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Abstract

Tests of the Kolmogorov-Smirnov type are constructed for the pa-
rameter of an autoregressive model of order p. These tests are based
on autoregression rank scores, and extend to the time-series context a
method proposed by Jureckova (1991) for regression rank scores and
regression models with independent observations. Their asymptotic
distributions are derived, and they are shown to coincide with those
of classical Kolmogorov-Smirnov statistics, under null hypotheses as
well as under contiguous alternatives. Local asymptotic efficiencies are
investigated. A Monte Carlo experiment is carried out to illustrate the
performance of the proposed tests.
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1 Introduction

Consider the autoregressive model of order p

Yt = θ i Y t - ι + •- + θvYt-v + ε u t e Z (1.1)

{AR(p) model), where p > 1 is a fixed integer, θ = (0X,..., θp)' ap-dimensional

vector of unknown autoregressive coefficients, and {ε*, t G Z} a process of
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independent and identically distributed random variables, with unspecified
cumulative distribution function F and probability density / satisfying

ί xdF(x) =0 and 0 < σ) := ί x2dF{x) < oo. (1.2)

Letting

P

zp -J^θiZ^ φ 0 Mz G C, \z\ < 1 L (1.3)θ:=lθe

we shall assume throughout the paper that 9 G Θ (the usual causality as-
sumption) : {εt, t € Z} then is the innovation process, and / the innovation
density, of the AR(p) process {Y ,̂ t G Z}. Denote by Y n := (YΊ,..., Y )̂ a
realization of length n of some solution of (1.1); we do not require Y n to be
stationary, since all solutions are asymptotically stationary (see Hallin and
Werker (1998) for a detailed discussion on this issue). Assume furthermore
that (YLp+i,..., YQ) also are observed; in case they are not, they safely can
be put equal to zero without affecting asymptotic results.

Koul and Saleh (1995), extending to the time-series context Koenker and
Bassett (1978) 's concept of regression quantiles, defined the a-autoregression
quantile for model (1.1) as the solution

ϋin\a) := {θ^(a),θin\aή , flW(α) G K, θin)(a) G W

of the minimization problem

(n\ £ ρa (Yt - θ0 - xj.^), (1.4)

where the minimum is taken over all ϋ = (θo,θ) such that ΘQ € K. and θ € W,

ρa(u) := |u| {al[u > 0] + (1 - a)I[u < 0]} , u € R, aβ [0,1],

and x ( := (Yt, ..., Yt-p+ι)', t = 0,..., n - 1.

This α-autoregression quantile can be obtained as the component

ΰ(n)= ίθ^\θinΛ € W+1 of the optimal solution (d ( n ) , f+f - ) G E2n+P+1

of the linear program

α l n r + + (1 — a)lnr~ := min

Yn - l n 0 O - XnZ = Γ+ - Γ- , (1.5)

zeW, i ^ e E l , 0 < α < l
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where l n stands for the n-dimensional vector (1,..., 1)', and X.n is the n x p
matrix with rows x ^ , 0 < t < n — 1.

The corresponding dual program is

Yna := max

ϊnsi = n(l - a)
(1.6)

Following the idea of Jureckova and Gutenbrunner (1992), later adapted to

the autoregressive context by Koul and Saleh (1995), the solutions a π (a) =

άι (α), ...,άn

n (α)J, 0 < a < 1 of (1.6) are called the a-autoregression rank

scores.

The formal duality between (1.5) and (1.6) implies that, for alH = 1,..., n
and α e [0,1],

1 if Yt>θo(a)+^1θ
in\a)

0 if Yt<§0(a)+xf

t_/n\a)

while, for t E < t Yt = ̂ o(^) + &'t-\θ {&) \> the components of a n (a) are

determined by the equality constraints in (1.6). Clearly, the sample paths

{an (α), 0 < a < 1} are continuous, piecewise linear, and such that

Qt (0) — 15 and άt

n (1) = 0. An obvious modification of the algorithms

of Koenker and dΌrey (1987 and 1994) allows for an efficient computation

of the solutions ΰ (a) and a n (α) over the whole interval [0,1].

