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If Dn : n > 1 is a given countable collection of Borel subsets of the unit square [0,1]2 = I2

and Z is a standard Brownian sheet over 72, is it possible to reconstruct Z from the
knowledge of all of the patches Z — Cn over transformed domains τn{Dn) for unknown
constants cn and unknown rotation-translation transformations τn? We show that the
answer to this question is yes under fairly natural restrictions on the sets Όn. The main
property of Brownian sheet that leads to this possibility is that the local behaviour of Z
around a point t actually determines t. In this sense, a Brownian sheet carries with it its
own location coordinates.
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1 Introduction

It is a privilege to be able to contribute to this volume in honor of Pro-
fessor van Zwet on the occasion of his 65th birthday. I have known Bill
for about half of those 65 years, giving me many opportunities to observe
and benefit from his warm hospitality, clever insights, wise counsel and keen
enthusiasm evidenced throughout his numerous theoretical and professional
undertakings.

In this written contribution I consider a specific question about Brownian
sheet, one that might imply that if Humpty-Dumpty were to have had a
'Brownian complexion' then the ending to the popular nursery rhyme may
have concluded with "All the king's men and all the king's horses could put
Humpty together again."

I believe it is fair to say that most mathematical researchers work pri-
marily on problems that are interrelated and part of long term programs.
However, most of us also enjoy the challenging diversions that come along
in the form of easily stated, fairly specific, open questions, especially when
they do not easily yield to available theory and techniques. When pursued,
such problems can have the beneficial result of leading the pursuers to new
methods and theory. Such was the nature of the question mentioned by R.
M. Dudley at a 1976 Oberwolfach meeting: "Does the Kakutani interval-
splitting procedure (in which at each stage the largest spacing is uniformly
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divided) yield an asymptotically uniform partitioning of the unit interval?"
This intriguing problem, based on a conjecture by S. Kakutani, got Bill's
attention, and his solution, introducing a clever re-indexing allowing him
to utilize martingale theory, appears in van Zwet (1978) in the form of a
Glivenko-Cantelli theorem for the division points generated by the Kaku-
tani procedure. Following a subsequent proof of a Glivenko-Cantelli result
for the spacings generated by the Kakutani procedure in Pyke (1980), Bill
and I commenced a collaboration into the weak convergence of the empir-
ical processes associated with the partition points and the spacings. The
study of this problem has been an interesting thread throughout many of
our communications over the past 15 years or so; cf. Pyke and van Zwet
(2000).

In this paper, I look at another quite specific problem whose most general
formulation may also present some interesting challenges. Many puzzles
outside of mathematics involve manipulating or assembling pieces in order
to obtain specified shapes or pictures. In this paper, I pose a problem of this
type, namely, that of reassembling a shattered Brownian surface.

In the following section, several formulations of the problem are illus-
trated in the one-dimensional case of Brownian motion. These are then
studied for the main context of the random surface known as Brownian
sheet in Section 3.

2 A Brownian motion illustration

Let B = {Bt : 0 < t < 1} be standard Brownian motion. Pretend that
the graph of J3, say G = {(ί, Bt) : 0 < t < 1}, is made of breakable thread
which, upon being dropped, shatters into a possibly countable number of
fragments. Suppose these fragments can be described as graph portions,

Gn := {(t , Bt):te Dn}, G = {Gn:n> 1 } ,

for a countable family V = {Dn : n > 1} of disjoint Borel subsets of [0,1].
Assume there exists an interior point tn G Dn for each n. Furthermore,
although we do not wish to assume that V is a partition of [0,1], we would
want \JDn to be nearly all of [0,1]. This will be discussed more later when

n

studying the main case of Brownian sheet. For now, however, to give some
concreteness to the problem, assume that the closure \JDn = [0,1] so that

n

in some sense the fragments comprise almost all of the original graph. The
jDn's represent the bases of the fragmented pieces of the graph.
Problem 1. Given Q, reconstruct B.

