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The so-called two-sample problem is one of the classical problems in mathematical statis-
tics. It is well-known that in dimension one the two-sample Smirnov test possesses two
basic properties: it is distribution free under the null hypothesis and it is sensitive to 'all'
alternatives. In the multidimensional case, i.e. when the observations in the two samples
are random vectors in lRm, m > 2, the Smirnov test loses its first basic property. In corre-
spondence with the above, we define a solution of the two-sample problem to be a 'natural'
stochastic process, based on the two samples, which is (α) asymptotically distribution free
under the null hypothesis, and which is, intuitively speaking, (β) as sensitive as possible
to all alternatives. Despite the fact that the two-sample problem has a long and very
diverse history, starting with some famous papers in the thirties, the problem is essentially
still open for samples in JR™,™ > 2. In this paper we present an approach based on
measure-valued martingales and we will show that the stochastic process obtained with
this approach is a solution to the two-sample problem, i.e. it has both the properties (α)
and (β), for any m G JN.
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1 Introduction

Suppose we are given two samples, that is, two independent sequences {-X̂ -}™1

and {X"}™2 of i.i.d. random variables taking values in m-dimensional Eu-

clidean space iR m ,m > 1. Denote with Pi and P2 the probability distri-

butions of each of the X[ and X" and write Pni and Pn for the empirical

distributions of the first sample and of the pooled sample {X'j}™1 U {X"}™2

respectively, i.e.

(1.1) Pni(B) = ±-J
712 \

+ Σ 1B(X") , n = m + n2,
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where B is a measurable set in JRm and 1B is its indicator function. Consider
the difference

(1.2) υn(B) = ^ y (Pni(B) - Pn(B)), B e B,

and call the random measure υn( ) the (classical) two-sample empirical pro-
cess with the indexing class B. Throughout we avoid the double index
(ni,ri2); this can be done without any ambiguity letting n\ — n\{n) and
^2 = ri2(n). We will always assume ni,n 2 —> oo as n —> oo. The index-
ing class B is important for functional weak convergence of vn and will be
specified in Sections 3-5.

The problem of testing the null hypothesis HQ : Pi = P 2, called 'the two-
sample problem', is one of the classical problems of statistics. The literature
on the two-sample problem is enormous. In here we are able to mention
only very few of the papers on the subject, namely those in direct relation
to the aims of the present work. The specific feature of the two-sample
problem is that the under HQ presumed common distribution P(= Pi = P2)
remains unspecified and can be any within some typically very large class
V. Hence, it is important to have some supply of test statistics such that
their null distributions, at least asymptotically as n -^ oo, are independent
of this common distribution P £V. Such statistics are called asymptotically
distribution free.

The classical solution of the two-sample problem when the dimension
m = 1 is associated with Smirnov (1939) where first the two-sample empirical
process

/nin\1/2 ~

(1.3) ««(*) = ( ^ f ) (Fnι(x)-Fn{x)), χem\

was introduced, where Fni and Fn stand for the empirical distribution func-
tions of the first and the pooled sample respectively, and the limiting distri-
bution of its supremum was derived. This limiting distribution was shown
to be free from P provided P E Vc, the class of all distributions on M1 with
a continuous distribution function. This classical statement was an early
reflection of the now well-known fact that the process

(1.4) vnoF-\t), t€[0 , l ] ,

converges in distribution, for all P G Pc, to a standard Brownian bridge
v (see, e.g., Shorack and Wellner (1986)). Then, for a large collection of
functionals </?, the statistics φ{vnoF~ι) converge in distribution to φ(υ) and
hence are asymptotically distribution free. Recently Urinov (1992) consid-
ered another version of the two-sample empirical process in Mι:
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(x G JR1), and proved that the process Mn o ^ 1 is also asymptotically
distribution free: for all P G Vc it converges to a standard Brownian motion
W on [0,1].

The convergence in distribution of the process (1.3) when x E JRm,ra >
2, was studied in Bickel (1969). Though asymptotically distribution free
processes or statistics were not obtained in that paper, the general approach
was well-motivated. Namely, to obtain an asymptotically correct approxi-
mation for the distribution of statistics based on υn, like, for example, the
Smirnov statistic sup^^m |^n(x)|, he studied the conditional distribution of
vn given Fn. This conditioning, also adopted in Urinov (1992), and being
also a part of the approach of the present paper (see Sections 3 and 4), is
motivated by the fact that, under iϊo, one can construct the two-sample sit-
uation as follows. Let {Xi}™ be a sample of size n from a distribution P e ? .
Let also {Si}™ be n Bernoulli random variables independent of {Xi}™ and
sampled without replacement from an urn containing n\ Ones' and ri2 'ze-
ros'. Now the set of X^s with δι = 1 is called the first sample and those
with δ{ = 0 is called the second sample. Any permutation of {(Xi,δi)}™
independent of {δi}™ will not alter the distribution of {δi}™. Hence, for
statistics φ({Xi}ι^{δi}ι) their conditional distribution given Fn is induced
by a distribution free from P.

Actually, this is the basic approach of all permutation tests and dates
back at least as far as Fisher (1936) and Wald and Wolfowitz (1944). Well-
known permutation tests for the multivariate two-sample (and multi-sample)
problem were developed in the mid-60's (see, e.g., Chatterjee and Sen (1964)
and Puri and Sen (1966, 1969)). It should be noted, however, that most of
the permutation tests are based on asymptotically linear in {5i}™, and hence
asymptotically normal, statistics. To essentially nonlinear statistics, like the
Smirnov statistic, this approach was first applied in Bickel (1969), to the
best of our knowledge.

There are several other methods for obtaining statistically important ver-
sions or substitutes of the two-sample empirical process, see, e.g., Friedman
and Rafsky (1979), Bickel and Breiman (1983), Kim and Foutz (1987), and
Henze (1988) for interesting approaches.

Though we just discussed the two-sample problem and its solution, the
precise mathematical formulation of the problem has not been given yet.
The requirement of asymptotically distribution freeness can not be sufficient
to formulate the problem for it can be trivially satisfied. Another condition
on 'sensitivity' towards alternatives must be also imposed.
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In this paper we propose two related formulations of the problem (Sec-
tion 2), one of them imposes quite strong requirements. Then in Section 3
we construct a (signed-)measure-valued martingale Mn, which is a general-
ization of the process (1.5) of Urinov (1992), and its renormalized versions
un and wn. We prove limit theorems for the asymptotically distribution free
modifications un and wn as well as for Mn, both under the null hypothesis
(Section 4) and under alternatives (Section 5) and show that under natural
conditions un and wn are solutions of the two-sample problem.

