirical behaviour of various order selection procedures
for ARFIMA as well as non-AFRIMA models.

Unlike the parametric methods, the non-parametric methods seek to esti-
mate d under few prior assumptions concerning the spectral density of {Xt}
and, in particular, without specifying a finite parameter model for the dth
difference of {Xt}> A successful procedure, called the GPH method, is due
to Geweke and Porter-Hudak (1983), and it is based on the observation that
if in (1.1), L(λ) = C, a constant, for all λ, log/(λ) follows a linear function
of log λ in a neighbourhood of the origin, and, hence, an estimate of d may
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be found by regressing log-periodogram on log-λ; moreover, the logarithm of
a smoothed and/or tapered periodogram, in place of the raw periodogram,
may also be employed for estimating d. The GPH method has been widely
studied in the literature. Thus, it has been recognised that the band of fre-
quencies over which the aforementioned regression is performed needs to be
chosen carefully in that the frequencies too close to or too far away from the
origin should be excluded so as to avoid the estimate being 'contaminated'
by their inclusion, see, for example, Hurvich and Beltrao (1993), who also
show that the behaviour of the periodogram near the origin in this case is
non-standard. Moreover, Agiakloglou et al. (1993) show that for small val-
ues of n, this estimator could be badly biased and investigate the sources of
this bias for particular models. Robinson (1995a) has derived the asymptotic
distribution of a GPH estimator, dcPHt say, such that the estimator is ob-
tained by regressing the log-periodogram, or a smoothed version thereof, on
log λ for λ G [A ,̂ λ[/], where λ^ and Xjj are 'trimming' numbers and specify
the actual band of frequencies, not too close or too far away from the origin,
over which the regression is performed. Robinson shows that, under regu-
larity conditions, including those on λ^ and λ̂ /, as n -> oo, n^{dGPH — d}
is asymptotically distributed as normal with mean 0 and variance rra//(ra),
where m specifies the degree of smoothing, called pooling, applied to the
periodogram before taking the logarithms and performing the regression,
ψ'(m) denotes the trigamma function and the precise value of β depends
upon m and the trimming numbers used. The value of mψ'(m) decreases
as m increases and it converges to one as m —> oo; however, even with an
optimal choice of m and the trimming numbers, β < 2/5. An additional
reference is Hurvich et al. (1998) who derive asymptotic expressions for the
mean squared error of the original GPH estimator, in which none of the low
frequency periodogram ordinates are omitted, as functions of M, where M
determines the number of periodogram ordinates included in the regression
and tends to infinity simultaneously but sufficiently slowly with n, and find
the optimal M minimizing the asymptotic mean squared error. A main dif-
ficulty in using the GPH estimator with an observed time series, however, is
the determination of an optimal band of frequencies over which the regres-
sion is performed; a systematic procedure for doing so is not yet available.
A second difficulty is that the method exhibits high variability, since its rate
of convergence, n~^, β < 0.4, is much slower than that for the parametric
estimator.

In the semi-parametric approach also, see Kunsch (1987), Robinson (1995b),
a precise parametric form for the spectral density of {Xt} is not specified
and it is assumed to be of the form given in (1.1), but with L(λ) = G(d), a
continuous function of the long-memory parameter, d, in a neighbourhood of
the origin. An estimate of d is constructed by a likelihood procedure based
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on the Whittle likelihood but the maximization of the likelihood is only over
a neighbourhood of the zero frequency which degenerates slowly to zero, as n
increases. Thus, this approach combines the parametric and non-parametric
methods discussed above and it is often called 'local Whittle'. However, it
suffers from the same difficulties as described above for the nonparametric
approach in that currently a procedure is not available for choosing system-
atically the bandwidth of freqencies to be used for computing the estimate
and which must be chosen in an arbitrary fashion; also, the optimal rate of
convergence of the estimator is still n~^, β < 0.4, and it is not as fast as
that for the parametric approach.

The estimates of d based on the non-parametric and semi-parametric
approaches are, however, not comparable to those based on the parametric
approach, since whereas in the latter the behaviour of the spectral density
of {Xt} is specified for all frequencies, in the former it is only specified for
frequencies in a neighbourhood of 0 and in this sense the parametric ap-
proach uses more information than the non-parametric or semi-parametric
approaches; see also Beran (1997). Recently, Moulines and Soulier (1999)
and Hurvich and Brodsky (2001), have considered an FEXP approach to
the estimation of d in which the logarithm of the spectral density of the
short-memory process is postulated to possess an infinite Fourier series ex-
pansion and thus the fractionally-differenced short memory process, {Yi},
say, is specified to follow the exponential model of Bloomfield (1973). An
estimator of d and of the Fourier coefficients, c(j), say, is found by first
truncating the infinite Fourier series at some finite value, A;, say, and then by
applying an ordinary linear least-squares procedure in which the logarithm
of the smoothed periodogram, smoothed over m non-overlapping blocks, is
regressed on —21og|l — e~zλ| and on the Fourier cosine functions. On the
assumption that k —> oo as n —» oo, but sufficiently slowly, and under addi-
tional regularity conditions, the authors establish the asymptotic normality
of their estimator, dER, say, and show that y/n/k{dER — d} is asymptotically
normal with mean 0 and variance mψf(m), where ^'(m), as before, denotes
the trigamma function. Moreover, if the c(j) converge to zero at an expo-
nential rate then k may be taken to be proportional to log n and the FEXP
approach yields an estimator of d with a convergence rate of y/ϊognjn which
is faster than that for the non-parametric or semi-parametric approaches, but
without specifying a finite parameter model for the short-memory process,