This is, of course, completely trivial in view of the continuity of B.
Now, suppose, more realistically, that upon shattering, the shattered

pieces of the graph fall, so that instead of Gn one is given Gn - (0, dn) for
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some unknown dn. Thus, the fragments of the Brownian curve that one has

to reassemble are fragments that have fallen (or risen) vertically. Hence, one

still knows the bases of the fragments but one does not know their vertical

placement. This leads to

Problem 2. Given {Gn — (0,dn) : n > 1} for unknown constants dn,

reconstruct B.

The problem now is non-trivial, as may be illustrated by the Cantor
functions. Suppose that the 2}n's are the "middle thirds" of [0,1] as used
in constructing the standard Cantor function, /, say. Each of the frag-
ments, Gn — (0, dn) are then flat and indistinguishable from those of the
zero-function's graph over Dn. There is now no way of recapturing the orig-
inal Cantor-like function, since there axe uncountably many ways of trans-
forming the vertical displacements of the flat segments without affecting the
function's continuity. E.g., if φ : [0,1] -» M1 is any 1 — 1 continuous mapping,
g : φ o f would have fallen fragments that are indistinguishable from those
of /. Thus, in this case, one would need to use some property of / stronger
than continuity in order to have a chance to identify / from its fragments.
We discuss this further in Section 3.

Continuing to use Brownian motion to illustrate the problem of interest,
suppose now that the fragments do not just fall vertically. Suppose instead
that each fragment after the shattering is representable by Gn — (/ιn, dn) for
unknown real constants hn, dn, allowing therefore for arbitrary translations.

Problem 3. Given {Gn — (ftn, dn) : n > 1} for unknown constants /ιn, dn,
reconstruct B.

This problem has, of course, no solution for Brownian motion in view of
the stationarity of its increments.

Let us allow now for the turning of the graphs' fragments as they fall. If
RQ is used to denote the (counterclockwise) rotation of M2 about the origin
through an angle 0, then suppose that one is given the fragments in the
form Rgn{Gn) — (dn, hn) for unknown constants dn, hn and θn. That is, each
fragment is allowed to rotate about the origin as well as being translated.
The associated problem then becomes:

Problem 4. Given {Ren{Gn) — (dn,/ιn) : n > 1} for unknown constants

dn, hn and 0n, reconstruct B.

Although our previous discussion shows that for Brownian motion the
unknown translations {dn,hn) prevent the identifiability of B (unless the
Dn 's themselves have some special structure), observe that the rotation an-
gles can be determined, within a multiple of π. This follows in particular
from the law of the iterated logarithm (LIL) which implies that with proba-
bility 1, there exists for each fragment exactly one family of parallel lines that
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intersect the fragment at at most one point (thereby making the fragment
the graph of a function.) This uses the assumption that each Dn contains an
interior point (though an accumulation point should suffice). To be precise,
if there were some rotation of the graph of Bt : t £ Dn, other than by a
multiple of π, that was also that of a function, then there would be a family
of parallel lines, not parallel to the y-axis, with each of them intersecting the
graph Gn at no more than one point. Take the particular line in this family
that passes through (t n ,B t n ). The LIL implies that, almost surely, for each
e > 0, both of the inequalities Btn+U - Btn > y/ΰ and Btn+U - Btn < -y/v,
occur infinitely often inwG (0, e). Thus for all slopes c, |c|ie < y/ΰ for u
sufficiently small, and so Btn+U — Btn = cu infinitely often in u G (0, e), con-
tradicting the possibility that the line of slope c through (tn,Btn) intersects
the graph of Bt only once.

It would be natural in these discussions to assume further that the bases
Dn are connected, so that the fragments themselves are connected. If this
assumption were to be made, the Dn's would then be intervals in this one-
dimensional case. There would therefore be two choices of an end point to
serve as the eventual left hand end point of the resultant curve. Through
that end point the LIL then implies that there is precisely one supporting
line for the curve that is therefore parallel to the 'y-axis' for the original
Brownian motion. Identification then of the vertical direction is possible for
each of the two choices for the left hand end point of the fragment.