2 General notations; some preliminaries; formulation of the two-
sample problem

As we remarked in the Introduction, in the classical two-sample problem
in Mι it is required that under Ho the common distribution P belongs to
the class Vc of distributions having continuous distribution functions, and
for this class of P's, the Smirnov process υn o F~ι and the Urinov process
Mn o F~λ are asymptotically distribution free. In iRm, we also need some
requirements under HQ. Let μ denote Lebesgue measure and let from now
on V denote the class of all distributions P with the properties

(Ci) P([o,i]ro) = i;

(C2) / = dP/dμ > 0 a.e. on [0, l ] m .

Condition (Cl) is not an essential restriction since it can be satisfied in
several ways. For example, if Yi, ...,ym denote the coordinates of some ab-
solutely continuous m-dimensional random vector Y and if Gi,...,Gm are
some absolutely continuous distribution functions on JR such that the range
of Yk is contained in the support of Gfc, k = 1,..., m, then the random vector
X with coordinates Xk = Gfc(lfc), k = 1,..., m, has an absolutely continuous
distribution on [0, l ] m . Another, perhaps better, possibility is to reduce the
pooled sample to the sequence {Ri}™, where the coordinates of each R{ are
the normalized coordinatewise ranks of the corresponding coordinates of the
ΐ-th observation. (Note that the thus obtained two-sample empirical pro-
cess is equal to vn o (i^"1, . . . , F ^ ) , where Fjn, j = 1,... ,ra, are the pooled
marginal empirical distribution functions.) Though there is definitely no
absolute continuity of the distribution of Aj, i = 1, ...,n, we will indicate
below how the subsequent program can go through for these ranks (see e.g.
Lemma 3.5). Condition (C2) represents a certain restriction. Observe, how-
ever, that the processes un and wn, defined below, have limiting distributions
which depend on P only through its support.

Besides the classical two-sample empirical process Vn there can be many
other random measures which are also functionals of Pnι and Pn and could
also be called two-sample empirical processes. We will obtain versions of
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such processes which will be asymptotically distribution free from P £ V.
It is also needed that such a process is sufficiently sensitive to possible al-
ternatives. To formulate both requirements precisely we need to describe
the class of alternatives. In fact, it will be the class of all compact con-
tiguous alternatives to the two-sample null hypothesis. Here is the precise
condition:

(C3) The distributions Pi and P2 of each of the X[ and X", respectively,
depend on n and are, for each n, absolutely continuous w.r.t. some P E
V, and the densities dPj/dP, j = 1,2, admit the following asymptotic
representation

and (hjn - hfdP -> 0, j = 1,2, for some h with 0 < \\h\\2 :=

fh2dP < 00, while m/rc -> p0 € (0,1).

The distribution of the pooled sample {X^}^1 U {X"}™2 under P is certainly
the n-fold direct product Pn = P x x P. It is well-known (Oosterhoff
and van Zwet (1979)) that its distribution under the alternative (2.1), which
is the direct product P™1 x P^12, is contiguous with respect to P n , and that
under Pn

(2.2) . Ln = \nd{P\pn
P*) -M N{-\

with iV(μ, σ2) denoting a normal random variable with mean μ and variance
σ2. Hence, under Pf1 x P2

n 2

(2.3) L n -> d iV( i |H | 2 , | |Λ | | 2 ) .

Note that, in (2.1), it could seem more natural to start with some functions
h\n and /i2n converging to h\ and Λ2? instead of converging both to h. How-
ever it can be shown that this general situation reduces to (2.1) as it stands,
when we replace P by a strategically chosen new P, namely the one such
that (P^P) is 'closest' to (Pχ,P2), where this closeness is measured in terms
of the distance in variation between Pn and Pf1 x

(2.4) d(P^ x P2

n 2, Pn) = Pf1 x P?2{Ln > 0) - Pn{Ln > 0),

a very proper distance in a statistical context. Indeed, it is clear that

= max (&(α) - α),
U<Q<1
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where βn(α) is the power of the α-level Neyman-Pearson test for Pn against
P " 1 x P£2. According to (2.2) and (2.3)

(2.5) d(P^ x P2\Pn) -> 2Φ(i||Λ||) - 1 =: λ,

where Φ is the standard normal distribution function.

Now we are prepared to formulate what we mean with a solution of
the two-sample problem. In words, we want a 'natural' process, based on
the data, that converges in distribution to a limit process not depending
on P, and that hence is asymptotically distribution free. Moreover, the
distributions of the limiting process under null and contiguous alternative
hypothesis should be as far apart in distance in variation as the limiting
distance in variation under null and contiguous alternative hypothesis of the
data themselves. So basically we want a multivariate process which has the
same beautiful properties as the transformed univariate empirical process in
(1.4). Here follows the precise mathematical formulation.

Let B C J£?O> where BQ denotes the class of all Borel-measurable subsets of
[0, l ] m , and consider a sequence of random measures {ξn}n>i restricted to B.
The sequence {ξn}n>i will be called α strong V-solution of the two-sample
problem, if there exists a measurable space X such that

(α) under P7 1, for each P E V, ξn - ^ ξ in X and the distribution Qf of ξ
is the same for all P eV;

(/?) under P™1 x Pj1 2, for each sequence of alternatives (2.1), ξn - ^ ξ in X

and the distribution Qr of ξ is such that d(Qr, Qξ) = λ.

In order to obtain practically relevant solutions we add as in Khmaladze
(1993) the heuristic requirement that the process ξn (and the subsequent test
statistics) are simple enough to make computations feasible. In other words,
we want to exclude formally correct solutions, that involve very 'irregular'
transformations of the two-sample empirical process vn, like, e.g., solutions
obtained from bimeasurable bijections from ttm to JR1. Any ξn satisfying
(α), (β) and this informal requirement provides a proper background for
producing two-sample tests. Indeed, not only for any particular sequences
{^i7i}n>i5{^2Ti}n>i in (2.1), we can find a (linear) functional based on ξn

such that it will lead to an asymptotically optimal test against this sequence
of alternatives, but also a great variety of good omnibus tests can be con-
structed in the usual way, e.g., by taking (weighted) Cramer-von Mises-type
statistics or (weighted) Kolmogorov-Smirnov-type statistics.

It might be convenient from computational or other points of view to
sacrifice a bit of power in favour of, say, computational simplicity: the se-
quence {ξn}n>ι is called a weak V-solution of the two-sample problem if it
possesses property (a) and if
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(7) under P " 1 x P<^2, for each sequence of alternatives (2.1), ξn -+d ζ m

and d(Qξ, Q€) > 0.

