
ADAPTIVE CHOICE OF BOOTSTRAP SAMPLE SIZES

FRIEDRICH GOTZE 1 AND ALFREDAS RACKAUSKAS2

University of Bielefeld and University of Vilnius

Consider sequences of statistics Tn(Pn,P) of a sample of size n and the underlying dis-
tribution. We analyze a simple data-based procedure proposed by Bickel, Gotze and van
Zwet (personal communication) to select the sample size m = mn < n for the bootstrap
sample of type "m out of n" such that the bootstrap sequence T^ for these statistics is
consistent and the error is comparable to the minimal error in that selection knowing the
distribution P. The procedure is based on minimizing the distance between L m (P n ) and

Pn), where Lm{Pn) denotes the distribution of T^.
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1 Introduction

In this paper, we investigate an adaptive choice of the bootstrap sample
size m in sampling from an i.i.d. sample of size n m-times independently
and with (resp., without) replacement. To simplify the writing we shall
abbreviate the notion of m out of n sampling as moon bootstrap.

Assume that the random elements ΛΊ,..., Xn,... are independent and
identically distributed from a distribution P on a measurable space (S, *A).
Let Pn denote the empirical measure of the first n observations XL, . . . , Xn.
Throughout we assume that P G Vo C V, where Vo is a set of probability
measures on (5, *4) containing all empirical measures Pn.

Let Tn = Tn(Xi,... ,Xn;P) denote a sequence of statistics, possibly
dependent on the unknown distribution P in order to ensure that Tn is
weakly convergent to some limiting distribution as n tends to infinity. A
typical example is given by Tn = nα(F(Pn) - F(P)), where F : VQ -> R
denotes a functional on VQ and α > 0 is an appropriate normalization rate.

We are interested in the estimation of the distribution function (d.f.)
Ln(P; α) of Tn by means of resampling methods.
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The nonparametric bootstrap estimates the d.f. Ln(P, α) by the plug-in
method, that is, by the conditional d.f.

where X*,... , X* is a bootstrap sample from the empirical distribution P n .
One of the major problems for the nonparametric bootstrap estimate Ln

is its consistency. Various types of consistency can be considered. Usually,
if d denotes a certain distance on the set of all distribution functions then
Ln is said to be d-consistent (or, simply consistent, when d is fixed) in
probability (resp., a.s.) provided that d(Ln,Ln(P)) —> 0 in probability

71—>OO

(resp., a.s.). Conditions ensuring the consistency were considered, e.g., by
Bickel and Preedman (1981), Bretagnolle (1983), Athreya (1987) and Beran
(1982, 1997). Extensive references and details on various bootstrap methods
can be found in the recent monograph by Davison and Hinkley (1998).

A number of examples, where the bootstrap fails to be consistent to-
gether with positive results suggest that the consistency of the bootstrap
estimate Ln requires the following conditions:

1) for any Q from a neighborhood V(P) of P, Ln(Q) has to converge weakly
to a limit I/(Q), say, and the convergence has to be uniform on V(P);

2) the function Q —> L(Q) has to be continuous.
The moon bootstrap with replacements (shortly, ra/n-bootstrap) esti-

mates the d.f. Ln(P,α) by L m (P n ,α), whereas the moon bootstrap without
replacements (shortly, Q)-bootstrap) estimates Ln(P,ά) by

L*m(Pn,a) = I V l{Tm(Xh,...,Xim;Pn) < a}.

Under very weak conditions, the moon bootstrap resolves problems of
consistency of the classical bootstrap by choosing m = o(n) bootstrap sam-
ples. It was first suggested by Bickel and Preedman (1981) and investi-
gated in Bretagnolle (1983), Gόtze (1993), resp. Bickel, Gόtze and Zwet
(1997), Shao (1994), Politis and Romano (1994) (examples of nonregular
statistics), Swanepoel (1986), Deheuvels, Mason and Shorack (1990) (ex-
treme value statistics), Shao (1996) (model selection), Datta and McCormik
(1995), Datta (1996), Heimann and Kreiss (1996) (first order autoregression
models), Athreya (1987), Arcones and Gine (1989) (heavy tailed population
distributions). If d denotes a distance between distribution functions (e.g.,
Kolmogorv, Levy-Prokhorov, or bounded Lipschitz distance) then a measure
of risk in estimating Ln(P) by some estimator Ln is given by

EPd(Ln,Ln(P)).