Next, in Section 3, we discuss an alternative FAR approach to the es-
timation of d in which the short-memory process is postulated to follow
an infinite autoregressive process and an FAR(p,d) model is fitted to an
observed time series, where p is such that p -» oo simultaneously but suf-
ficiently slowly with n. Thus, in common with the FEXP method, in our
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approach also a finite parameter model for the short-memory process,
is not specified and an estimate of d is constructed by fitting a hierarchi-
cal family of parametric models. However, unlike the former, we adopt a
likelihood-based method for estimating the model parameters and, in our
approach, estimates of d and of the autoregressive parameters are obtained
by minimizing the Whittle likelihood and, for an observed time series, the
value of p, the autoregressive order to be fitted, will be selected by mini-
mizing AIC or a related order selection criterion considered by Beran et al.
(1998).

A consistency result for the parameter estimates is established in Section
4 both for the situation in which the innovation process, {Z*}, has finite
variance and when the Zt have a distribution in the domain of attraction of
an infinite-variance stable law. The results of a simulation study aimed at
comparing the finite sample behaviour of the FAR estimate of d with that
of the parametric and non-parametric estimates are described in Section 5,
while in Section 6 the empirical behaviour of the FAR approach is illustrated
with teletraffic ethernet data.

3 Assumptions, Parameters and Estimates

We suppose that the observed time series Xi,..., Xn is a (part) realization

of a process {Xt} satisfying the following assumption:

ASSUMPTION 1 That {Xt} (t = . . . , -1,0,1,...) satisfies

(1 - B)dXt = Yu (3.1)

where {Yt} satisfies

ΣύYt-j = Zu (3.2)
j=0

the aj are absolutely summable real coefficients satisfying

oo oo

Σ h , |<oo, Σ α ^ y o , \z\<l + ε, (3.3)
3=0 3=0

for some ε > 0 and {Zt} is a sequence of independent identically distributed
random variables each with mean zero and satisfying either Assumption 2A
or Assumption 2B below:

ASSUMPTION 2A That EZt

2 = VarZ* = σ2 < oo, (ί = . . . , -1,0,1,...).
ASSUMPTION 2B The common distribution of the Zt is in the domain of
attraction of an α-stable law with 1 < a < 2, i.e.

P(\Zt\ >x) = χ-"L(x), (3.4)
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where L is a slowly varying function, and

P{Zt > x)/P(\Zt\ >x)^a, P(Zt < -x)/P{\Zt\ > x) -* 6, (3.5)

as, x —> oo, where a and b are nonnegative numbers satisfying a + b = 1.

Assumption 2A is equivalent to requiring that the sums n" 1/ 2 Σ™=1 Z*
converge to a normal distribution, i.e. are in its domain of attraction. It
is known, see e.g. Samorodnitsky and Taqqu (1994), that, in addition to
a normal limit, the only other possible limit for a normalized sum of iid
random variables is an α-stable distribution with 0 < a < 2, which has
infinite variance. Under conditions (3.4) and (3.5), the sum ]CtLi %t divided
by nιla and appropriately centred tends to an α-stable distribution.

A process satisfying Assumptions 1 and 2A is well-known to be stationary
if d < 1/2. In the sequel we assume that 0 < d < 1/2, i.e. we consider only
the long-memory case, see e.g. Hosking (1981). Theorem 2.1 in Kokoszka
(1996) (see Kokoszka and Taqqu (1995, 1996a) for purely stable case) implies
that if d < 1 — 1/α, there is a unique strictly stationary process satisfying
Assumptions 1 and 2B. In view of this result, in the following assumption
we restrict the admissible values of d.

ASSUMPTION 3 That
0 < d < 1 - 1/α. (3.6)

(The case a = 2 corresponds to Assumption 2A.)

In the following, we use the superscript 0 to denote the true values

of the various parameters, e.g. d°,a^. In order to define the parame-

ter space, consider the Banach space F of absolutely summable sequences

β = (d, αi, cz2,. ) τ with the norm

3=1

We now define the parameter space by the following assumption.