In the subsequent sections our choice of the space X will be the space
^oo(#) We will prove that the sequence of random measures {un}n>ι (see
(3.15)) is a strong P-solution, and we consider also a sequence of differently
normalized random measures {wn}n>ι (see (3.16)) and show that under
natural assumptions it is a weak P-solution.

In conclusion of this section we give a few remarks which may illuminate
the possible nature of strong and weak solutions.

The first remark is that for an appropriate indexing class B (see Theorem
5.3) the classical two-sample empirical process vn possesses property (/?),
though not property (α). When m = 1, however, the processes vn o F~ι

in (1.4) and Mn o F ^ 1 , with Mn as in (1.5), do satisfy (α) and (/?), and
hence are strong TVsolutions to the two-sample problem. For any m >
1, the process wn below remains in one-to-one correspondence with vn for
each n (Lemma 3.1 and definition (3.16)) and therefore contains the same
amount of 'information' as vn for each finite n. However, as n —>• 00, some
'information' (though not much) is asymptotically 'slipping away' (Theorem
5.3 and following comments).

As the second remark we note one 'obvious' weak solution, which never-
theless is quite interesting for practical purposes: let ζ ~ Λ/"(0,1) be inde-
pendent from vn (say, is generated by a computer programme) and consider
ξn(B) = υn(B) + Pn(B)ζ. Since υn converges to a P-Brownian bridge it
is immediate that ξn converges to a P-Brownian motion under HQ. Then
it can be renormalized exactly in the same way as un below (put ί = 1 in
(3.15)) and will become asymptotically distribution free, however, because of
the randomization involved, ξn will loose property (/?) though it will retain
property (7). Curiously enough, in many practical situations the loss is not
big (Dzaparidze and Nikulin (1979)).

Finally remark, as shown in Schilling (1983), that the asymptotically
distribution free process of Bickel and Breiman (1983) though very inter-
esting from some other points of view can not detect (in a goodness-of-fit
context) any of 1/v^-alternatives. Whether the process of Kim and Foutz
(1987) connected with the same initial idea of uniform spacings can detect
such alternatives remains formally unclear. However we believe that the
phenomena discovered in Chibisov (1961) explain why it may not be likely.
For the omnibus statistic of Friedman and Rafsky (1979) the recent result of
Henze and Penrose (1999), Theorem 2, leaves little hope that it can detect
any of 1/v^-alternatives. So, to the best of our knowledge, the two-sample
problem, as described in this section, is essentially still open when m > 2.
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3 Two-sample scanning martingales

The main object of this section if not of the whole paper is the set-indexed
process Mn - see (3.2) below. Though its proper asymptotic analysis re-
quires certain mathematical tools, nothing really is required for the basic
idea behind it. Suppose we agreed on some order in which we 'visit' or
'inspect' the elements of pooled sample {-X»}i, so that we first visit X(χ),
then X(2) and so on. Suppose this order is independent from the indicators
{Si}™. (This order is formalized by the scanning family A below.) Then the
classical empirical process (1.2) can be written as

(3.1) vn(B) = (JL-) Ί £ MX(θ)(* - -)•

where n\jn is, obviously, the unconditional probability of drawing One' on
the 2-th draw (see (3.4)), while the process Mn is defined as

(3.2) Mn(B)=
\nin2 ^

where pi is the conditional probability of drawing 'one' given that many 'ones'
were found before the draw: pi = number of remaining 'ones' /{n — i + 1)
- see (3.5). This is the only difference between Mn and vn. Observe in
particular that the processes M n , and un and wn in the sequel, are indexed
by the same multiυαriαte i?'s as vn, and hence that the, in general, univariate
scanning family A does not lead to 'univariate' processes. In several aspects
the behaviour of Mn seems simpler and more convenient than that of vn.
At least, we know now how to standardize Mn. At the same time, like υn,
Mn preserves 'all information' that is contained in the samples themselves
(Lemma 3.1 and Theorem 5.2. Our final processes un and wn are simply
weighted versions of Mn.

Now, let Λ = {Aut E [0,1]} be a family of closed subsets of [0, l ] m with
the following properties:

1) Ao = 0, Ai = [0, l ] m , 2) At C A* if t < t>\

3) μ(At) is continuous and strictly increasing in t.

This family will be called a scanning family. Denote with X{ an element

of the pooled sample {X^1 U {X"}?2> with X[ and X1! reordered in some

arbitrary and for us unimportant way. Under the two-sample null hypothesis

this pooled sample {Xi}ι is simply a sequence of i.i.d. random variables with

distribution P EV each. Let

(3.3) t(Xi) = min{t : X{ G At},
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denote with {ti}™ the order statistics based on {t(-Xt)}Γ and let {X(ί)}ι be
the correspondingly reordered X^s. Put also to = 0 and t n +i = 1 when
needed. Later it will be useful to have in mind that absolute continuity of
P (condition (C2)) implies that all the U are different a.s. Under HQ the
sequence of Bernoulli random variables

δ{ — TL{X(i) £ first sample} ,

is independent of the {X^}™ and the distribution of the {δi}™ is that of
sampling without replacement from an urn containing n\ 'ones' and n2 'zeros'
(see Section 1).

Now we define the filtration based on the scanning family A. Let

t e ( 0 , l ] ,

-3 <

If P is continuous, then the conditional distribution of Pnι given T§ is free
from P, but conditioning on T^ also produces a simple distribution for Pni

free from P:

(3.4) P{X(i) e first sample |JΓ0} = lP{Pni(X{i)) = ±\F0} = ^

and, for j < i — 1,

(3.5) P{X{i) e first sample

where Ac = [0, l]m\A; note that nPn(A^.) = n — j a.s. We will write

Consider now t>n along with the filtration {Tt^t E [0,1]} in a way similar to

the construction introduced in Khmaladze (1993), i.e. for each B consider

vn(B Π At), or, equivalently, consider Pni(B Π At), as Pn is ^o-measurable.

By doing this we obtain a new object in the two-sample theory, which

is for each B a semimartingale with respect to {T^t G [0,1]} and for each t

a random measure on BQ. Hence we gain the possibility to apply to vn and

P n i the well-developed theory of martingales and of marked point processes;

see e.g., Bremaud (1981)and Jacod and Shiryayev (1987). More specifically,

for given B consider the (normalized) martingale part of the submartingale

{Pni{BnAt),Tut<Ξ [0,1]}. We obtain
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E(Pni(BΠAds)\Ts) = ~p(s)Pn(BnAds),

so that

1

(3.6) Mn(B,t)= (my (Pni{B Π AJ - ± [p(s)Pn(B n Ads))
o

is a martingale in t. For a class B C BQ let

(3.7) α(B) = {BΠAt:BeB,Ate A}.