A crucial property of autoregression rank scores is their autoregression-
invariance, i.e., denoting by άt

n (α, Yn) the solution of (1.6), the fact that

ά;n )(α,Yn + * l n + Xnz) =aί n ) (α,Y n ) , (z,z) e KP+1, (1.7)

which immediately follows from (1.6). Some further algebraic relations be-
tween autoregression quantiles and the corresponding autoregression rank
scores are provided in Lemma 2.1 of Hallin and Jureckova (1999). Quite
remarkably, no preliminary estimation of θ is needed in order to compute
autoregression rank score statistics. This is in sharp contrast with the more
familiar aligned rank methods (Hallin and Puri, 1994), where ranks are com-
puted from estimated residuals; see Jureckova (1991), Gutenbrunner and
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Jureckova (1992), Gutenbrunner et al. (1993), Hallin et al. (1997a, 1977b),
Harel and Puri (1998), or Hallin and Jureckova (1999) for details and nu-
merical applications.

In the present paper, new tests based on a autoregression rank score
version of the traditional Kolmogorov-Smirnov statistic are introduced for
model (1.1). The asymptotic behaviour of these tests is investigated in Sec-
tion 3, where we show that the limiting distributions of the test statistics
coincide with those of the classical Kolmogorov-Smirnov statistics, both un-
der the null hypothesis as under contiguous alternatives. Our results extend
those of Jureckova (1991) from regression models to autoregression models.
The local asymptotic efficiency of these tests is also investigated. Finally,
the performance of the proposed tests is illustrated on simulated AR series
with Normal, Laplace and Cauchy innovation densities, respectively.

2 Limiting Distributions of Kolmogorov-Smirnov
Statistics Based on Autoregression Rank Scores

Assume that the density / of the innovations in the autoregressive model
(1.1) remains unspecified within the family T of exponentially tailed densi-
ties satisfying (1.2) and the following conditions (borrowed from Hallin and
Jureckova, 1999) :

(Fl) f(x) is positive for all x E M, and absolutely continuous, with a.e.
/ £f ί \ \ ^

d e r i v a t i v e / ' a n d finite F i s h e r i n f o r m a t i o n l ( f ) : = / 1 . 1 f ( x ) d x
J \}\x)j

< oo; moreover, there exists K/ > 0 such that, for all \x\ > Kf, f has
two bounded derivatives, / and /", respectively;

(F2) / is monotonically decreasing to 0 as a; —> ±oo and, for some b =
bf > 0, r = 77 > 1,

-logFjx) -log(l-F(s))
lim l i m

z » o o b\x\r z->oo b\x\r

We will focus on the problem of testing null hypotheses of the form

Ή-o ' θp = 0, 0(!) := (0i,..., θp-ι) unspecified,

against alternatives

U\ : θp φ 0, 0 ( 1 ) := {θu ..., 0p_i) unspecified.

Such tests play a crucial role, for instance, in the order identification process
(see Garel and Hallin 1999).
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Write the AR{p) model (1.1) as

^(l) + Xn;2^p + βn, (2.1)

where X n := ( Xn ;i:Xn ; 2 I is the (n x p) matrix with rows x^_i, 1 < t < n,

Xn;2 := (Y-p+u , ̂ n-p)' (hence, Xn;2,t = Yt-p, t = 1,..., n), and ε n :=
(εi, . . . ,ε n ) ; . Denote by

P n := Xn ;i(Xn ; 1Xn ;i)

the (random) matrix projecting W1 onto the linear space spanned by the
columns of Xn;χ. Define

^ ;2 := Xn;2 ~ Xn;2 ~ [Xn,2 ~ Xn;2J l n

where

n-p

t=-p+l

a n d

t = l

and let

) :
^ = n"1 (X n ; 2 - Xnflln)' [In - P n ] (X n ; 2 - X n ; 2 l n ) .

Denoting by 7it(d), A; = 1,... the autocovariances of the stationary solution of
(1.1), the consistency under AR(p) dependence of empirical autocovariances
implies that D\ converges in probability, as n —> oo, to

- 1
( TO W 71W ••• Ίv-2{θ)\

71
Ίp-ιiβ)

which, in view of classical Yule-Walker equations, under HQ reduces to

p-1

a simple scale factor that does not depend on 0, nor on the shape of the
innovation density /.