ASSUMPTION 4. That the parameter space, denoted E, is a compact sub-

set of F containing an open neighbourhood of the true parameter β° =

(d°,α?,α°,...)
τ.

The idea of fitting an FAR(p, d) model can be most conveniently for-
malised by introducing the restricted parameter spaces Έp = {β G E : α& =
0 for fc>p},p=l,2, The Whittle (an approximate maximum likeli-
hood) estimate βpn obtained by fitting an FAR(p, d) model is then defined
as the value of β G E p which minimizes the integral

G(β) = /
J — π

/ n ( λ^λ, (3.8)
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where

2πn
i\t (3.9)

t=i

is the periodogram and

- 2

(3.10)ΛX\d

is the power transfer function, which is proportional to the spectral density

of the process {Xt} in the finite variance case.

Under Assumption 2A, the corresponding Whittle estimate of σ2 is given

by

= Γ
J- 'p,nJ

EXAMPLE. TO give an example of a parameter space satisfying Asssumption
4, consider a sequence of positive numbers x$, xi,. . . such that Σ ^ o Xj < oo
and \βj\ < Xj. The set {β eF : \βj\ < Xj, j = 0,1,...} is then a parameter
space satisfying Assumption 4. Moreover, now the corresponding set, {βp :
\βj\ < xj >3 — 0,1,. . . ,p;;Sj = 0,j > p}, is an example of the parameter
space E p .

4 Consistency of the Estimates

The consistency of the Whittle estimators /3Pj7l and σ2(p) obtained by fitting
fractionally differenced autoregressive models is established below in The-
orem 4.1. In common with related studies, see, for example, Berk (1974),
we assume that p = p(n) is a sequence of integers such that p(n) -> oo,
p(n)/n -> 0, as n —>> oo. For an observed time series, the value of p will
be determined by appealing to the AIC, or BIC, criterion introduced in
Section 5 by equations (5.1) and (5.2), respectively, or by a related criterion.
Thus, in practice, p = p(n) will invariably be a random sequence of integers
and Theorem 4.1 does not apply to this situation. In Section 5, we demon-
strate the usefulness of the FAR approach in this situation by a simulation
study, and, also, compare the relative behaviour of some of the alternative
estimates of d discussed in Section 2 with that of the FAR estimate.

THEOREM 4.1 Suppose p = p(n) is a sequence of integers such thatp(n) < n

and p(n) —> oo, as n -> oo, and that Assumptions 1-4 hold.
(i) Under 2A, with probability one, βp -* β° and σ2(p) -> σ2.

(ii) Under 2B, βp —>• β° in probability.
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The proof of Theorem 4.1 is similar to the corresponding proofs for the
correctly specified models, see Fox and Taqqu (1986) and Kokoszka and
Taqqu (1996b). Modifications include Lemma 4.1 and the proof of Propo-
sition 4.1. We present the proof only under Assumption 2A because the
argument under Assumption 2B is essentially the same, but with the dif-
ference that one now works with the self-normalized periodogram and the
a.s. convergence in Proposition 4.1 and Lemma 4.2 is replaced by conver-
gence in probability, see analogous proofs in Kokoszka and Taqqu (1996b)
and Mikosch et al. (1995).

LEMMA 4.1 For any compact subset E ofF and any sequence p = p(n) such

that p -> oo, as n —» oo ;

lim sup y^ \aΛ = 0. (4.1)

PROOF. Observe that for each fixed p, the function

\cij\ G (0, oo)

j=p+l

Tp:F3 (d,αi,α 2, ..)

is continuous on F. Since for every β G F, l i m ^ - ^ Tp(β) = 0 and Tp+\ < Tp,
the convergence is uniform on any compact subset of F. I

Denote

gp{λ,β) = ΛX\d

k=0

PROPOSITION 4.1 Suppose that the assumptions of Theorem 4-1 hold. Then,
as n -» oo (and so p —> oo)j with probability one,

sup
0(λ,/3°)

dλ 0. (4.3)

P R O O F . Denoting Ap(λ,β) = Σ{=0 ake
iXk, A{λ,β) = ΣT=o Ofceαfe,

= ζfj(λ,β°)(g(X,β))-1dλ,

observe that

Gp(β)-σ2(β) = jΓ — e d\

(4.4)
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1-e
iλ 2d

dλ{\Ap(X,β)\2 - \A(λ,β)\2} Jn(λ)

\A(λ,β)\2 L(λ) - ^

By Lemma 4.2 below, the last term in (4.4) tends to zero uniformly on E
with probability one. Thus it remains to verify that with probability one,

sup l^{\A(X,β)\2-\Ap(λ,β)\2}ln(X) 1-e iλ
2d

dX 0.

Note that

and

j=p+l

sup
/3GE

l-eιλ\ < oo.

(4.5)

(4.6)

(4.7)

Observe also that since every linear process is ergodic, we have with proba-
bility one,

Γ In(X)dλ = - ΣX2 -> EX2. (4.8)

Relation (4.5) now follows from (4.6) combined with (4.1), (4.7) and (4.8).