It is clear that Mn{B,t) = Mn{B Π Aul) for any B E α(B). Therefore
most of the time we will consider the random measure Mn( , 1) on α(B) and
denote it simply Mn( ). However, because the classes B and A will play an
asymmetric role we will keep also the notation Mn(B,t).

It is easily seen that Mn(B,t) can be rewritten as

(3.8) Mn(B,t)=vn(BΠAt)+ f ^^\pn(B Π Ads)
0

and for t = 1 both (3.6) and (3.8) lead to the expression (3.2) which we
started with.

Among the first properties of Mn let us mention one: denote A&t =
At+At - At, then Mn(B Π A^t) = 0 Ίΐ Pn(B Π A At) = 0. The next property
is stated in the following

Lemma 3.1 Let the class B C BQ be such that [0, l ] m E B. Given TQ, the
restriction of the random measure υn to a(B) defines the restriction of the
random measure Mn to a(B) in a one-to-one way

The proof of Lemma 3.1 is rather easy, but the lemma itself is important

for justification of inference based on M n , for it says, heuristically, that what

can be achieved in testing based on vn can also be achieved based on Mn

and vice versa.

Proof For each C = BΠAτ the value of Mn(C) can be derived using (3.8),

since all At E a(B). Now the other way around. Choose B = [0, l ] m and

consider the equation

t

(3.9) Mn(At) = vn(At) + ±
0

It is well-known that it has the unique solution vn(At-) = Pn(A^_)

• J Q " Mn(Ads)/Pn(Ac

s). Hence, for any B, the unique inverse of (3.8) is
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t T-

(3.10) vn(B n At) = Mn(Bn At) - Jpn(Bn Adτ)
o o

, MΛB n A,) - f p ° ( B n ^-f : ( B n Λ

0

This concludes the proof. •

Not only the properties of Mn(B,t) are convenient in ί, but also the
properties of it in B are substantially simpler than those of vn(B) as the
next lemma will show. The two martingales Mn(B, ) and Mn(C,-) are
called orthogonal if the process

is identically 0. For C = B the process (Mn(B, •), Mn(B, •)) = (Mn(B, )>
is called the quadratic variation process. In words, (Mn(B, •),Mn(Cf, •)) is
a partial sum process of conditional covariances, whereas (M n (S, •)) is a
partial sum process of conditional variances. According to (3.5) and (3.2)

(3.11) ^

(Mn(JB, •) - Mn(C,

This leads to the aforementioned lemma.

Lemma 3.2 If B and C are disjoint, then M n ( 5 , •) and Mn(C, ) are or-
thogonal Therefore, given . T ^ M ^ ) is a random measure with uncorrelated
increments: for B,C G a{B) with Pn{BΠC)=0

E(Mn(B)Mn(C)\T0)=0.

Note that this is certainly not the case for υ n , since

E{vn(B)υn{C)\To) = ^^(pn(B nC)- Pn(B)Pn(C)).

The process Mn(B,t) is essentially an analogue in JRm of the process in

(1.5), studied in Urinov (1992) in JR1; see also Cabana and Cabana (1994),

Section 3, where 'wave components' of a Wiener process are studied in M2.

The quadratic variation describes the 'intrinsic' time of a martingale. As

formula (3.11) suggests (Mn(B, ))(t) w Pn{B ΠAt). Indeed we have, with

a'(B) = {C1nC2: CuC2ea(B)},
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Lemma 3.3 Assume P E V and n\jn -> po E (0,1).

i) For a.a. sequences {Pn}n>ι, conditionally on To,

(3.12) SUD \(Mn(B, .))(1) - P n ( B ) | - > 0 a.s. (n -+ oo),

and Λence m particular for any B E B$, conditionally on To,

(Mn(B,'))(t)^P(BnAt) a.s. (n -> oo).

ii) Suppose the class B is a Vapnik-Chervonenkis (VC) class. Then

sup |P n(C)-P(C)|->0 a.5. (n -^ oo).

The proof of this lemma is essentially contained in the proof of Lemma 3.4
below and will hence be omitted. Observe that (ii) is just a version of
the Glivenko-Cantelli theorem; it is stated here under the above explicit
condition to stay in line with Lemma 3.4 and Theorem 4.1.

It follows that the provisional limit, under Ho, for Mn(B) is the re-
striction to a(B) of a mean zero Gaussian random measure Wp(B) with
covariance function

(3.13) ΈWp(B)WP{C) = P(B Π C)

(i.e. Wiener random measure with 'time' P) and apparently, Mn(B) is not
asymptotically distribution free. Therefore we will renormalize it in two
different ways, see un and wn below. The idea of both these normalizations
is inspired by the following simple result (see, e.g., Khmaladze (1988)): If
Wp is a Wiener random measure on Bo with covariance function (3.13) and
PeV, then (cf. (C2))

(3.14) W(B) = ί -±-Wp(dx), B G BQ,
J f*(x)
JD

is a standard Wiener random measure, i.e. it has covariance function

EW(B)W(C) =μ{BnC).

An empirical version of this transformation will be applied to Mn. Suppose

(C4) there exists an .Fo-rneasurable density estimator fn (0 < fn < oo),

such that if each Xi has distribution P E V, then for all d

limsup Cn sup \fn(x) ~ f(x)\ < c a.s.,
n—>oo x:f(x)<cf

with c = c(d), cn known and cn -» oo (n —> oo); moreover for all

sufficiently large d > 1
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liminf inf fn{x) > 1 a.s.
n-»oo x:f(x)>c'

It is not difficult to see that such an fn exists under mild smoothness con-

ditions on / (see, e.g., Silverman (1986) and Scott (1992)). Set fn(x) =

fn{x) V c" 1 , x G [0, l ] m , and introduce the random measure un by

(3.15) un{BΠAt)=un(B,t) =

Since fn is .Fo-measurable un(B, •) is a martingale indeed, and

^o)fiα - fi)J
Eventually we will prove that wn is a strong P-solution of the two-sample
problem. To prove convergence in distribution of un we will need the follow-
ing result. Set

Lemma 3.4 Assume P G V, (C4) ΛoZds and n\jn —> po € (0? 1)
(i) For α.α. sequences {Pn}n>i; ^ e Λαve conditionally on T§, for all B E BQ

(un(B, •)>(*) -> μ ( ^ Π At) α.s. (n -> oo).