Let a n (a) = Γά/1 (α),...,άn

n (cm, 0 < a < 1, be the autoregression

rank scores computed under HQ , i.e., corresponding to the submodel

Yn = + εn
(2.2)
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(though of course a " (α), as a statistic, does not depend on 0(i)) For each
n, consider the process {Tn(a) : 0 < a < 1} defined by

Xn;2,tάt

 ; ( α ) , 0 < α < 1. (2 .3)
t=l

This process has trajectories in the space C[o,i] °f continuous functions
α ι-> c(a), a 6 [0,1] (as usual, C[o,i] is equipped with the Borel σ-field
C associated with the uniform metric ||ci — C21| := maxo<α<i |ci(α) — C2(α)|).
Following Section V.3.2 of Hajek and Sidak (1967) [for convenience, we con-
sistently refer to the original edition], define on (C[Oji],C) the continuous
functionals

h+ (c( )) := max^c(a) and h± (c( )) := max^ |c(α)|.

The one- and two-sided autoregression rank score-based Kolmogorov-Smirnov
statistics we are considering in the problem of testing KQ are

K+ := h+ (Tn( )) = n-^D-1 max £ X ^ ά ^ (α) (2.4)

and
7 1 (n)

7 1 n n 0<Q<1 ~ * U ' '

respectively. The following results provide the asymptotic distributions of
K^ and K^ under the null hypothesis ΉQ .

Theorem 2.1 Assume that (F1)-(F2) are satisfied. Then, under Ήξ,

lim P(K+ <x) = \ 2

 x ~ (2.6)
n->oo — 1 l — exp(—2x ) x > ϋ

and

{ U; < 0

l - 2 f ) ( - l ) * - 1 « p ( - 2 i f c 2 x 2 ) x>0 • ( 2 ' 7 )

The proof is based on the following lemma.

Lemma 2.1 Define the scores

0 no. < Rn]t - 1
a*t (a) := { Rn.t - not Rn,t - 1 < not < i?n ; ί (2.8)

0 Rn t < na ,
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where Rn]t denotes the rank of εt among ε i , . . . , εn. Assuming that (F1)-(F2)
are satisfied, let

at(a) := I[εt > F~ι{a)], 1 < t < n, 0 < a < 1.

Then,

sup n
O<Q<1

-1/2

sup n
0<a<l

-1/2

Σ [(*n;2,t " *n;2) ^ (α) - X^fi,(<*)] A 0 (2.9)
t = l I

[(Xn;2)ί " Xn;2) ^ (a) - X^O^a)] A 0, (2.10)

as n -> oo. Moreover, the process {Tn(a) : 0 < a < 1} converges in distri-
bution in (C[Oji],C) fo ίΛe Brownian bridge {Z(a) : 0 < a < 1}.

Proof of Lemma 2.1. The convergence (2.9) is a direct application of
Theorem 3.2 of Hallin and Jureckova (1999). The approximation results on
the rank score process given in Hajek (1965) (see also Jureckova 1999) then
yield (2.10). The asymptotic behaviour of {Tn(a) : 0 < a < 1} follows from
the fact that

{ }
I t=i )

converges weakly to the Brownian bridge {Z(a}} : see Theorem 1 in Section
V.3.5 of Hajek and Sidak (1967). D

Proof Theorem 2.1. Prom Theorem V.3.3.a of Hajek and Sidak (1967),
we have, for positive x and y and all 0 < a < 1,

P [Z(a) < x(l - a) + ay] = 1 - exp(-2:ry)

and

P [-x(l -a)-ay< Z(a) < x(l - a) + ay] = 1-2
k=l

The asymptotic distributions (2.6) and (2.7) directly follow from letting
x = y. Π

Thus, the one-sided test based on K+ rejects WR at (asymptotic) prob-
1 /9

ability level a whenever K+ is larger than the critical value ί— ^logαj ,
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while the two-sided based on K^ rejects ΉQ at probability level a whenever
Kn exceeds the α-quantile q(a) := Q~ι(a) of the distribution function

oo

Q(x):=2Σ(-l)k-1exp(-2k2x2).
k=ι

This function Q(x) has been tabulated by Smirnov (1948). Note that both
critical values are entirely distribution-free, as they do not depend neither
on / nor on the nuisance θ^.