It is of interest to consider how quadratic variation may be used in de-
termining the rotation angle (up to a multiple of π) when the Dn 's are (or
at least contain) intervals. Suppose that points Pi, P2, j Pk are chosen on
the n-th curve so that Pj = Ron(sj,BSj) — (dn,hn) for some ordered index
times, Sj. Include the end points P and P* of the curve, using continuity if
needed to define them. The quadratic variation for these points is

AH-l fc+1

\Pj - P -il2

 Ξ Σ{(Sj - 5 j _ ! ) 2 + (BSj - BS5_λγ}.

If for example, these points came from a single dense sequence of points, so
that the resulting fc-point partitions become refinements, then one has

fc+l fc+l

Km Σ \Pj - P -il2 = £%£,&., - BSj_xf = I Ail

by Levy (1940), where |D n | , the Lebesgue measure, is also the length of the
interval Dn in this case. If one then draws the circle of radius r = \Dn\
that is centered at one of the end points of the curve, exactly one of the two
lines through the other end point that are tangent to this circle, must with
probability one be parallel to the original 'y-axis'. It could again be chosen
as the one that is part of a supporting line for the curve.
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3 Reassembling shattered Brownian sheet

Let Z = {Z(υ,w) : v > 0,w > 0} be standard Brownian sheet, namely,

a zero mean Gaussian process on the positive orthant R+ with covariance

function

(1) Λ(s,t) = EZ(s)Z(t) = (si Λti)(β2 Λ t2)

in which s = (si,S2) and t = (ίi,<2) The structure of a Brownian sheet
as a generalization of Brownian motion is best seen by viewing it as a set-
indexed process, in which (1) simply reflects the stationary and independent
increments of the process, namely, whenever defined, Z(A) and Z(B) are
independent JV(O, \A\) and JV(O, \B\) r.v.s if A and B are disjoint. Thus,
with Z(s) = Z([0,s]), (1) states the consequence of this that

Λ(β,t) = £Z([0,β])Z([0,t]) = |[0,s]Π[0,t]|.

Direct calculation gives, for any a, b E R+

(2) S[Z(a)-Z(b)] 2 = (αiΛ6i)|θ2-62| + (α2 Λ

+ ((α2-b2)(αι-bι))+

so that for a, b E J3r(l) and |a - b| < 1 with 0 < r < 1,

(3) (1 - r)|a - b| < E[Z(a) - Z(b)}2 < 4|a - b|.

The graph of Z over / = [0,1]2 is a random surface, namely, G =
{(s, Z(s) : s E I2}. Suppose that this surface is shattered into a collec-
tion Q of surface fragments

Gn := {(s, Z(s)) : s E Dn} with Q = {Gn : n > 1}

in which each Dn is a Borel subset of I2 that possesses an interior point, t n ,
say. Thus each of the fragments contains a patch with a circular base, and so,
for each n, there exists a radius rn such that the ball, Bn := Brn(tn) C Dn,
and the sub-fragment

G ; : = { ( S , Z ( s ) ) : s e B n } c G n .

The assumption that each base contains an interior point not only insures
that each fragment represents a tangible part of the surface, but also de-
termines precisely the location of each fragment's base! This is because
Brownian sheet surfaces carry with them built-in coordinates! Before giving
the theorem that justifies this statement, it may be helpful to the reader
to envisage the following description of the problem. Suppose that out of
your sight a 3-dimensional random solid (paperweight?) is made from the
Brownian sheet by filling in the vertical space beneath the surface Z(-) and
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above the random constant surface /(•) = C, with the constant C chosen
so that Z > C throughout the base I2 = [0,1]2. Suppose further that a
vertical core with a circular base is cut out from the interior of this solid.
If this cylindrical column (with flat base and Brownian upper surface) is
given to you, together with a drawing of 72, could you use the information
in its Brownian upper surface to decide precisely where the column should
be placed on I2 and how much to rotate it so that it will be oriented exactly
as it was before being drilled out? The following theorem states that the
answer is "yes". The only aspect that can not be determined is the core's
vertical displacement that is implicit in C = C{ω).

