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In the present paper we focus on the estimators in location models with gradual changes
described by power α that can be known or unknown. Least squares type estimators of the
parameters are studied. It appears that the limit behavior (both the rate of consistency
and limit distribution) of the estimators of the change point in location models depends
on the type of gradual changes.

AMS subject classiβcations: 62G20, 62E20, 60F17.
Keywords and phrases: gradual changes in location model, estimators.

1 Introduction and main results

Consider the location model with a change after an unknown time point mn\

(1.1) Yi = μ + J n ( ^ - ^ ) ° ° + ehi = 1,...,n,

where α+ = max(0, α), μ, δn φ 0 and mn(< n) and αo £ [0,1] are unknown
parameters. We assume that

ei,..., en are independent identically distributed random variables

Eei = 0, 0 < σ2 < oo, E\ei\2+A < oo with some Δ > 0

and

(1.3) mn = [771] with some 7 E (0,1),

where [α] denotes the integer part of α. Concerning the slope parameter £n,
we assume that, as n —> 00,

(1.4) |ίnhθ, .f^l ->oo,
Vloglogn

which covers local alternatives (δn -> 0), and if αo Φ 0 also fixed alternatives
(δn = δφ 0).

1 This research was supported by the grant GACR-201/97/1163 and by the grant
CES:J13/98:113200008.
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We study the least squares type estimators μn,δn,&n, ™>n of the param-
eters μ,ί n ,αo ?

m ί i These are defined as the minimizers over μ G i£, δ G ϋ,
α G [0,1] and k = 1,..., n of

Straightforward (but tedious) calculations give that

( L 5 ) ^ =

n(

while αn and m n are the maximizers over α G [0,1] and k = l,....,n — lof

(Σ=ife*W)2) '
where

Σ ( )
If there are more solutions we take the pair fhn,αn with the smallest first
component.

The parameter mn is the change point and it is the parameter of main
interest. The parameter αo characterizes the type of change (abrupt - c*o = 0
or gradual αo > 0) and it is usually also of interest, whereas μ, δn and σ2

are nuisance parameter.
The case when αo G [0,1] is known has been studied in the past, e.g.

Horvath and Csδrgό (1997), Antoch and Huskova (1998) for survey results
in case αo = 0 and Huskova (1999) for αo G (0,1], However, in reality α is
usually unknown.

Related test procedures with αo = 0 or αo = 1 are studied in a number
of papers, see e.g. Hinkley (1971), Lombard (1987), Jaruskova (1998a,b),
Csδrgδ and Horvath (1997), Siegmund and Zhang (1994).

We will study here the limit behavior of the estimators fhn and α n and
compare it with the limit behavior of the corresponding estimators if only
one of these parameters is unknown.

We use the notation, for 7 G (0,1) and α G (1/2,1] (or for [1,1] in the
case of an),

(1.8)
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αn(α, 7 ) = ( / {x - Ί)
2_?\og2(x - Ί)+dx

Wo

(1-9) -

- Jo(y -

α22(α,7) =α\j\x- Ί)^~2dx - (j\(y -

2
M \{j\ Oί

αi2(«,7) =α2i(α,7) = «( / (^ ~ T ) ^ " 1 log(x
Wo

(1.11) - (J\y - Ί)
α

+-ιdy){j\z - Ί)% \oφ - Ί)+dz))

- α(j\x - rff-'dx - (J\(y - Ί)%-ιdy){j\z - Ί)%dz))

y ti(x - Ί)\« log(x - Ί)+dx - Sj(y - 7) W Q ( Z ~ Ί)% logjz - -γ)+dz

Jo1 (x - j)2

+

α log(x - Ί)+dx - (Jo1 (y - Ί)«+dyγ

The integrals can be easily calculated, however, the resulting expressions are
neither simpler nor more transparent, e.g. an(0,7) = 7(1 — 7)(log(l — 7) —

In the following, a J l(a,7) denote the elements of the inverse matrix

We formulate the main results in three theorems that cover the cases. In
Theorem 1.1 we consider αo Ξ [0? 1/2)? i n Theorem 1.2 we consider αo = 1/2
and finally in Theorem 1.3 the case αo £ (1/2,1].

Theorem 1.1 (α0 E [0,1/2)) Let (1Λ)-(1.4) be satisfied. Ifα0 E [0,1/2),
then, as n —> 00,

(1.13)

where

(1.14) Vα = argmax{WQ(ΐ) - Γ ° ((x +1)% - x%)2dx/2; t G R},
J-OO
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with {Wα{t)', t G R} being a Gaussian process with zero mean and covariance

structure, for s,t E R,

(1.15) cov(Wβ(t), Wα(s)) = Γ ((x + s)% - x%) ((x +1)% - x%)dx,
J—oo

Ifαo=O then, as n -> oo,

δny/n(αn - α 0 ) - ^ max(y,0),

where Y has distribution N(0, σ2αJ"1

1(0,7)). The estimators δ n and m^ are
asymptotically independent.