We now turn to a study of the power of the tests based on K+ (the case
of K^ follows along similar lines, and is left to the reader). The following
result provides asymptotic powers against local alternatives of the form

Un : θp = 0£ := rCxl2τ, r E R, 0 ( 1 ) = (θu ..., 0p_i) G IT" 1 unspecified.

Theorem 2.2 Assume that (F1)-(F2) are satisfied. Let

pn(θ{ιy,τ) :=Pθn |uf+ > (^-I

where P$n is computed under θn := (0(i),0p) Then, for any 0 < α < 1,

, (2-11)

where f\ and F\ stand for the standardized versions of f and F, respectively.
Furthermore, for τ —> 0 (the notation £(τ) ~ ζ(τ) means that the ratio
ξ(τ)/ζ(r) tends to one as τ -> 0; Φ, as usual, stands for the standard normal
distribution function),

( ( 1 λ1 / 2 ί1 \
B(a,/,r) — a~ I 2σfT~ι'2(f)a ί — -logα 1 / φ(u,f)ψ(a,u)du)r,

(2.12)

ψ(a,u) ~ 2Φ U - I l o g α ) 1 ' (2u - l)(tι(l - u))" 1 / 2 ! - 1.

Proof. This proof, as well as the proof of Theorem 3.1, heavily relies on
Sections VL4.5 and VΠ.2.3 of Hajek and Sidak (1967); the various constants
appearing there here are to be taken as

ct = n-ι'2X^t (hence, c = 0), p2 = 1,
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and

Theorem VΊ.3.2 in Hajek and Sidak (1967) entails that, under 1-Ln, the pro-
cess

converges in distribution to the Brownian bridge {Z(a)}. Since K+ =
maxo<α<i Tn(a) and D\ — σ? + op(l), equation (2.6) in turn implies that
Pn(0(i)\τ) converges, as n -+ oo, to

La*

for any α; (2.11) follows from noting that σff(F~1(u)) = fι(F^ι(u)). As for
the linear approximation (2.12), it is an immediate consequence of Theorem 1
in Section VI.4.5 of Hajek and Sidak (1967). D

3 Local Asymptotic Efficiency of the Test Based
onK+

Pitman asymptotic relative efficiencies of the tests based on K* with respect
to the corresponding Gaussian Lagrange multiplier procedures, or with re-
spect to the autoregression rank score test proposed by Hallin and Jurckova
(1999) cannot be computed as easily as in the usual case of asymptotically
normal or chi-square test statistics, for which AREs are obtained as ratios
of noncentrality parameters. Actually, the analytical form of asymptotic
powers, for given θ and r does not allow for any simple result, and AREs
typically will depend on α, /, θ and r. This problem already appears in the
classical case of Kolmogorov-Smirnov tests for linear models with indepen-
dent observations; see Hajek and Sidak (1967), Section VII.2.3.

However, local ARE results can be obtained from the linear approxima-
tion (2.12) of the asymptotic power B(a,f,τ) as r —>• 0. More precisely,
denote by e(α,/,β,r) the ARE of the test based on K+ with respect, for
instance, to the locally optimal Gaussian test : the following result, inspired
from Section VII.2.3 of Hajek and Sidak (1967), shows that the limit

e(α,/):=lime(α,/,β,τ) (3.1)

does not depend on θ and r anymore, and thus allows for local or approxi-
mate comparisons of asymptotic performance.
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Theorem 3.1 Under (F1)-(F2), the local asymptotic relative efficiency of

K^ with respect to the locally optimal Gaussian test is

e(a,f) =4πα2(-logα)J-1(/)exp(z2) [j|%(u,/W(α, u) du] , (3.2)

where za denotes the (1 — a)-quantile of the normal distribution. Moreover,

Jme(α)=Γ 1 (/) [^ φ(u, f)sgn(2u - 1) du] (3.3)

Proof. The proof readily follows from Theorem VΠ.2.3 of Hajek and Sidak (1967).
D

For instance, under the Laplace (double-exponential) density f(x) =
^ — | x | ) , we have

φ(u, f) = sgn(2w - 1), 0 < u < 1.

One can easily check that

/ Φ(ui /)sgn(2u - 1) du = 1 - 2Φ ( - ( - log α ) 1 / 2 ) /α,

so that (3.2) becomes

e(α) =4π(-logα)exp(4_α) [α - 2Φ (-(-logα) 1/ 2)] ' .