Theorem 3.1 If t E R\, θ E [0,2τr] and N is an open ball centered at
OEM2 for which N +1 C M+, then with probability 1, knowledge of {Z(t +
h) — Z(t) : h E Rβ(N)} determines t and the rotation RQ.

Proof Suppose N is the ball, Br(0) of radius r > 0. For any unit vector

w = (^1,^2) and t E M+, define

Zt,w(u) = Z(t + urw) - Z(t), 0 < u < 1,

to be the increment process along the line segment of length r through t in

the direction w; we observe that t + rw E K+. Let 7W?Γ denote this line

segment; that is, 7w,r(^) = t + urw for 0 < u < 1. We will compute the

quadratic variation of this process for every direction w, and then show that

these values determine t and the orientation of the axes.

In the following, we use the notation and results of Adler and Pyke

(1993). For any n > 1 and partition πn = {0 = un$ < un,\ < < un^n =

1} of / = [0,1], define the n-th level quadratic variation of a process W along

a curve 7 : / —>• M2" by

Qn(Ί) =

The limit of Qn{l) a s n - 4 +00, when it exists, is denoted by 9(7). Un-

der assumptions including uniform Lipshitz continuity of the curves 7 and

uniform second order continuous differentiability of the covariance functions

of W(η), it is known (beginning with Baxter (1956); see Adler and Pyke

(1993) for recent results and a full statement of assumptions and their ap-

plication to Brownian sheet) that the limit exists almost surely, and can be

represented by

(4) = / gΊ{u)du
Jo
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in which gΊ{u) = D~(u)—D+(u) and the Z?'s here are the left and right hand

derivatives at diagonal points of the process' covariance function FLy(u,v) =

EW{Ί{u))W{η(v)). That is,

D-{u) = R^(u-,u),D+(u) = R^(u,u+)

with B%j\u,υ) = {di+i/duidvήRΊ(u,v).
The special Brownian sheet case described in the first paragraph of this

proof, is worked out as Example 4.2 in Adler and Pyke (1993), where it is
shown that for 7 = (71,72), the integrand in (4) is of the form

(5) gΊ(u) =

Thus, for the rays 7w,r(u) = (h + urw\, t2 + urw2), 0 < u < 1,

r 2

(6) ?(7w,r) = r(\w2\h + \wι\t2) + —{\w2\wι + \wι\w2).

Although for our purposes here it suffices to know g(7w,r) for a countably

dense set of directions w, and so the result of Baxter (1956) would suffice,

we use the uniformity result of Adler and Pyke (1993) for convenience since

it permits one to speak of obtaining with probability one from the given

patch of Brownian sheet all of the quadratic variations #(7w,r) at once. In

particular, knowledge of the 9(7w,r)'s yields

(7) Km^g^iu) = \w2\h + \Wl\t2.

But this, the scalar projection of t onto (|w2|, |^ i | ) , is the length of the
projection of t onto w 1 = (^2,-^1) when w2 > 0, w\ < 0, which is in
turn the width of the rectangle [0,t] in the direction w. In fact, one may
check that as w varies around the unit circle in the counterclockwise direc-
tion, starting at (1,0), the 'width' function W(w) := \w2\t\ + |wi|t2 varies
alternatively between relative minima at each of the axis directions (1,0),
(0,1), (—1,0) and (0,-1) and relative maxima (each equal to the lengths
of the diagonals of [0,t]) at the four directions perpendicular to the di-
agonals t and (ίi,—12). Thus, the axis directions and the dimensions of
the rectangle are determined. This implies that given the rotated fragment
G* = {(t + h, Z(t + h) - Z(t)) : h e RΘ(N)}, one is able to determine the
set of coordinates {£1, £2} and the orientation θ of the fragment up to a mul-
tiple of π/2. The reader may check that there are four possible positionings
of the fragment in each of the two cases, t\ < t2 or t\ > t2. That is, for
α = ίi Λ t2 and b = t\ V t2, the fragment may be placed either at (α, b) with
an orientation for which the larger of the two relative minima occurs for
horizontal directions, or at (6, α) with an orientation that yields the larger
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minima along vertical directions. In either case, there are four possibilities
for the location of the true positive quadrant.