LEMMA 4.2 Suppose that the assumptions of Theorem 4-1 hold, andu(λ^β)
is a function continuous on [—π,π] x E. Then, with probability one,

sup Γ u(\,β)In{\)d\ -£- Γ u(Kβ)g(\β°)dλ
/36E |«/-π 7̂Γ J-π

0.

PROOF. This is essentially a restatement of Lemma 1 of Fox and Taqqu
(1986), the only difference being that in our setting Gaussianity is not as-
sumed. However, since {Xt} is linear, it is also ergodic and the proof of
Lemma 1 of Hannan (1973) applies. •

PROOF OF THEOREM 4.1: The proof relies on the fact that for any β φ β°

(4.9)

(4.10)

Relation (4.9) follows immediately from the inequality

/

^(λ,/3i)
(\ / 3 \ ^ ^ ^ π ' whenever /3X ^ /3 2,
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see Lemma 3.1 of Kokoszka and Taqqu (1999). For ARMA spectral densities,
relation (4.10) is the content of Lemma 10.8.1 of Brockwell and Davis (1991)
which was extended to fractional ARIMA models in Lemma 2.1 of Kokoszka
and Taqqu (1996b). In our setting, (4.10) follows, for example, from Lemma
3.1 of Kokoszka and Taqqu (1999).

In the sequel, all random quantities are evaluated at a fixed elementary
event from the set on which (4.3) holds.

Suppose ad absurdum that βpn does not converge to β°. Since E is

compact, there is a subsequence \βp(m\m \ of {βp(n),n \ > denoted for brevity

by {/3r}, such that βr -> β' φ β°. By (4.3), lim Gr{βr) = σ2(β'). On the

other hand, Gr(βr) < Gr(β°), so again by (4.3) limsup Gr(βr) < σ2(β°).
Thus, σ2(β') < σ2(/3°), which contradicts (4.9). •

5 Simulations

We illustrate the efficacy of the FAR method of estimating the memory
parameter, d, in situations where the short-memory process, Ŷ , is not nec-
essarily purely random, by applying this method to simulated realizations
of several different ARFIMA(p, d, q) processes, with both p and q taking
varying values over the region 0 < p < 2, 0 < q <2. Our principal aim is to
apply this method in plausible realistic conditions rather than to investigate
the validity of the asymptotic consistency result proved in Section 4 with
finite values of n. Hence, although the estimator (3.8) and the proof of its
consistency are based on the Whittle approximation to the likelihood func-
tion, in our simulation study we use the S+ function arima.fracdiff to
compute the estimate of d and of the associated AR parameters. The main
reason why we opted to use the S+ software package is that it is widely
available, and this in turn should help towards ensuring the reproducibility
of the simulation results. The estimation procedure based on the Whittle
likelihood and the algorithm used in the S+ package both seek to provide es-
timates which are equivalent to the exact maximum likelihood estimates, but
without being as expensive computationally. Hence, these two and the re-
lated (Kunsch, 1987) maximum likelihood procedures may also be expected
to be asymptotically equivalent to each other, even though with a finite n
they could produce substantially different estimates. A rigorous proof this
result is however so far not available, though for an ARFIMA(p, d, q) pro-
cess with the order (p, q) treated as known, Beran (1995) has shown that the
estimates obtained from an alternative autoregressive approximation to the
likelihood function have the same asymptotic distribution as those obtained
by minimising the Whittle likelihood function.

Secondly, as discussed ealier in Section 4, we select the order, p, of the
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FAR model to fit by an order selection criterion, and thus in our simulations

we do not treat p as a determinstic function of n. The model selection

procedures used are described below for completeness:

FAR AIC: For each p = 0,1,2,3,4,5, the parameters of an FAR(p, d)

model were estimated by calling the S+ function arima.fracdiff and the

corresponding value of the Akaike information criterion, AIC, was computed

using the formula

AIC(p) = -2loglik + 2p, (5.1)

where loglik is the logarithm of the Gaussian maximum likelihood for each
model, returned by the S+ function arima.fracdiff λ. Then, the adopted
estimate of d was that given by the function arima. f racdif f for an FARQ3, d)
model, with p being the value of p minimizing (5.1).

FAR BIC: The procedure used was basically the same as that described
above, but instead of the AIC criterion, (5.1), the order of the FAR model
was selected by the following BIC criterion:

BIC(p) = -2loglik + (1 + lnn)p (5.2)

where n is the length of the series.