(ii) Suppose the class B is a VC class. Then

sup \μn{C) — β{C)\ -> 0 a.s. (n -> oo).
C£a'(B)

It could be noted that the initial observation behind the proof of the lemma

is that, according to the Kolmogorov strong law of large numbers (SLLN),

for each B G Bo

- Σ TΓrϊ1*^ ~> »W (= / 7Σ TΓrϊ*^ »W ( / 7 ) a s

71 , i J \ i ) J

Before we prove this lemma let us introduce another normalization of

Mn. Consider the Dirichlet (or Voronoi) tessellation of [0, l ] m associated

with the sequence {Xi}™- for each X{ let

Δ(Xi) = {xE [0, l ] m :\\x-Xi\\= min \\x - Xj\\}
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and let for each C

Cn= U Δ(X0, μn(C)=μ(Cn) =

Now introduce

(3.16) wn(C) =

Then again, since the sequence {μ(Δ(X ( i )))}? is .^-measurable, wn(BΠAt)
is for each t a random measure in B and for each B a martingale in t, and,
in the obvious notation,

(u îJ,.))(«) = j £ - ~

T h e expression in (3.16) also can be viewed as another empirical analogue
of (3.14):

r 1
3i Mn(dx),

since the step-function fn{x) = (nμ(A(Xi))) ι for all inner points x £
(and let it be 1 on the boundaries A(Xi)Γ)A(Xj)) can be considered as a den-
sity estimator, though an inconsistent one. Its analogue on JR is essentially
the 1-nearest neighbour estimator. Denote

p(Xi) = max \\x — Xi\\.
eA{X)

We shall consider {Xi}™ that do not necessarily form a random sample, in

order to justify to some extent the possibility of using the normalized ranks

{Ri}ι as mentioned in Section 2. For these more general X^ the δ{ which

determine first and second sample are as in Section 1.

Lemma 3.5 Suppose that the Xi, 1 < i < n, are random vectors in [0, l ] m

with Xi φ Xj α.5. for iφ j , such that for their empirical distribution Pn we

have Pn -+w P a.s. (n -» oo), for some P eV.

(i) Then

p* = max p{Xχ) -> 0 a.s. (n -> oo).
l<z<n

(ii) For C C Bo, set Cε = {x G [0, l]m : \\x - C\\ < ε} and Cε = {{Cc)ε)c.

Suppose C C Bo is such that Λ C C and

(3.17) lim sup μ(Cε\Cε) -> 0.
εio cc
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Ifni/n —> po E (0,1), then for α.α. sequences {Pn}n>ι, conditionally on

sup \(wn(C, )>(1) - μ(C)\ -> 0 a.s. {n -> oo).
cec

(iii) Also, under (3.17)

sup \μn(C) - μ(C)\ -> 0 a.s. (n -* oo).
cec

Proof of Lemma 3.4 Consider

|<un(J3, •)>(*) - μ(B Π At)\ < \{un(B,

By the SLLN, as n -> oo,

-y—

So it suffices to consider

1 "

Z1 1
= μ(B Π Λ t) a.s.

f(Xi)

9 i

1
n έί / ( x«)

n

First we show that the last term above converges to 0 a.s. We will split
this sum in the sum involving the Xu\^ for which X^ G A\-ε and the
sum involving the -Xφ's for which Xφ £ A\-ε. Since P E ? , we have
P{A\-ε) < 1 and hence it follows from a kind of conditional Glivenko-
Cantelli theorem that

max \pi 1 < sup \p(t) 1— 0̂ a.s. (n —> oo).
e A e I F n ' " t < i _ e n 1

(Actually this conditional Glivenko-Cantelli theorem is well-known and is

essentially proved in a version of the proof of the ordinary Glivenko-Cantelli

theorem for VC classes, see Gaenssler (1983, pp. 28-34).) This yields in

combination with the SLLN that

1 Σ 1
-Pi(l-Pi)-

The sum dealing with the X(iγ& for which

0 a.s.

Λi_ε is not greater than
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n 2 1 τ ^ 1 1

£ -po)

For arbitrary J > 0, this last expression is less than δ for ε sufficiently small.

Gathering everything we see that the proof of part (i) is complete if we

show that

^ 1 1

Define for 0 < η < 1 < c7, Dx = {x E [0, l ] m : f{x) < 77}, D2 = {x E [0, l ] m ,

7/ < /(a;) < c7}, and fl3 = {z G [0, l ] m : f(x) > c7}. Then for large enough

c7, we have by (C4)

f 1 1 f
limsup / | - -7\dPn < limsup / dPn = P(D%) < δ a.s.

n—>ΌO J Jn J n—>oo ,/
i^3 £^3

Also for small enough η we have from the definition of fn

/

I 1 ί l/n — /I

| - ^|c?Pn < limsup / ——-—dPn
Jn J n-^oo J JnJ

< c lim / ~dPn = cμ(Dι) < δ a.s.

Finally by (C4)

/

I 1 ί \fn — f\

\- -\dPn = limsup / dPn
Jn J 7i—>oo J JnJ

< -2 limsup / | / n - / |dP n < -2 J ^ sup |/n(x) - /(z)| - 0,

almost surely. Since 5 is arbitrary this completes the proof of part (i).

Now we will prove part (ii). We have

sup \μn(C) - μ(C)\ = sup | f ^-dPn - f -dP\
Ceα'(B) C£α'(B) J Jn J J

c c

< sup ί\^-\\dPn+ sup \ί-{dPn-dP)\.
C€α'(B) J Jn J Ceo'(S) J Jw c

But
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sup (\±--l-\dPn= [ | 1 - W
eα'(B) J fn j J fn f

C

p
Ceα'(B)

C [0,l]m

which converges to 0 a.s. as we just showed. So finally we have to prove

sup I / -(dPn - dP)\ -> 0 a.s. In -+ oo).
ceα'(B) J f

c

This is, however, a routine matter: since B is a VC class and L ^ f~ι dP —

1 < oo, the class of functions {f~ιΆc C G αr(B)} is a Glivenko-Cantelli
class. •

Proof of Lemma 3.5 (i) For k £ IV, let Ήk be the finite set of hypercubes
of the form ΠJLjr j/λ;, (r, + 1)/Λ], r̂  E {0,1,..., k - 1}. Since Pn -*w P a.s.
and P £ P, we see that for all k £ IN, sup#GKfc |Pn(ff) - P(ίf) | ~> 0 a.s.
But since inf/f€ f̂c P(iί) > 0, this easily implies that p* —>- 0 a.s.
^ We now prove part (iii). Let ε > 0. Since p* —)• 0 a.s. and for all C EC,
Cn C Cε and (Cn)c C (Cc) ε, that is Ce C Cn C C ε, as soon as p* < ε, we
have

limsup sup |μn(C) — μ(C)| < sup μ(Cε\Cε) a.s.

