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1 Introduction

A considerable body of recent work uses Levy processes to model and anal-
yse financial time series. Section 2 provides a brief review of this work. The
review is to a large extent based on two papers Barndorff-Nielsen and Shep-
hard (2001a,b) where more detailed information may be found. See also
Barndorff-Nielsen and Shephard (2001c,d,e).

The models in question aim to incorporate one or more of the main
stylised features of financial series, be they stock prices, foreign exchange
rates or interest rates. A summary of these stylised features, and a compar-
ison with related empirical findings in the study of turbulence, is given in
Section 3. (In fact, the intriguing similarities between finance and turbulence
have given rise to a new field of study coined 'econophysics'.)

2 Levy Processes in Finance

A Levy process is a stochastic process (in continuous time) with independent
and homogeneous increments. The study of such processes, as part of prob-
ability theory generally, is currently attracting a great deal of attention, see
Bertoin (1996,1999), Sato (1999), Barndorff-Nielsen, Mikosch and Resnick
(2001), and references given there.

It is by now well recognised that Brownian motion generally provides
a poor description of log price processes of stocks and other financial as-
sets. Improved descriptions are obtained by substituting Brownian motion
by suitably chosen alternative Levy processes, for instance hyperbolic Levy
motion, normal inverse Gaussian Levy motion and, more generally, one of the
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generalised hyperbolic Levy motions. See Eberlein (2001), Prause (1999),
Mantegna and Stanley (1999), Barndorff-Nielsen and Prause (2001).

Merely changing from Brownian motion to another, more suitable, Levy
process does not, however, provide a modelling of the important quasi long
range dependencies (cf. Section 3) that pervades the financial markets. But
such dependencies may be captured by further use of Levy processes, as inno-
vation processes driving volatility processes in the framework of SV (Stochas-
tic Volatility) models. Discrete time models of this kind were considered in
Barndorff-Nielsen (1998b). That approach has since been developed, in joint
work with Neil Shephard, into the continuous time setting, and the rest of the
present note consists mainly in a summary of that work (Barndorff-Nielsen
and Shephard (2001a,b; cf. also 2001c,d,e)).

The stochastic volatility models considered are of the form

dx*(t) = {μ + βσ2(t)} dt + σ(t)dw(t) (2.1)

where, for concretenes, we may think of x*(t) as the log price process of a
given stock. In (2.1), w(t) is Brownian motion and σ2(t), which represents
the fluctuating and time dependent volatility, is a stationary stochastic pro-
cess, for simplicity assumed independent of w(t). Of particular interest are
cases where σ2(t) is of OU type (Ornstein-Uhlenbeck type) or is a superpo-
sition of such processes. In the former instance, σ2(t) satisfies a stochastic
differential equation of the form

dσ2(t) - -λσ 2(t)dt + dz(λt) (2.2)

where z(t) is a Levy process with positive increments; thus z(t) is a sub-
ordinator. Because of its role in (2.2), z(t) is referred to as the Back-
ground Driving Levy Process (BDLP, for short). The correlation function
r(u) of the (stationary) solution σ2(t) of (2.2) has the exponential form
r(u) = exp(-λu).

In particular, choosing the volatility process so that σ2(t) follows the
inverse Gaussian law /G(ί, 7) with probability density

one obtains that the increments of the log returns over a lag Δ, i.e. x*(t +
Δ) — x*(t), are approximately distributed according to a normal inverse
Gaussian law, and these laws are known to describe the distributions of
log returns well. More generally, one may consider the generalized inverse
Gaussian distribution GIG(λ,δ,j)

(Ί/S)x _Λ_

2Kλ(δΊ)
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where K\ is a Bessel function, as the law for the volatility σ2(t). The
corresponding approximate laws of the increments z*(£ + Δ) — x*(t) are then
of the generalized hyperbolic type which, besides the hyperbolic and normal
inverse Gaussian distributions, inter alia includes the variance gamma laws,
the Student distributions, and the Laplace distributions. It is important here
to note that it is essential for the construction of these OU processes that
the G/G(λ, ί, 7) distributions are self decomposable (cf. Barndorff-Nielsen
(1998b)).

Furthermore, whatever the choice of the process &2(t), if the parameter β
is (approximately) 0 then the autocorrelations of the sequence of log returns
will be (approximately) 0, reflecting another important stylized fact.

The dependency structure in the log price process (as it manifests it-
self for instance in the autocorrelations of the absolute or squared returns)
may be modelled by endowing the σ2(t) process with a suitable correlation
structure. This can be done by taking σ2(t) to be a superposition of in-
dependent OU processes, while keeping the chosen marginal law of o2{t).
Already the superposition of just two OU processes (with different regres-
sion parameters λi and λ2) may go a long way in describing the observed
dependency structure of x*(t) (see, for instance, Barndorff-Nielsen (1998b;
Figure 1)). However, even processes with real long range dependence can be
constructed in this way (Barndorff-Nielsen (2001)).