To complete the determination of the correct location and orientation,
one may repeat the above for the new point t* which is the selected location
of (α, b) or (6, α) shifted by (ft, 2ft), where ft is positive and sufficiently small
to insure that (ft, 2ft) G N. Depending upon the chosen orientation, this shift
may in reality be any one of the four values, ±(ft, 2ft) and ±(2ft, -ft). Since
only one of these will result in a set of larger values, either {α + ft, b + 2ft}
or {α + 2ft, b + ft}, the correct orientation is thereby identified. Moreover,
t\ (and hence t) is also determined: It is the unique value in {α, 6} that
increased by ft.

Alternatively, the determination could be completed by using (6) and
observing that

r2

?(7w,r) - rW(w) = —(\W2\W1 + |lϋl|W2)

as a function of r equals zero whenever w\W2 < 0, is increasing in r when
w\ > 0, W2 > 0 and is decreasing in r when w\ < 0, W2 < 0. Thus, after
W(') is found, it follows that one is able to determine which of the four
quadrants in the previous paragraph is the positive one. Consequently, t\
and £2 are determined: Ϊ2 is the minimum value of W(w) that obtains when

Consider now for Brownian sheet, the problems discussed in Section 2.
Here, V is a countable family of disjoint Borel subsets Dn of J2, with each
Dn E V having an interior point t n and hence being of positive Lebesgue
measure. Also, the graph over the base Dn is now

The analog of Problem 1 is again addressed by the continuity of Z. The
analog of Problem 3 now has an affirmative answer for recovering the trans-
lations of the bases in view of Theorem 3.1. However, Theorem 3.1 permits
us to consider an extension of Problem 3 in which rotations of the bases Dn

are allowed. (In the one-dimensional context of Section 2, the only rotation
of this type that could have been considered, would have been the flip of
the direction of the ί-axis, but this could not be inferred from Brownian mo-
tion.) Let TQ : M3 -» M3 denote the transformation that rotates R3 around
its z-axis; namely, Te((x,y,z)) = (Rθ(x,y),z). The extended Problem 3
may then be stated as

Problem 5. Given {Tθn (Gn - (zn, yn, zn)) : n > 1} for unknown constants
θn,Xn,yn,Zn, reconstruct Z.
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An application of Theorem 3.1 to each of the moved fragments shows that

with probability one, the partial translations (xn, yn) and the bases' rotations

θn can be uniquely determined. Thus each such transformed fragment Gn

of the graph of Brownian sheet may be relocated correctly in all respects

except for its vertical placement.

If the fragments of the Brownian sheet's graphs are allowed to rotate in

M3 (and not just around the z-axis as for Problem 5) as they fall, one is led

to the following analog of Problem 4 in which the two-dimensional rotation

is replaced by a three-dimensional one:

Problem 4*. . Given {rn(Gn) — (xn, yn, zn)} for unknown rotations τn and

constants xn<>yniZn<) reconstruct B.

The main question to be addressed here is: Given a rotated fragment, can
one determine which way is up? Certainly, if there were only one positioning
of the fragment (together with its upside-down reflection) that makes it the
graph of a function, the problem would be solved. We show that this is the
case. Without loss of generality, we focus on the surface in the neighborhood
of a fixed point t = 1, and show that for every non-vertical line in R3 that
passes through (1,1,Z(l)), there exists a parallel line passing through a
neighborhood of that point that intersects the graph of Z more than once.
The reader should note that it is a straightforward consequence of known
LIL's that for a fixed direction w, the probability is one that every non-
vertical line through (1,1, Z(l)), whose projection onto the (x, y) plane is
parallel to w, intersects Z t j W ( ) more than once. But this is not enough.
One has to know this holds with probabilty one for all directions w.