Now (3.17) proves part (iii).
Finally we consider part (ii). Because of part (iii), it is sufficient to show

that

sup | K ( C , ) ) ( l ) - μ n ( C ) |
cc

= sup | ]
cec ~

0 a.s.
f

This last expression, however, can be treated in much the same way as

,21 n

in the proof of Lemma 3.4.
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Weak convergence under HQ: property (α)

Let B C Bo be the indexing class for the random measures Λfn, un and wn

defined by (3.2), (3.15) and (3.16) respectively, and consider the space ίoo{B)
as the space of trajectories of these measures. To prove the convergence in
distribution in £oo(B) one needs the convergence of the finite-dimensional
distributions and the asymptotic equicontinuity property, studied in the em-
pirical process context, e.g., in Pollard (1990), see Theorem 10.2, and Sheehy
and Wellner (1992). This property follows from Lemma 4.2 below (in com-
bination with Lemmas 3.3-3.5), which in turn follows from appropriate ex-
ponential inequalities.

The first lemma of this section provides these inequalities. Consider the
process

(4.1)

with ^Q-measurable coefficients 7;, i = 1,... ,n. The process ξ is a martin-

gale and

with
U<t U<t

Lemma 4.1 (i) The process {exp(λξ(t) - ^Γ(ί)), 0 < t < 1} is α super-

mαrtingαle and E[exp{λξ{t) - ^Γ(ί)) | To] < 1.

(ii) We have for z > 0

(4.2) 2P{|£(1)| > z I ̂ o} < 2e~222/r(i).

Corollary 4.1 For z > 0

{ / 2 \ 1/2 "I
\Mn(B) - Mn(C)\ > z [ — ) I To \ < 2exv(-2z2/Pn(BAC)),

\n\Π2 J J

( / 2 \ ιl2 Λ
\un(B)-un(C)\ > z ( — J \TΛ< 2exp(-2z2/μn(BAC)),

\nln2/ J

{ / 2 \ 1/2 1

|tι;n(B) - ti;n(C)| > W - ^ - J | ^o > < 2exp(-2*2/μn(BΔC)).
\nιn2j J

Proof Take in inequality (4.2), 7* equal to 1 B (Xφ) - lc(-X"(»)) multiplied

by n-V2, (n/nίXμ)))-1/2 and ( μ t Δ ^ ) ) ) 1 ^ , respectively. .
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Proof of Lemma 4.1 The proof follows the well-known pattern. We
give it here, though briefly, because the references we know about, repre-
sent the exponential inequality for a martingale in Bennett's form (see, e.g.,
Freedman (1975) or Shorack and Wellner (1986, pp. 899-900) rather than in
Hoeffding's form (4.2). Observe that

λ 2

7 ?
n ( e Pi+1~P*) < e~«^,

which can be found by expanding the In, as a function of λ72 , up to the
second term and observing that the second derivative is bounded by 1/4.
Therefore

lEle^^-P^-^lTi-ύ < 1

which proves (i). Now

Minimization of this bound in λ leads to (4.2). •

The next lemma is the main step towards the asymptotic equicontinuity
property of our random measures. For the rest of this section we assume
our indexing class to be a Vapnik-Chervonenkis (VC) class (see, e.g., Dud-
ley (1978)). Before we proceed formally let us remind again under what
distributions this asymptotic equicontinuity will be obtained. All the three
random measures considered are functions of {X(i)}ι (or of Pn) and of {δi}™
which is independent of Pn and has distribution described in Section 3 - see
(3.4) and (3.5). We consider the distributions of Mn,un and wn induced in
^oo(#) by the distribution of {£i}" with Pn fixed and call them conditional
distributions given P n , or given TQ. Observe that with this construction
there is no need to care about possible non-measurability of Pn as a random
element in 4»(#) nor to require 'enough measurability' of B. So, in most of
the cases B will be required to be just a VC class.

There are two further reasons, specific for the two-sample problem, to use
indexing classes no wider than a VC class. The first is, that though we have
to study weak convergence under a fairly simple sequence of distributions
there are several different distances induced by different distributions on
[0, l ] m which occur in the inequalities of the above corollary. We would
need to make assumptions on covering numbers ΛΓ( , Q) of B in each of these
distances, that is, for Q being P n , μn or μn, n £ IV, which would be, from
the point of view of applications, inconvenient. However, for VC classes we
have a uniform-in-Q bound for lniV( , Q) - see Dudley (1978), Lemma 7.13,
or van der Vaart and Wellner (1996), p. 86, or the proof of Lemma 4.2.
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below - and this makes any VC class an appropriate indexing class for each
of Mn,un and wn. The second reason is this: though Mn is not the process
of eventual interest for the two-sample problem since it is not asymptotically
distribution free, we want it to have a limit in distribution for each P E V.
Therefore the indexing class B should be P-pregaussian for each P EV (see,
e.g., Sheehy and Wellner (1992)). However, if the class is pregaussian for all
P then it must be a VC class (Dudley, 1984, Theorem 11.4.1). Though our
V is more narrow than the class of all distributions (on [0, l] m ), still it seems
wide enough to motivate the choice of B being a VC class.

Let us formulate now the next lemma. For a finite (non-negative) mea-
sure Q on Bo and some subclass B c Bo, let B\e,Q) = {(A,B) E B x B :
Q(AAB) < ε}. Call {Mn}n>χ conditionally asymptotically equicontinuous,
uniformly over the discrete distributions, (CAECwd) if for any δ > 0

(4.3) lim limsup sup JP{ sup \Mn(A) - Mn{B)\ > δ\Fo} = 0,
£i° Pn (A,B)£B'(ε,Pn)

where Pn runs over all discrete distributions on [0, l ] m , concentrated on at
most n points. Call {un}n>ι and {wn}n>ι CAECud if for these sequences
a property similar to (4.3) holds with B'(ε,Pn) replaced by #'(ε, μn) and
β'(ε,/ϊn), respectively. See Sheehy and Wellner (1992).

Lemma 4.2 Let B C Bo be a VC class. Then under the null hypothesis
Pi = P<2, all three sequences {Mn}n>i ; {un}n>ι and {wn}n>ι are CAECu<χ.