It should be noted that the definition of the BIC criterion given in (5.2)
above is consistent with a Bayesian modification of the AIC introduced by
Akaike (1978), but uses an approximation for this criterion suggested by
Priestley (1981, p. 375). This definition is however slightly different from an
alternative Bayesian criterion introduced by Schwarz (1978), see also Hannan
(1980), in whose approach the second term to the right of 5.2 is replaced by

As discussed in Section 2, for the class of FAR(p, d) models, with a finite
but unknown p, Beran et al. (1998) have studied the asymptotic behaviour of
the order selected by the AIC and BIC criteria introduced above and shown
that whereas the AIC criterion does not provided a consistent estimator
of the order, the BIC criterion does do so. Moreover, by their Theorem
2, both versions of BIC discussed above provide consistent order selection
for an FAR(p, d) process with a finite p. The penalty for introducing an
additional parameter is, on othe other hand, always greater by 1 in 5.2;
thus, for n = 1000, this penalty is 7.91 while for the Schwarz criterion it is
6.91, and for n = 500 the values of these penalty terms are 7.21 and 6.21,
respectively.

lfΓhe value loglik of arima.fracdiff is actually the maximized log-likelihood, not
just a quantity proportional to it as indicated in the S+ help file. Thus the loglik
of arima.fracdiff is different from the loglik of arima.mle which is —2x Gaussian
maximum log-likelihood.
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In our simulation study, we examine the extent to which either of these
two criteria are useful for selecting the value of the autoregressive order, p,
to use for implementing the FAR approach discussed in this paper.

We also compare the relative performance of the FAR estimate of d
with the estimates obtained by adopting some of the alternative methods
discussed in Section 2. Our aim, here, is to compare the overall performance
of the different estimators over a wide range of models, rather than point
out which estimators are best for certain models.

We first describe the methods that are compared.

1. Periodogram: This method, as discussed earlier in Section 2, is
based on the observation that for a long memory series {Xt}, /(λ) ~
Const|λ|~2d, as λ —>- 0, where the periodogram I(λ) is defined by (3.9).
Thus, for low frequencies the log-log plot of J(λ) versus λ should fol-
low a straight line with slope — 2d. Following Taqqu and Teverovsky
(1998) we used the lowest 10% of the frequencies to fit the regression
line. Our own simulations showed that for models with moderate AR
and MA coefficients using various frequency bands between 3% and
12% does not significantly affect the estimates.

2. Semiparametric: This method has been rigorously investigated by
Robinson (1995b), who assumes that the spectral density /(λ) ~
G(d)|λ|~2d, as λ -» 0. As the approximate Gaussian likelihood is max-
imized in a neighbourhood of the zero frequency, it is also known as,
see Taqqu and Teverovsky (1998), Kύnsch (1987), "local Whittle" . As
with the periodogram method, however, it is not clear how to choose
the optimal frequency band over which the local likelihood function is
maximized. Following the recommendation of Taqqu and Teverovsky
(1998), we used the lowest 1/32 of all frequencies. Our own limited
simulation study showed that the results remain essentially the same
for any band from 1/50 to 1/20 of all frequencies.

3. ARFIMA(l,d,l): Here d was estimated by approximate Gaussian
maximum likelihood and assuming that the simulated time series truly
follows a fixed ARFIMA(l,d,l) process, whether or not the undelying
simulated model was of this particular form. The maximization was
carried out using the S+ function arima.fracdiff.

4. ARFIMA(2,d,2): Same as above, but ARFIMA(2,d,2) model was
fitted.

5. ARFIMA AIC: In this method we considered ARFIMA(p, d, q) mod-
els for p, q = 0,1,2. The model for which d was estimated was selected
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by minimizing the following AIC criterion:

AIC{p, q) = -2loglik + 2{p + q). (5.3)

For each value of the order p and q, the estimation was carried out

using the S+ function arima.fracdiff.

6. ARFIMA BIC: Same as above, but with AIC(p,q) replaced by

BIC{p, q) = -2loglik + (1 + In n)(p + q). (5.4)

The periodogram and semiparametric methods were chosen for compari-
son because the extensive simulation study of Taqqu and Teverovsky (1998)
demonstrated that these two methods are more robust and accurate than
any other non-parametric method considered by them.

The ARFIMA(1, d, 1) and ARFIMA(2, d, 2) methods were considered for
two reasons: first, for models VI and VII described below their use cor-
responds to fitting the true generating processes respectively and thus for
these two models, the simulation results should throw some light on possible
effects of model selection on the estimation of d. Secondly, for the other six
simulated models, their use corresponds to under- or over-fitting the gener-
ated process and the simulation results may again be expected to provide
some information about how misspecification of the short memory model
structure in this way influences the estimation of d.

The ARFIMA AIC and ARFIMA BIC methods were considered in order
to see if anything is lost or gained by fitting only fractional autoregressive
models.

We next describe the long memory models used in our study. Recall that
Yt = (1 — B)dXt denotes the fractionally differenced process and {Zt} is the
noise sequence. The simulated process is {Xt}'

I ARFIMA(0,d,0): Yt = Zt.

II ARFIMA(l,d,O): Yt = .5Yt-ι + Zt.