Finally, the so-called leverage effect (see Section 3) can be modelled by
adding an extra term in equation (2.1), defined using again the BDLP z(t).

3 Stylized Features of Finance and Turbulence

A number of characteristic features of observational series from finance and
from turbulence are summarised in table 1. The features are widely recog-
nized as being esssential for understanding and modelling within these two,
quite different, subject areas. In finance the observational series concerned
consist of values of assets such as stocks or (logarithmic) stock returns or
exchange rates, while in wind turbulence the series typically give the veloc-
ities or velocity derivatives (or differences), in the mean wind direction of
a large Reynolds number wind field. For some typical examples of empiri-
cal probability densities of logarithmic asset returns, on the one hand, and
velocity differences in large Reynolds number wind fields, on the other, see,
for instance, Eberlein and Keller (1995) and Shephard (1996), respectively
Barndorff-Nielsen (1998a).

A very characteristic trait of time series from turbulence as well as fi-
nance is that there seems to be a kind of switching regime between periods
of relatively small random fluctuations and periods of high 'activity'. In tur-
bulence this phenomenon is known as intermittency whereas in finance one
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speaks of stochastic volatility or conditional heteroscedasticity. For cumula-
tive processes x* (t) in finance a basic expression of the volatility is given by
the quadratic variation process [#*](£), defined as

i=\

where 0 = ίo < h < ••• < ίn_i < tn — t and the limiting procedure is for the
grid size max(ij — ίj_i) tending to 0. Similarly, in turbulence intermittency
is expressed as the energy dissipation rate per unit mass at position ξ:

i / ' ξ

Jξ-ξ-r/2

Here u = u(x) is the velocity at position x in the mean direction of the wind
field. For detailed and informative discussions of the concepts of intermit-
tency and energy dissipation, see Frisch (1995).

varying activity
semiheavy tails

asymmetry
aggregational Gaussianity

0 autocorrelation
quasi long range dependence

scaling/selfsimilarity

Finance
volatility

+
+
+
+
+
[+]

Turbulence
intermittency

+
+
+
-

[+]
+

TABLE 1. Stylised features.

The term 'semiheavy tails', in table 1, is intended to indicate that the
data suggest modelling by probability distributions whose densities behave,
for x —> ±oo, as

const. \x\p± exp(—σ± \x\)

for some p-f-,p- € R and σ+,σ_ > 0. The generalised hyperbolic laws
exhibit this type of behaviour.

Velocity differences in turbulence show an inherent asymmetry consistent
with Kolmogorov's modified theory of homogeneous high Reynolds number
turbulence (cf. Barndorff-Nielsen, 1986). Distributions of financial asset
returns are generally rather close to being symmetric around 0, but for stocks
there is a tendency towards asymmetry stemming from the fact that the
equity market is prone to react differently to positive as opposed to negative
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returns, cf. for instance Shephard (1996; Subsection 1.3.4). This reaction
pattern, or at least part of it, is referred to as a 'leverage effect' whereby
increased volatility tends to be associated with negative returns.

By aggregational Gaussianity is meant the fact that long term aggre-
gation of financial asset returns, in the sense of summing the returns over
longer periods, will lead to approximately normally distributed variates, and
similarly in the turbulence context2. For illustrations of this, see for instance
Eberlein and Keller (1995) and Barndorff-Nielsen (1998a).

The estimated autocorrelation functions based on log price differences
on stocks or currencies are generally (closely) consistent with an assumption
of zero autocorrelation.

Nevertheless, this type of financial data exhibit 'quasi long range de-
pendence' which manifests itself inter alia in the empirical autocorrelation
functions of the absolute values or the squares of the returns, which stay
positive for many lags.

For discussions of scaling phenomena in turbulence we refer to Frisch
(1995). As regards finance, see Barndorff-Nielsen and Prause (2001) and
references given there.

In addition, it is relevant to mention the one-dimensional Burgers equa-
tion

du du _ d2u
dt dx dx2

This nonlinear partial differential equation may be viewed as a 'toy model'
version of the Navier-Stokes equations of fluid dynamics and, as such, have
been the subject of extensive analytical and numerical studies, see for in-
stance Frisch (1995; p. 142-143) and Bertoin (2001), and references given
there. In finance, Burgers' equation has turned up in work by Hodges and
Carverhill (1993) and Hodges and Selby (1997). However, the interpretation
of the equation in finance does not appear to have any relation to the role
of the equation in turbulence.
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