T h e o r e m 1.2 (α 0 = 1/2) Let (L1>-(L4) be satisfied. ίfα0 = 1/2, then,
as n -> oo? (1.13) holds true and

(1.16) d v ^ >

The estimators άn and fhn are asymtotically independent.

T h e o r e m 1.3 (α 0 G (1/2,1]) Let (1.1)-(1A) be satisfied. Ifα0 G (1/2,1),
then, as n -» oo,

< M 7 >

where Λ~x(αo,7) denotes the inverse matrix to A(αo?7) If αo = 1, then, as
n —> oo,

and

δny/n(fhn - mn)/n -A M2,

where Mi has distribution iV(0, σ2α^2"(l,7)) and M2 has distribution
lN(0,σ2α^(l,Ί)) + iiV(0,σ2α22(l)7)).

The proofs are postponed to the next section. Here we discuss various
consequences of the stated results.

Note that the rate of consistency of αn depends neither on c*o nor mn

while the rate of consistency fhn depends on αo
The best rate of consistency of αn is reached for αo = 0, and the worst

one for αo E (1/2,1]. This is in accordance with the results of Ibragimov
and Hasminski (1981) concerning consistency of estimators in regular, almost
regular and singular cases.
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If αo is known then comparing the results of the present paper with
Theorems 1.1-1.2 in Huskova (1999) we realize that in case α 0 G [0,1/2] the
limit behavior of fhn is the same as if αo is unknown. In case αo G (1/2,1]
by Theorem 1.3 in Huskova (1999), as n -» oo,

δny/τι(fhn — Tfij^jJTi —y iV(0, <τ αj~̂  (αo,^y)),

which means that the rate of consistency and the type of limit distribution
remains the same, however, the variance is smaller in case of αo known.

If the change point mn is known then it can be proved along the line of
the proofs of Theorems 1.1-1.3 that (1.13) remains true for αo G [0,1] (not
only for αo G [0,1/2] when mn is unknown).

It can be shown that if αo is unknown then the estimator ran(α) defined
as the maximizer over k = 1,..., n — 1 of

\ΣLiχik(<*)Yί\

with α G [0,1] prechosen, does not even need to be consistent. It should be
pointed out that if αo G [0,1/2] the estimator fhn is not generally asymptot-
ically optimal; there exists a Bayesian like estimator that performs better.

These results together with some related problems will be discussed in
a separate paper.

The present results can be extended to other types of estimators, e.g. to
M- and i?-estimators. Other type of gradual changes can also be considered,
e.g. Y{ = μ + δng((mn — h)+/n\θ) + e^i — 1,...,n, where g(t\θ) is a known
nonincreasing smooth function in t G [0,1) and a smooth function in 0; and
θ is a nuisance parameter. The type of smoothness then determines the limit
behavior of the estimators.

Concerning the limit behavior of the estimators μn and ίn, it can be
shown, using standard techniques, that their limit behavior is not affected
by the fact that αo and mn are known or unknown.

2 Proofs

We start with some lemmas. The proofs of Theorems 1.1-1.3 are at the end

of the section. Some of the lemmas are quite technical and require tedious

calculations. We try to shorten them.

Lemma 2.1 Let assumptions (1Λ)-(1.4) be satisfied. Then, for α G [0,1],

as n -* oo,

(2.1) , ̂  max
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(2.2) max 1 Σ L I ^ ( ^ | ( l )

for any e E (0,1).

Proof This is a slight modification of Lemma 2.5 in Huskova (1999) and
therefore the proof is omitted. •

L e m m a 2.2 Let assumptions (1.1)-(1.3) with α G [0,1] and (1.4) be
satisfied. Then, as n -> oo,

αn - A α 0 .

(ran - mn)/n - A 0.

Proof Clearly, for k = 1, ...,n — 1, and α G [0,1],

Σ?=i 4

The first term on the right hand side of 2.3 is stochastic one and by Lemma 2.1
the maximum of its absolute values over A; and α is of order (log log n) 1 / 2 .
The second term on the right hand side is nonstochastic and elementary
calculations give

= Jo(s - 7)?(s - t)%dx - ft(x - Ί)%°dx(x - t)%dx

= Q(a,αo,t,7),

(say), for ί € [0,1), 7 € (0,1), and α, αo G [0,1]. By the Schwarz inequality,
for t e (0,1), 7 € (0,1), α, α0 G [0,1],

where equality holds only with α = αo, t = 7. The function Q(.) is continu-
ous in all variables. This implies for αo? £ [0? 1]> and 7 G (0,1),

ίG(o,7-e)u(7+6,i) L Q 1 / 2 ( α , α, t, t)
α€(0,αo-e)U(α0+e,l)

α€[0fl]
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for e > 0 small enough. This in combination with the property of the
stochastic term on the right hand side of 2.3 implies the assertion of our
lemma. •

To obtain stronger properties than the above consistency we have to
investigate both stochastic and nonstochastic terms in more details.