III ARFIMA(2,d,0): Yt = -.5Yt-ι - .25Yt_2 + Zt.

IV ARFIMA(2,d,0): Yt = .5Yt-ι - .25Y*_2 + Zt.

V ARFIMA(0,d, 1): Yt = Zt + .5Zt_i.

VI ARFIMA(l,d, 1): Yt - .5Yt_i + Zt + .5Zt-i.

VII ARFIMA(0,d,2): Yt = Zt- .5Zt_i + .25Z*_2.

VIII ARFIMA(2,d,2):Yt = ,5Yt-ι - .25Yt-2 + Zt + .5Zt-i -
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Note that all models have moderate AR and MA coefficients so as not to
favour a priori any of the model fitting methods. The models were decided
upon before any simulations were done.

For comparing the behaviour of the estimates under Assumption 2A, the
Zt were simulated as independent Gaussian deviates, each with mean 0 and
variance 1, using the S+ function arima.fracdiff .sim. Only one value of
n, namely n — 1000 is considered and the number of simulations for each
(model, method) configuration was 250. The nominal value of d was set to
equal 0.3.

The simulation results for the Gaussian innovations are shown in Table 1,
where for each cell corresponding to each (model, method) configuration, the
bias, standard deviation, and the square root of the mean squared error are
shown. For convenience, a summary of the simulation results is also given in
Table 2, where the average squared roots of the mean squared errors averaged
over all models and separately for only the fractional autoregressive, FAR,
models are shown.

As our simulation study is restricted to only the class of ARFIMA mod-
els the two periodogram-based non-parametric and semiparametric methods
perform rather poorly: for all the simulated models the magnitudes of their
biases and standard deviations are much larger than for other methods.

Consider next the method of fitting either a fixed order ARFIMA(2,d,2)
or ARFIMA(l,d,l) model. For Model VII the former coincides with the
actual generated model and it performs particularly well, with a similar
remark applying to the method of fitting a fixed order ARFIMA(l,d,l) for
Model II.

However, for all other models possible effects of misspecifying the short
memory model on the estimation of d may be gleaned from our simulation
results. Thus the fitting of an ARFIMA(2,d,2) model to any of the models
I-VII tantamounts to fitting a model with too many parameters. The main
effect of this overfitting as compared with the fitting of an FAR model with
the order selected by the BIC criterion is seen to be an increase in the
simulated variance; moreover the bias is also much larger for all models
except Model VI.

For Model VII, on the other hand, fitting a fixed ARFIMA(l,d,l) cor-
responds to fitting a model with too few parameters and the main effect of
this underfitting is seen to be an increase in the bias though the variance is
smaller than when the correct ARFIMA(2,d,2) is fitted.

A possible explanation of these results is that when a model with too
many parameters is fitted, the additional parameters attempt to model the
long memory component, effectively altering the generated value of d. At
the same time, the variance in estimating d increases because of the excess
variability introduced by the estimation of the redundant parameters. It
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TABLE 1. COMPARISON OF THE ESTIMATE OF d PROVIDED BY DIFFERENT

METHODS IN 2 5 0 SIMULATIONS OF VARIOUS GAUSSIAN MODELS.

Method

Periodogram a)
b)
c)

Semiparametric a)
b)
c)

ARFIMA(l,d,l) a)
b)
c)

ARFIMA(2,d,2) a)
b)
c)

FAR AIC a)
b)
c)

FAR BIC a)
b)
c)

ARFIMA AIC a)
b)
c)

ARFIMA BIC a)
b)
c)

Model
I

.067

.187

.199
-.031
.022
.038

-.078
.088
.118

-.083
.120
.146

-.028
.071
.076

-.005
.027
.027

-.021
.070
.073

-.011
.034
.036

II
.089
.192
.212
.334
.062
.340

-.055
.097
.112

-.104
.122
.160

-.061
.107
.107

-.054
.092
.107

-.071
.114
.135

-.070
.092
.117

III
.053
.199
.206

-.306
.028
.307
.004
.049
.049

-.035
.059
.069

-.037
.064
.042

-.019
.037
.042

-.025
.046
.052

-.009
.045
.046

IV
.059
.194
.203
.267
.026
.268

-.126
.047
.134

-.036
.074
.082

-.043
.081
.058

-.021
.054
.058

-.040
.063
.075

-.032
.051
.060

V
.066
.206
.216
.091
.023
.094

-.018
.048
.051

-.126
.125
.177

-.072
.096
.120

-.039
.101
.108

-.029
.032
.043

-.015
.033
.036

VI
.070
.192
.204
.494
.027
.495

-.056
.094
.109

-.106
.116
.157

-.087
.122
.150

-.064
.103
.121

-.067
.111
.130

-.041
.087
.096

VII
.065
.179
.188

-.252
.028
.260
.078
.037
.086

-.063
.103
.121

-.051
.106
.118
.019
.100
.102

-.037
.090
.097

-.016
.051
.053

VIII
.084
.208
.224
.474
.036
.475

-.170
.047
.176

-.034
.065
.073
-083
.075
.112

-.063
.074
.097

-.045
.076
.088

-.090
.078
.119

a) BIAS = SIMULATED MEAN - 0.3, b) STANDARD DEVIATION,
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TABLE 2. AVERAGE SQUARE ROOTS OF MEAN SQUARE ERRORS OF VARIOUS

ESTIMATES OF D IN ALL GAUSSIAN MODELS AND F A R MODELS IN INCREASING

ORDER.