Observe first that for a given continuous real function / that passes
through the origin, and a given slope β G M1, if / has both an "upper
chord" (one whose slope exceeds β) and a "lower chord" (one whose slope
is less than /?), there must exist a line of slope β that intersects / at least
twice. It therefore suffices for our purposes to establish that along every ray
through 1 E I 2 of the form 1 + tu for 0 < t < r < 1 and direction vector
u = (1*1,112) £ K2 satisfying |u| = 1, the process {Z(l + ίu) : 0 < t < r} has
both arbitrarily steep increasing and decreasing chords. It is convenient to
consider a large increasing (decreasing) chord to be one satisfying

(8) Z(a) - Z(b) > |a - bl1/2; (Z(a) - Z(b) < - | a -

respectively. These choices make for simple calculations and clearly imply
the existence of chords with arbitrary large and small slopes. We will show
that with probability one, each of the inequalities in (8) hold for some pair
of points along every ray of the form 1 + ( )u. This then implies, by the
above comment, the existence of a line in M3 that is parallel to any line
through (1,1,Z(1)) and which intersects the surface of Z more than once.
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The approach used here is to establish the following result; other approaches
are mentioned in Remark 3 below.

Lemma 3.1 For all r E (0,1)

Γ . Z(l + ί u ) - Z ( l + 5u) 1 ΛP inf sup — v > l = l
|_u:|u|=l 0<s<ί<r y/t — 3 J

Proof First of all, for any a, b E Br(l) with 0 < r < 1, it follows from the
left hand inequality of (2) that

P[Z(a) - Z(b) > | a - b | i ] > P[iV(0,1) > (1 - r)"1/2]

by the standard Mills ratio bounds for normal tails (cf. Feller (1968), Lemma
VΠ.2). Since the lower bound in (9) is independent of a and b, it follows
that whenever u\u^ > 0, for any integer n > 1,

P[Z(1 + -ru) - Z(l + — r u ) > (r/n)1/2 for some k = 1,..., n]
n n

(10) > l - ( l - c v ) n

in view of the independence of the increments when u\U2 > 0. By letting
n —» oo, it then follows that for each r E (0,1) and each direction u for
which u\U2 > 0, there exists with probability one an increment that exceeds
the square-root of its base's length as desired.

When u\U2 < 0, the increments appearing in (10) are no longer indepen-
dent. Assume w.l.o.g. that u\ < 0 < ^2 Viewing Brownian sheet as being
defined on all rectangles, introduce

(li) z;(t) = z([o,t]nLΓ|U)

where LΓiU is the L-shaped region

Lr,u = {(z, y) E M2 : x < 1 + rm or y < 1}

that is the complement of the upper right orthant with vertex at (1 + ru\, 1).
Now, if one repeats the argument for (10), but using Z* in place of Z, one
still has independent increments with the same bound and therefore the
same conclusion about a.s. existence of large and small chords obtains.

It remains to handle the differences between the desired increments for
Z and those of Z*. To do this, introduce the Gaussian difference rv's

(12) WP>Λ>fc = V^{(Z*r - Z)(l + -ru) - (Z; ^
71
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The supremum of the variances of these rv's is

k-
sup

l<fc<n

(13)

< sup <

< r2\u\U2\

n -
7

<

-k
n.... j

I

r2

2 '

~— 1 T* 1
r|u2|->ilf

Π Π )

Thus by BorelΓs inequality for bounded Gaussian processes (Adler (1990),
Chap. II. 1 and Corollary 4.15)

(14) P[ sup \Wr^k\ > r3/4] < c o n s t . e " 1 ^
l<fc<

a bound that may be made arbitrarily small as r —> 0. One is using here
the smallness of the process' metric entropy (the index set is essentially
[0,2τr) x [0,1]) and hence the finiteness of the expectation of the sup-norm
of the process.]