Proof As above, let iV(ε, Q) denote the covering number of the class B in
the pseudo-metric d(A, B) = Q(AAB) and let α denote the index of the VC
class B. Then for all Q and some constant K depending on α, and depending
on Q only through Q([0, l]m)

N(ε,Q)<K(ι

Έ)a-\ 0 < ε < l

(see, e.g., van der Vaart and Wellner (1996), pp. 85-86 and Theorem 2.6.4,
and Dudley (1978) Lemma 7.13). Now we can apply this bound to 7V(ε, P n ),
N(ε,μn) and N(ε,μn) and use the inequalities of Corollary 4.1 and the
classical chaining argument, see Dudley (1978) Section 5, but chain down to
oo. We present the proof for Mn; that for un and wn is similar and will be
omitted. (In the proof for un we will assume that μn([0, l]m) < 2, say. This
is sufficient for our needs.)

Take 0 < εo < 1, to be specified later on and set ε^+i = εf, i = 0,1,2,
For B E β, denote approximating sets corresponding to Si with Bi, so
Pn{BABi) < Si. Then

(4.4) P{ sup I Mn(A) -Mn(B)\ > δ\TQ}
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+ 2F{ sup I Mn(B0) - Mn(B)\ > f |JF0}.

Using Corollary 4.1 the first term on the right in (4.4) can be bounded from
above by

< 2exp

where for the last inequality n is taken large enough. Now taking εo small
enough, this last expression is not larger than

( i S2

2 exp 2α In

Now consider the probability in the second term on the right in (4.4). We
have for small enough εo and large enough n

F{sup \Mn(B0) - Mn(B)\ > | |JF0}
BeB

< f ; Ψ (sup \Mn(Bj) - Mn(Bj+1)\ > 2 (a£j l n ( 1 / £ j

^ π BeB \ Po\L — Po

3=0

n\Π2

n

OO OO

2^exp(-αln( l/ε i + i ) ) =2^e<*+1 < ε0

j=o j=o

Hence, since the 'n large enough' requirements do not depend on P n ,

limsupsupF sup \Mn(A) - Mn{B)\ > δ\T0} < δ,
P n (A,B)eB'(εo,Pn)
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which gives (4.3). •

We are now prepared to formulate the statement on weak convergence of
M n , un and wn under the null hypothesis. What mainly remains to be proved
is the finite-dimensional convergence in distribution, which we will obtain

via the martingale central limit theorem. Let ' -+ ' denote convergence
in distribution under the sequence of conditional distributions, given Pn.

Theorem 4.1 Let m/n -> po E (0,1). For any VC class B C BQ and any
P ξίV we have for a.a. sequences {Pn}n>i

Mn

 V{%] WP (n->oo)

in the space £oo(B).
If condition (C4) holds, then also

...
W [n —> oo)

in Z<χ>(B); and, if condition (3.17) of Lemma 3.5 holds for C = a(B), then
also

Wn - ^ W (n-> c»)

in ^oo(β) Moreover, since B is a VC class the limiting processes Wp and W
are bounded and uniformly continuous with respect to Q( Δ •), for Q being
P and μ, respectively.

Proof First note that Lemma 4.2 in conjunction with Lemma 3.3 yields

that for any δ > 0 and a.a. sequences {Pn}n>i

(4.5) lim limsup JP{ sup \Mn{A) - Mn{B)\ > δ\F0} = 0.
εiO n-»oo (Λ,JB)GO/(ε,P)

Similarly Lemmas 4.2 and 3.4 lead to (4.5) with P replaced by μ and Mn

by un\ also Lemmas 4.2 and 3.5 give (4.5) with P replaced by μ and Mn by

wn (note that the conditions of Lemma 3.5 also hold for C = aι(B)). This

settles the proper asymptotic equicontinuity for the three processes.

Now we turn to the convergence of the finite dimensional distributions.

For a sequence of martingales ξn(t) = ^ 7 i n ( ^ i — pi), the convergence
U<t

ξn -> ξ in D[0,1] to a Brownian motion with covariance F(s Λ ί) is equiv-

alent to the conditions:
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1) (ξn)(t) 5 F{t) for all t e [0,1], and

2) Σ^nHlϊn > e}pi{l -Pi) * 0 for all ε > 0

(the Lindeberg condition), see, e.g., Liptser and Shiryayev (1981) or Shorack
and Wellner (1986, pp. 894 and 895). To obtain the finite-dimensional
convergence for Mn(l?i, •), , Mn(i?fc, •), according the Cramer-Wold de-
vice, it is sufficient to prove the convergence for all linear combinations
λiM n(i?i, •) H h λfcMn(βfc, •), which leads to the choice

l/2 k

Σ
but since ! # \Q — I s n c the choice of just one indicator is sufficient.

Now according to Lemma 3.3 condition 1) is satisfied (even almost surely)
with F(t) = EW^(B Π At) = P(B Π A t), whereas condition 2) is trivially
satisfied. For un, according to Lemma 3.4, condition 1) holds also a.s., with
F(t) = EW2{BnAt) = μ(BΓ)At) and condition 2) as well (see (3.18)), while
for iϋn, again, a.s.-versions of both conditions follow from Lemma 3.5 with
the same F as for un. This completes the proof of the finite-dimensional
convergence of M n , un and wn and hence of the theorem. •

5 Weak convergence under alternatives: properties (/?) and (7)

According to Theorem 4.1 the processes un and wn have property (α) (see
Section 2). In this section we need to study if they also have the properties
(β) or (7); that is, we will study the weak convergence of un and wn, as
well as Λfn, under alternatives (C3). Since these are contiguous alternatives
the asymptotic equicontinuity follows and we need only to study the finite-
dimensional convergence of these processes. The usual way to do this is to
study the joint weak convergence of each of our processes with the logarithm
of the likelihood ratio

L» = Σ [* l n ̂ ( * « ) + (i - Si)ln

and then to apply LeCam's Third Lemma, see e.g., Shorack and Wellner

(1986, p. 156). It is well known that

i=l
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converges in probability to a constant c under the distribution Pn.