Method

FAR BIC
ARFIMA BIC
FAR AIC
ARFIMA AIC
ARFIMA(l,d,l)
ARFIMA(2,d,2)
Periodogram
Semiparametric

FAR
Models

.059

.065

.071

.083

.103

.114

.205

.238

Method

ARFIMA BIC
FAR BIC
ARFIMA AIC
FAR AIC
ARFIMA(l,d,l)
ARFIMA(2,d,2)
Periodogram
Semiparametric

All
Models

.070

.081

.087

.098

.104

.123

.207

.293

should be noted that the situation here is slightly different from when a pure
short memory is being overfitted in which case the estimation of additional
parameters increases the variance but does not unduly influence the bias in
estimating the non-zero parameters.

On the other hand, when a model with too few parameters is fitted, the
short memory component is not adequately modelled and this introduces bias
in the estimation of d because the spectral density of the generated process is
being approximated by the spectral density of the underparametrized model.
The variance in estimating d is, however, reduced because fewer parameters
are estimated.

Consider now the method of fitting a fractional autoregressive model
proposed in this paper and its relative behaviour in comparison with the
fitting of ARFIMA models, with order selected by the AIC or the BIC cri-
terion. The method of fitting a fractional autoregressive model is seen to
provide good results for all models, but especially for models I-IV, where
the generated model for {Yf} is a finite autoregression. It should be noted,
however, that the ARFIMA BIC method has a smaller mean squared error
for models VI-VII, all of which have q > 0. This finding is probably not
surprising because if the selected model coincides with the generated model
the resulting estimate of d is known to be asymptotically efficient. It should
be emphasised, nevertheless, that the full ARFIMA models were fitted only
up to order 2 and the chance of selecting an incorrect model is quite small
in our simulations. As regards the question of whether the AIC or BIC cri-
terion should be used for implementing the FAR method suggested in this
paper, the simulation results appear to favour the latter, probably because
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the AIC criterion is known to frequently select an "overparametrized" model

resulting in a large mean square error as explained above when discussing

possible effects of overfitting the simulated models.

Even though the main goal of the present simulation study is to examine
the overall performance of the estimators for typical stationary models with
moderate AR and MA coefficients, it is of interest to see how the methods
perform for nearly non-stationary or non-invertible models, and thus to ex-
amine the limits of their applicability. We considered the following models
for achieving this objective. 1) Almost unit root AR(1) models of the form
Yt = φYt_x+Zu with φ = .9, .95, .99, 2) almost unit root MA(1) models of the
form Yt = Zt + ΘZt-ι with θ = .9, .95, .99. Our findings can be summarized
as follows. Focusing first on AR models, the periodogram and semiparamet-
ric methods fail. The FAR BIC method by contrast gives estimates almost
as good as for AR processes with moderate coefficients considered in Table 1.
By contrast, for the almost unit root MA(1) models, the performance of the
FAR BIC method is worse than that for the models considered in Table 1,
and, also, as compared with the ARFIMA BIC method. A main reason why
the performance of the ARFIMA(1, d, 1) method is noticeably better for this
class of models than that of all other methods is that the ARFIMA(l,d, 1)
model just includes the simulated ARFIMA(0,d, 1) and ARFIMA(l,d,O)
models as its special case and yet avoids the parameter identification dif-
ficulties (Hannan (1970), p. 388) associated with fitting ARFIMA(p,d,g)
models with p > l,g > 1. A detailed analysis of the simulation results for
MA(1) models revealed that the ARFIMA(l,c/, 1) method yields estimates
of the autoregressive and moving average coefficients which are within 0.1 of
the correct values 0 and 0, respectively, and thus its estimate of d is based
on an almost MA(1) short memory component.

To illustrate the relative behaviour of the estimators in the infinite vari-
ance setting, we simulated symmetric α-stable innovations Zt with a = 1.5
and unit scale parameter. The nominal value of d is .2, which lies approx-
imately in the middle of the stationary invertible range 0 < d < 1 — I/a
specified in Assumption 3.

Figures 1-4 show histograms of the estimated values of d in 50 replica-
tions of models I, II, V and VI. Only six methods were considered, namely,
Periodogram, ARFIMA(l,d, 1), FAR AIC, FAR BIC, ARFIMA AIC and
ARFIMA BIC.