The estimators fhn and αn can be equivalently defined as the maximizers
over k e {0,1 . . . , n - 1} and α E [0,1] of

It is useful to decompose the single terms as follows

( Σ?=i *
( }

= Ak + 2δn(Bkι + Bk2 + Bk3 + BM) - δ2

n{Ckι + 2Ck2 + Ck3 + CM),

for k = 1, ...,n, α G [0,1], where

_

2 = 1

n

Σ?=l

Σ?=i

Ck2 = Σ{xik{α) - Ximn{α)){ximn{α) - Zimn(c*o))

i=\ xik\
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Notice that

Σ?=i

fcl + ... + Bk4} = σ2{Ckι + ... + Ck4).

In the next few lemmas we investigate the single terms C'ks and B'ks for

α close to αo and k close m n . We start with C'ks.

L e m m a 2.3 Let assumptions (1.1)-(1.4) with α$ G [0,1] be satisfied.

Then, as α —> αo and |m n — fc|/n ->- 0, n -> oo:

(2.6) -Ckl = (α - αo) 2 α n (αo,7)( l + o(|α - αoΓ + 1))

(2.7) I c f c 2 = ( α -

- (Jo1 (z -

x (l + o( |α-α 0 | κ + l)).

uniformly for \k — mn\ = o(n) for some K > 0.

Proof We derive the assertion for one term only, since others are treated
in the same way. We have

mn\
α fi-

Γ(f= Γ(f\x- Ί)f ]og(* - Ί)+dx)dβ

= (α - α0) f\x - 7)lΩ 0 Iog2(x - Ί)+dx(l + o(\α - <x)\κ + 1)),
Jo
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where we used elements of classical calculus. •

Lemma 2.4 Let assumptions (Ι.l)-(IΛ) be satisfied. Then, as α -> α 0

and n —>• oo,

(1) forαe (1/2,1]:
(2.9)

uniformly for |A — m n | = o(n) for some K > 0.

(2) for α = 1/2:

(2.10)

uniformly for \k — mn\ = o(n) for some K > 0.

(3) for αe [0,1/2):

(2.11) i c f e 3 =
77. oo

uniformly for \k — mn\ = o{n) for some n > 0.

Proof The lemma is a slight generalization of Lemmas 2.2-2.4 in Huskova
(1999) and therefore the proof is omitted. •

Lemma 2.5 Let assumptions (1.1)-(1.4) be satisfied. Then for α G [0,1],

as α -> αo and n -> oo,

Bkι + Bk3 = (α - α o )y n i ( l + oP( |α - α 0 Γ + 1))

uniformly for \k — mn\/n = o(l) for some n > 0, where

(2.12) Ynl =

o 1 ^ - 7 ) + α o log(g ~ 7)+<fa ~ (/o (y ~

Proof The crucial part of the proof is to show that

( ( Ϊ Γ ) + ( i r ) + ) = ( α ~ α o )

ί — 1
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Clearly,

is continuous in α and we have for all 0 < αi,α2 < 1 and n large enough

._- - - ιv - i - n /+ / ^ τι / +

for some C > 0. Hence by Theorem 12.3 in Billingsley (1968) we have that
the sequence Sn = {S n (α),α £ [0,1]} is tight and also

) > = Σ ( ( ^
x(l + op(\α-α0\

κ + l))

uniformly for α -» αo and n —)• oo. The lemma is proved. •

The following lemmas are slight generalizations of Lemma 2.6-2.9 in
Huskova (1999); their proofs are omitted.

Lemma 2.6 Let assumptions (Ι.l)-(IΛ) be satisfied. Then for αo € [0? 1]?
as α ->> αo &nd n —>> oo,

S j b 4 = - I 7 ^ - ^ y 2 n (i + O p ( | α _ α o | - + i))

uniformly for \k — mn\/n = o(l) for some K > 0, where

(2 13) ΐ = 1

/o1^ - Ί?r-ldx - ^(y - T)?- 1^ fo(* ~

Lemma 2.7 fαo ^ [1/2,1]) Let assumptions (1.1)-(1A) be satisfied. Then,

as α —> αo and n —> oo,

(1) for αo€ (1/2,1]:

71
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uniformly in \k - mn\/n = o(ί) for some K > 0.