It would be, however, more consistent with the presentation in Section 4
if we consider, instead of L n, the logarithm of the likelihood ratio of the
conditional distributions, given TQ, which is

and to study the joint convergence of our processes and L'n under a.a. se-
quences of the conditional hypothetical distribution 2P{ •I.Fo}. As shown in
Urinov (1992), for L'n it is again true that

<=i n

IP

satisfies Zn —> c, still under Pn. However, it is not true, as far as we
understand it, that condition (C3) implies convergence of z'n to a constant
in P{'\TQ] for a.a. sequences {Pn}n>i Hence, though it is possible to show
the convergence in this sense to the appropriate limits if Vn is replaced by
its leading first term (see the proof of Theorem 5.1 below), the eventual
statement of convergence is true under the unconditional distributions Pn

and Pf1 x P 2

n 2 only.
Write H(t) = JAα hdP and let

where t(x) is defined as in (3.3). Remark that the linear operator that

maps h into g is norm preserving (though not one-to-one since it annihilates

constant functions):

(5.2) I g2dP = ί{h- ί hdPfdP = ί h2dP{=

Now denote with Z a iV(0, \\h\\2) random variable (Z will be the limit of
Ln — Zn\ cf. also (2.2)) such that {Wp,Z) is jointly Gaussian, that is, for
any finite collection of Bu , Bk E B the vector (W>(Bi), , WP{Bk), Z)
is Gaussian, and let Cσv(WP(B), Z) = JB gdP. Similarly, let (W,Z) be

v v
jointly Gaussian with Cov(W(B),Z) = fB gf1/2dμ. Let ' -> ' and ' -> '
denote convergence in distribution under Pn and P x

n i x P^ 2 , respectively.

Theorem 5.1 If the class B C Bo is such that Mn -> Wp and/or un -> W

(n —> oo) in ^ ( B ) , ^Λen
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(5.3) Mn -> WP+ I gdP (n -> oo)

αnd/or

(5.4) un % W + ί gf1/2dμ {n -> oo)

The proof of this theorem is deferred to the second half of this section,
but to explain the nature of the function g already here, let us remark that
the leading term of Ln and Vn has the following explicit representation (see
(4.1)):

(5.5)

where gn(x) = h(x) — (fAC hdPn)/Pn{A^χΛ has the same form as the func-

tion g only with P replaced by the empirical distribution Pn. The equality
(5.5) can be derived from (3.8) or verified directly.

Now let us consider whether it follows from this theorem that un has
property (/?). Let QUn and QUn denote the distributions of un under Pn

and P™1 x P£2 respectively, and let Q and Q denote the distributions of W
and W + / gfιl2dμ respectively.

Theorem 5.2 // the indexing class B generates Bo, then for each sequence
of alternatives satisfying (C3)

d(Qun,Qun)->d(Q,Q) = \ (n->oo).

Hence, Theorems 4.1 and 5.2 show, that if B is a VC class generating BQ
and (C4) holds, then un is a strong P-solution of the two-sample problem.

Remark that the process Mn also possesses property (/?). It only lacks
property (α).

Let us now consider wn. To find out what is the limiting covariance
between wn(B) and Ln we need to study the limit of the expression

where the multipliers pi(l —ft) are not essential from the point of view of
convergence. On the unit interval, i.e. m = 1, it can be proved that

(5.6) - V ίB(Xi)g(Xi) vV(Δ(Xi))ί> -)- kfgΓ1/2dP
ni=ι I
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(5.7) = kfgfWdμ,
B

with k = I ̂ , using, e.g., the general method presented in Borovikov (1987).
It follows, heuristically speaking, from the fact that the nμ(Δpft )) behave
'almost' as independent random variables each with a Gamma(2) distribu-
tion with scale parameter 2f(Xϊ), and so k stands for the moment of order
\ of a Gamma(2) distribution with scale parameter 2. However, in the unit
cube, [0, l ] m , we will need to keep (5.6) for some k < 1 as an assumption.

Let (W',Z') be again jointly Gaussian with the same marginal dis-
tributions as that of W and Z, but with covariance Cov(W(B),Zf) =
*/B 9fl/2dμ.

D

Theorem 5.3 // the class B C BQ is such that wn -> W in ί^B) and if
(5.6) is true, then

(5.7) wn i W + k ί gf1/2dμ.

Let Q(fc) be the distribution of the right hand side of (5.7). If B generates

Bo then

(5.8) d(QWn, QWn) -> d(Q, QW) = 2Φ Q

Prom (5.8) it follows that under the conditions of Theorem 5.3 the pro-
cess wn certainly possesses property (7) although not property (β) because
Φ(^Λ||Λ||) < Φ(^||/ι||). So, wn is a weak P-solution of the two-sample prob-
lem.

Finally, we present the postponed proofs of Theorems 5.1 and 5.2. The
proof of Theorem 5.3 is much the same and will therefore be omitted.

Proof of Theorem 5.1 Since the sequence of alternative distributions
{Pf1 x P^2}n>i is contiguous to the sequence {Pn}n>i, the CAEC^ prop-
erty of Mn and/or un will be true under the alternative distributions as well.
Hence (5.3) and (5.4) will follow if we show the convergence of the finite di-
mensional distributions of Mn and/or un to the proper limits. Let us focus
on un - the proof for Mn is similar and simpler. The convergence

will follow from the Cramer-Wold device, the convergence



J.H.J. Einmahl and E.V. Khmaladze

v k
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(5.9)

where {αj}j_1 and β are any constants and

Zn =

and from LeCam's Third Lemma. To see that (5.9) is true observe that,

given P n , the left hand side is the value of a martingale in t

Σ
/n

1/2

(cf. (4.1)) at the last point t = n. Hence if we verify that

(5.10)

fl/2

κ J
[0,l]m

"*1** + β g
dP a.s. (n —>• oc)

V{Pn) V

for a.a. {Pn}n>i? then actually ' —>• a.s.' will be proved and hence ' -> '
as well. However, (5.10) will follow from the SLLN if we show that the
functions fn and gn can be replaced by / and g respectively and use the
truncation applied in the proof of Lemma 3.4. We have

sup I f hdPn - ί hdP\ -> 0 and sup \Pn{Ac

t) - P(Ac

t)\ -> 0,
0<ί<l J J 0<t<l

a.s. and hence

sup \gn(x) - g(x)\ -» 0 a.s. (n -> oo),

while on A\_ε we have, according to (5.5),

n

- r,_1 Σ ' ί
l-ε

a s
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The proof of

9 iP -> 0 a.s.

is similar to the one used in Lemma 3.4 and is omitted here.

Proof of Theorem 5.2 If B generates Bo, then Ln is a linear functional
of un and, hence, the following two distances in variation are equal:

Hence d(QUn,QUn) -> 2Φ(g||/ι||) - 1. Again since B generates Bo, the dis-
tance in variation between the distributions of W and W + fm gfιl2dμ on B
coincides with the one on the whole Bo Therefore the log-likelihood statis-
tics of these two Gaussian processes on B and Bo coincide and are equal
to

which, because of (5.2), is N{-\\\h\\2, \\h\\2) when V = W and which is
N^IHIMWI 2 ) when V = W + I gfι/2dμ. The distance in variation
between these two normal distributions is, obviously, λ = 2Φ(|||/ι||) — 1. •
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