Let Ar denote the event, described following (10), that chords of desired
slope exist for Z along u within Br(l). Let A* denote the same event, but
for Z* rather than Z and in which the slopes are double those for AΓ. The
discussion following (11) shows that P(A*) = 1 for each r. Moreover, the
above shows that for any e > 0, there is an re > 0 for which P(BT) > 1 — e
for r < re where Bτ is the complement of the event in (14). Since r < 1,
A* Π Br C Ar so that then P(Ar) > 1 — e. But by definition of the events Aτ

it follows that Ar C Arι for r < r1. Together, this implies that P{Ar) = 1
for every 0 < r < 1.

To this point, we have shown that for each fixed direction u and each
r G (0,1), the probability is one that any non-vertical line in R3 through
(1,1, Z(l)) whose projection on M2 is parallel to u has a parallel line that
intersects the graph of Z over Br(l) more than once. The same is therefore
true for a countably dense set of directions u. It remains to show that the
statement holds with probability one for all directions simultaneously.

Fix e > 0. Define

(15) (ΔZ) r , n , M = Z(l + -ru) - Z(l +
Tl

) ( )
Tl 7Ί

and
(16) M€^u* = sup sup v^l(ΔZ)r,n,fc,u- (ΔZ) r > n ? M * | .

| u _ u * |< e l<fc<n
|u|=l n > !

From (2) and (3) above and Lemma 2.1 of Adler and Pyke (1993), the
variances of the Gaussian rv's in the definition of MejΓjU* satisfy

, n i M - (ΔZ)Γ, n,M .] 2 < nC{[^(|ιi|V |u*|)] Λ
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n

(17) = cίrAί~r\u-u*\\\<Cre,

for some constant C. Thus by BorelΓs inequality one may again deduce that
there is a constant C\ for which

P[Me^u* > z]< Cιexp{-z2/2Cre}.

In particular,
(18) P [ M e r u * < y/r] > 1 - C\e~ιl2Cε.

Now, the inequalities (ΔZ)r?τljfcjU* > 2y/r and Me^u* < y/r imply that
(ΔZ) r j 7 l^> u > y/r. But with probability 1, the first of these inequalities has
been shown to occur for some n and k for each u* in a countable dense set
of directions. By (18), the probability equals 1 - O(e"1exp(-l/2Ce)) that
the second inequality holds for all u* in an e-net of directions. Since this
probability may be made arbitrarily close to 1 by an appropriate choice of
e, it follows that with probability one, the third inequality holds for some
n and k for every u. The situation concerning arbitrarily steep decreasing
chords follows immediately since Z=—Z, thereby completing the proof. •

The above result then permits one to reposition the transformed fragment
almost surely into either the correct orientation or the upside down position.
In either case, once one utilizes Theorem 3.1 above to identify the correct
location coordinates of at least two points, one is able to determine whether
the surface is right side up or not. This would then complete a solution (up
to the determination of vertical displacement) of Problem 4*.

The following natural extension of Problem 2 is now the key remaining
question, namely,

Problem 2*. Given {Gn — (0,0, dn) : n > 1} for unknown constants dn,
reconstruct B. In order for this problem to be solvable it is necessary for the

bases in V of these resituated fragments to comprise 'nearly all' of J 2. That
is, some condition on the size of \J Dn is necessary. Even then, however,
the standard Cantor function over I2 shows that it would not be enough to
know its vertically displaced patches over the countable disjoint middle-third
rectangles whose union has I2 as its closure. All functions that are constant
over each Dn would be indistinguishable from it. One needs to make use
of some additional property of the surface beyond continuity. Thus, the
question before us here is whether or not Z is (uniquely) determinable a.s.
from the function ζ defined by

oo

(19) ζ(t) = £ { Z ( t ) - Z(tn)}lD n(t),
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the function that locates each fragment's base properly but sets its height
(w.l.o.g.) at the specified interior point tn to be zero.