(2.14) γM-α

(2) for α 0 = 1/2

mn-kl A /ΐ~

uniformly for \k - mn\/n = o(l) for some « > 0 .

Next, we introduce the process VnOLp = {Ki,α(ί); |*| < Γ} with α E
[0,1/2), T being a positive number and

= δnBk2, k = l,....,n,

and piecewise linear otherwise.

Lemma 2.8 (α0 G [0,1/2)) Let assumptions (1.1)-(1.4) be satisfied. Then
for any e > 0 and 77 > 0 there exist Hjη > 0, j = 1,2, and n^ such that for
n > nη

P( max max , | ,^ ' >η) <η
\\α-αo\<Hlη e>|fc-mn|/n>fl-2τ7((J2n)1/(2αo+i) | d n | C f c 3 /

and, as α —>• αo and n -^ 00,

where Wαo,τ = {Wao; \t\ < T} is a Gaussian process with zero mean and
the covariance function given by (1.15).

Proof of Theorem 1.3 The proof is divided into two steps. First we

show that, as n —> 00 and α —> o>o

(2.15) (fhn - mm)/n = OP{{δnVn)-1),

(2.16) δ n - α o

and then the limit distribution of fhn and 3 will be derived.

By Lemma 2.2 it suffices to investigate

max {Ak + 2δn(Bkl +... + BkA) - δ2

n(Ckι + Ck2 + 2Ck3

|α-αo|<e,|fc-mn|/τi<£
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for e > 0 small enough. Denoting

GD = {(α, fc); |α - αo\ < D{\δn\V^)~\ \k - mn\/n < D{\δn\

and

HD = {(α, fc); |α - α 0 < e, \k - mn\/n <e}-GD

we notice that for any D > 0 and e > 0 small enough

max{δl(Ckl + 2Ck2 + Ck3 + CkA)} = 0,

and by Lemmas 2.3-2.4

^ 2Ck2 + 2Cks + Cfc4)} = m a x ( - D 2 ( α n ( α 0 , 7 )

- £ ) 2 α n ( α o , 7 ) , -D2α22{α0,7)} x (1 + ^(1))

where αij(αo^) are defined by (1.9)—(1.11). Clearly, αn(αo,7)+2αi2(αo,7)+

^22(^057) > 0. By assumption (1.4) and by Lemma 2.1 we find that the
terms A^'s are negligible and also that for D > 0 large enough the non-
stochastic terms δ^(Ckι + Ck2 + 2Cks + Ck^) dominate the stochastic terms
δn(Bkι + Bk2 + Bks + Bk4) for (α, k) G Hp with probability close to 1. Since

max\δn\\Bkι + ... + BkA\ = Op{\δn\y/n)

and since D can be chosen arbitrarily large we find that (2.15)-(2.16) hold
true.

In order to obtain the limit behavior of our estimators we investigate
the maximum of

(2.17) 2δn(Bkι + ... + Bk4) - δ2

n(Ckl + 2Ck2 + C fc3 + CkA)

over the set G/>

Writing α = c*o + hiδnVn)"1 a n d k = m + t2n(δny/n)~ι we get by
Lemmas 2.3-2.7 that our problem reduces to investigating the maximum of

with respect to t\ and t2. Since A(αo5 7)? defined in (1.8) is a positive definite
matrix and since by the CLT (Yίn/\/n, (Y2n + Y3n)/V™) has asymptotically
ΛΓ((O,O)τ,σ2A(αo,7)) distribution, we find after some standard steps that
the assertion of Theorem 1.1 holds true. •

Proof of Theorem 1.2 We proceed similarly as in the proof of Theo-
rem 1.3. Checking the behavior of B^'s and CVs for αo = 1/2 (Lemmas 2.3-
2.8) we realize that, as n —> 00 and α —>• αo,

fc3 ( ( ^ ) g ( n ) ) , CM = o(Ck3),
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_L β f c 2 = O p ( ] * z p l ( l o g ( n _ m n ) ) i / 2 ) 5 Bk4 = Op{Bk2)

uniformly for k - mn = o(n). The terms Ck\,Ck2 and Bk\,Bk$ are not
affected in this way, which leads to the conclusion that the rate of consistency
of αn is the same as in case α0 G (1/2,1] while for fhn we have, as n -» oo
and α -> αo

^ ^ V ^ ) " 1 log~1 / 2(n - )

Moreover, it is enough to study the maximum of

2δn(Bkι + Bk2 + Bk3) - δ2

n(Ckl + Cks)

over a properly modified set Hp. The proof is now finished in the same way
as of Theorem 1.3. •

Proof of Theorem 1.1 This is omitted since it is in principle the same
as that of Theorem 1.2. •
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