For all four models, the periodogram method provides a biased as well
as a highly dispersed estimate of d, a finding that accords with the results
reported above in Tables 1 and 2 for the the Gaussian case. Somewhat sur-
prisingly, however, a similar comment applies to the ARFIMA BIC method,
which, unlike the Gaussian case, now provides a biased estimator for all four
models, and for models V and VI the estimator is also highly dispersed. A
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Figure 1: FIGURE 1. Histograms of the estimated values of d for model I
(ARFIMA(0,d,0)) with d = 0.2 and stable innovations.

Periodogram FARIMA(1,d,1) FAR AIC

II
FAR BIC

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

FARIMA AIC FARIMA BIC

I
0.0 0.1 0.2 0.3 0.4 0.5 0.4 0.5 0.0 0.1 0.2 0.3 O.4 0.5

plausible explanation for this behaviour is not easily given, but the simula-
tions appear to indicate that the question of model selection for an α-stable
ARFIMA process requires further investigation and that a naive use of the
BIC criterion (5.4) may not be recommended in a situation where "outliers"
may be present.

The simulation results for the FAR BIC method, by contrast, broadly
support the asymptotic consistency property established in Theorem 4.1. For
models I and VI, in particular, the histogram is centred around the actual
generated value of d = 0.2 with a relatively small dispersion around this
value. For model V, however, the estimate is biased, probably reflecting the
difficulty of estimating d for processes with a short memory MA component.

In conclusion, the simulations indicate that when the long-memory pro-
cess generating the observed series can be well approximated by a fractional
autoregressive process, the method proposed in this paper provides a good
estimator of d even when the order of the generating process, finite or in-
finite, is unknown, and in this sense it is "non-parametric". The method,
moreover, compares favourably with the periodogram based non-parametric
methods, which in this situation tend to have a larger variance and often a
greater bias.
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Figure 2: FIGURE 2. Histograms of the estimated values of d for model II
(ARFIMA(l,d,O)) with d - 0.2 and stable innovations.
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6 Data Example

We consider the Ethernet traffic data studied by Leland et al (1994), Will-
inger et al (1995), Taqqu and Teverovsky (1997), among others. The data,
described in detail by Leland et al (1994), were collected between August
1989 and February 1992 at the Bellcore Morristown Research and Engineer-
ing Center and represent the number of bytes per 10 milliseconds passing
through a monitoring system during a "normal traffic hour" in August 1989.
The periodogram of the data has a number of very sharp peaks at non-zero
frequencies suggesting that the data may not necessarily follow an ARFIMA
model.

Taqqu and Teverovsky (1997) used a graphical analysis of the peri-
odogram and the semi-parametric method to infer that the true value of
d lies between 0.31 and 0.35.

We consider here 18 consecutive 200 second long time periods making up
the "normal traffic hour". Thus, we consider 18 extremely long series, each
consisting of 20,000 observations. Because of the self-similarity property, the
long memory parameter for each of the 18 time series must be the same, and
the estimates should lie in the range between .31 and .35. Figure 5. shows the
estimates obtained using the FAR BIC, ARFIMA BIC, and Semiparametric
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Figure 3: FIGURE 3. Histograms of the estimated values of d for model V
(ARFIMA(O,d,l)) with d = 0.2 and stable innovations.
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methods. Following the analysis of Taqqu and Teverovsky (1997), we used
for the semiparametric method the lowest 1/128 of all frequencies to get
clear of the peaks at non-zero frequencies.

The estimates obtained using the FAR BIC and ARFIMA BIC methods
appear to be more stable over time than those obtained using the semipara-
metric method. It is possible that the intensity of long range dependence
decreased in the 7th period and increased in the 8th period, but the semi-
parametric estimates probably overestimate the magnitude of the change.

Acknowledgements. The software used in Section 5 for the periodogram
and semiparametric methods and for simulating α-stable ARFIMA series
was kindly made available to us by Murad Taqqu and Vadim Teverovsky,
who also gave us plentiful advice on how to use it. Our colleague Simon
Fear has invariably been willing to help us deal with intricacies of WΓ^X.
and S+. We also thank Jan Beran for a discussion which stimulated the
present research and Murad Taqqu for providing us with the Ethernet data
studied in Section 6. Clifford Hurvich, Carenne Ludeήa, Adrian Raftery and
Gennady Samorodnitsky also offered valuable comments.



146 BHANSALI AND KOKOSZKA

Figure 4: FIGURE 4. Histograms of the estimated values of d for model VI
(ARFIMA(l,d,l)) with d = 0.2 and stable innovations.
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Figure 5: FIGURE 5. Estimated long memory parameter for 18 consecutive Eth-

ernet data series by various methods. FAR BIC: continuous, ARFIMA BIC: dotted,

Semiparametric: dashed.
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