In general, however, the local asymptotic efficiency e(α, /) still involves
the actual innovation density /. If we apply the Cauchy-Schwarz inequality
to (3.2), we obtain the uniform (in /) upper bound

e(α) := sup e(α, /) = 4 π α 2 ( - logα) exp(z2_a) / ψ(a, u)2 du.
fer Jo

Using the fact that

lim 2πx2 exp(x2)(l — Φ(x))2 — 1,

it follows that
Jhn o 4πα 2 (-logα)exp(^_ α ) = 1,

hence
lim e(a) = 1.

a—>o

One can easily check by computations that e(0.01) = 0.864, e(0.05) = 0.852,
and g(0.1) = 0.844.
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4 Simulation Results

The null hypothesis θ = 0 has been considered in the AR(3) model

Yt = 0.5Yt_i - 0.2Yt_2 + 0Yt-3 + εt. (4.1)

More precisely, N = 2000 replications of the AR(3) series of length n — 100
generated by (4.1) with initial values Yl2 = Y-i = YQ = 0, θ = 0, θ = 0.1,
θ = 0.2, θ — 0.3, and θ = 0.4, and three innovation densities (standard
normal, standard Laplace, and standard logistic) have been subjected to the
two Kolmogorov-Smirnov tests described in this paper (based on K+ and
if1*1), respectively), and to the Gaussian Lagrange multiplier test (based on
a quadratic form Qc\ see Garel and Hallin 1999). For each of these tests,
relative rejection frequencies (at probability levels a = 5% and a = 1%) are
reported in Table 1.

Inspection of the θ = 0 column of Table 1 reveals that the three tests
considered all are rather conservative, thus biased. The bias seems less
severe, though, for the test based on K+ than for the K^ and Qc ones. Since
the same one-sided test based on K+ is also significantly more powerful,
under all alternatives considered here, than the two-sided one based on K±^
the two-sided Kolmogorov-Smirnov procedure might well be non admissible.

Under θ = 0.1, the test based on K+ is slightly more powerful than
the Gaussian Lagrange multiplier test, even under Gaussian innovations,
despite the local asymptotic optimality of the latter. Under larger values of
0, this advantage of K+ over its competitors is clear under the three densities
considered, but particularly marked under Laplace densities—as expected.

Though more extensive simulations should be undertaken, Table 1 nev-
ertheless indicates that Kolmogorov-Smirnov techniques, especially the one-
sided, based on nonlinear test statistics, can be expected to beat locally
asymptotically optimal tests based on linear statistics.

Acknowledgement. The authors thank the Editor, Professor Ishwar Ba-
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f

Normal
K+ Laplace

Logistic

Normal
AT* Laplace

Logistic

Normal
Qn Laplace

Logistic

standard
errors

θ =

α = 5%

0.035
0.038
0.043

0.041
0.036
0.050

0.035
0.031
0.046

0.004

0

a = 1%

0.006
0.009
0.008

0.003
0.007
0.005

0.003
0.003
0.006

0.002

θ =

α = 5%

0.374
0.525
0.377

0.248
0.462
0.263

0.335
0.324
0.221

0.011

0.1

α = 1%

0.155
0.226
0.176

0.131
0.174
0.138

0.144
0.112
0.102

0.009

θ =

α = 5%

0.578
0.854
0.675

0.403
0.661
0.477

0.483
0.442
0.402

0.011

0.2

a. = 1%

0.238
0.452
0.287

0.153
0.325
0.185

0.224
0.211
0.147

0.011

θ

ct = 59

0.708
0.873
0.769

0.604
0.785
0.654

0.723
0.733
0.683

0.011

= 0.3

% α = 1%

0.428
0.663
0.514

0.324
0.554
0.382

0.366
0.521
0.383

0.011

θ

a = 5?

0.908
0.982
0.934

0.845
0.955
0.883

0.854
0.731
0.868

.010

= 0.4
ro a = 1%

0.753
0.915
0.797

0.634
0.843
0.714

0.747
0.742
0.783

0.011

Table 1. Rejection frequencies of the null hypothesis θ = 0 for n = 100,
under standard Normal, Laplace, and Logistic innovation densities /, re-
spectively, and for various values of 0, a = 5% and a = 1%. The number
of replications is N = 2000; maximal standard errors are provided for each
column.