Suppose V satisfies the following assumption:

For each n > 1, Dn is the closure of its interior Z>£,
(2 0) the closure of |J Dn is I2 and \\JnD*\ = l.

n

Thus, the bases of the fragments have relatively nice boundaries and the
excess 'dust' generated by the shattering, namely the part of the graph
over the complement of \JnDn, is 'negligible'. This assumption (20) also
insures that for each n and each s G / 2 a set-indexed value Z(D^ Π [0,s]) is
determined uniquely by the incremental information contained in the patch
Gn. Thus for every s G / 2 , define

oo

n=l

a mean zero normal r.v. with

oo

(Z*(s)) = Σ \D°n Π [0,s]| = | [JDo

n n [0,s]| = |[0,varv
7 1 = 1

by (20). Moreover, Z*(s) = Z(s) a.s. In particular, this determines with
probability 1 the heights Z(tn) for every n as required to solve Problem 2*.
The values of Z on the boundaries dDn = Dn \ D% and on the complement
of (Jn Dn are determined by the continuity of Z\ note that (20) implies that
the closure of \]n D% is also I2.

Remarks. 1. Although it is possible to have bases Dn that by their
particular shapes can be fit together into I2 in only one way, the discussions
here do not consider such possible information. Our emphasis is upon uti-
lizing only the information in the Brownian surface so that the procedures
apply to such uninformative shapes as rectangles and balls.

2. Let us comment further on the extendability of the definition of the
Brownian sheet Z from points t E / 2 (or, equivalently, rectangles [0, t] C I2)
to the family of sets

i = { ΰ n ( s , t ] : D E P , s , t el2}

used in the above derivation. Under assumption (20), each D in the count-
able family V is a closed subset of I2 that satisfies \d(D)\ = \D \ D°\ = 0
and the associated family of sets AD = {DΠ (S, t ] : s , t G / 2 } indexed by I2

is, for example, of zero metric entropy under inclusion with respect to the
Hausdorff or symmetric-difference metrics. Thus a continuous extension of Z
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on AQ, and hence on A, exists that agrees with the given Z((s,t]) whenever
(s,t]CU.

3. It should be pointed out that the existence of chords of arbitrarily large
and small slopes in the trajectories of Z along fixed rays through 1 could also
be shown by means of LIL's or Holder results for the particular Gaussian
processes involved. For directions u with U\U2 > 0, such results are easily
deduced since along such rays Z is Brownian motion with a quadratically,
rather than linearly, growing variance. In the other directions the dependent
increments require results for more general Gaussian processes. It would be
of interest to obtain general uniform LIL and uniform Holder results for
Gaussian processes analogous to the uniform quadratic variation result of
Adler and Pyke (1993). In this regard, the reader should note the powerful
results in Dalang and Mountford (1996). In particular, Theorem 2 of their
paper, in the equivalent form given prior to their equation (2), implies that
with probability one, it is true that for every θ E [0,2τr) and t in a small
rectangle about 1, it is true that \Z(s) — Z(t)| > c|s —1 | for infinitely many
s for which s — t has direction 0, regardless of the value of c > 0. (Much
more is proved in Dalang and Mountford (1996) since this statement about
the increments is shown to hold along all Jordan curves constrained within
wedges about the lines of direction 0, and not just along the straightline
segments needed here.) A modification of this result that would resolve
Problem 4* is that in which the absolute values of the increments is replaced
by the positive and negative parts, (Z(s) — Z(t))+ and (Z(s) — Z(t))~. It
would then be possible to utilize these results in the same way that the
LIL was used to resolve Problem 4 in Section 2. However, this extension
of the Dalang and Mountford result is not immediate; in particular, the
representation in their Lemma l(b) does not hold. (The author is grateful
to Robert Dalang for his assistance on this point.)

4. In Aratό (1997), the problem of estimating μ when Z + μ is observed
over a domain D C I2 is considered, and its maximum likelihood estimator
derived. The results of this paper permit the context to be modified so that
the base D may be treated as being unknown.

5. In this paper, only distance preserving transformations have been con-
sidered. It would be of interest to allow for other perturbations of the bases,
or even of the graphs, that are recoverable from the coordinate information
inherent in Brownian sheet.
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