For Ln being the moon bootstrap estimator Lm(Pn) the 'generic' nonpara-

metric case is described by the nonconsistency of this estimator for m ~ n



288 Friedrich Gόtze and Alfredas Rackauskas

due to the essential randomness of its limit distribution under Pn for such
m. Introducing h ~ n/m as a 'bandwidth' type parameter in this nonpara-
metric estimation problem, the case h ~ 1 is characterized by the fact that
the variance of the bootstrap estimate may not tend to zero as n tends to
infinity. On the other hand for large values of h the variance decreases in
many cases of order ©(/i"1). Since the moon bootstrap actually estimates
I/m(P), the difference d(Lm(P),Ln(P)) will be significant for m/n small (or
h large) and contributes a bias term which dominates the estimation error
in this case. Thus, as in most nonparametric problems one has to look for
a tradeoff choice of m minimizing the estimation error. On the other hand
for 'parametric' problems where the bootstrap works, like in the estimation
of the distribution of Student's test statistic under the hypothesis, one can
show by higher order approximations that the bias as well as the variance
of Lm(Pn) essentially decrease as m grows up m ~ n, see Hall (1992). One
would like to find a common recipe for choosing m effectively for both non-
parametric as well as parametric situations in order to obtain a uniformly
consistent and effective estimate for the distribution Ln(P).

One way would be to look for a sample size m minimizing some cross-
validation measure by a jackknife estimate related to the risk under the
unknown distribution. This has been suggested by Datta and McCormik
(1995) in a first order regression problem. Unfortunately, this method is
computationally rather involved and the performance of this scheme is dif-
ficult to analyze.

Bickel, Gόtze and van Zwet (personal communication) suggested to base
the choice of m on the discrepancy between Lm(Pn) and Lrnj2{Pn) We
motivate this idea by showing that the (random) distance between Lm(Pn)
and Ln(P) as a function on m is stochastically equivalent to the (random)
distance between Lm(Pn) and Lm/2(Pn) as n -> oo and m = m(n) —> oo.
More precisely, consider for some distance d between distributions (like e.g.
Kolmogorov's distance)

(1.1) Am~d(Lm(Pn),Ln(P)) and Δ m := d(Lm(Pn),Lm/2(Pn)).

In Theorem 2.3 we prove that, under certain conditions, for some model
dependent rate 0 < α < 1 (like = 1/2,1/3,1/4 etc. ) and sequences ra(rc)
such that the limit limn m(n)/nα, say 7 G [0,00] exists, we have

(1-2) | ^ A

where ξo and ξoo axe constants depending on P and, for 0 < 7 < 00, ξΊ

denotes a random variable depending on P. Here, —> denotes as usual con-
vergence in distribution. Typically, we find that EpAm/EpA
where cΊ(P) is a constant depending on 7 and P.
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Based on these observations, we suggest m* = argmin 2<m<n Δ m as a
random choice of m for the ra/rc-bootstrap. We will show that this choice is
as good as choosing the optimal m when knowing the unknown distribution
P as long as m/n —> 0 holds. Simulations show that the method works in
the region m ~ n as well but behavior in this region is difficult to analyze
for general models of distributions.

The reasons for such a choice are illustrated by the following simple
example.

Example 1.1 Consider the statistic Tn = Tn(Xu . . . ,Xn\P) = n(Xn)
2,

where A Ί , . . . , Xn is an i.i.d. sample from a distribution P on the real line
with zero mean and let Xn denote the sample mean. Let Ln(P;r) denote
the d.f. of Tn. The corresponding m/n-bootstrap approximation is the d.f.
Lm{Pn\ r) of the statistic T* = m(X%), where X*,..., X^ is a sample from
the empirical distribution P n , and X™ denotes the corresponding sample
mean. Assume that EXf < oo and that P satisfies Cramer's condition of
smoothness. Consider the uniform errors introduced in (1.1), based on the
Kolmogorov distance d. Let Y denote a standard normal random variable
and assume that the sequence m = m(n) is chosen such that m —> oo and
m/n -» 0. In Section 4 we prove the following. If m/nιl2 -» oo, then

(1.3) ( n / m ) ( Δ m , Δ m ) A (cλY
2\cλY

2!/2),

where c\ denotes an absolute constant. If m/n 1 / 2 -> 0, then

(1.4) m Δ m A co(P), and m Δ m A c o (P),

where co(P) is a constant depending on P. If m/n1/2 -> c = const, φ 0, then

(1.5) n^2(Am,Άm) A (fo(Y)Ji(Y)),
71—>OO

where /o, /i are certain measurable functions of Y (see Section 4 for details).

Thus, if l imm/n 1/ 2 = 7 G [0,oo] exists, then (1.3)-(1.5) imply (1.2). More-

over, ξo = 1 and £oo = 1/2. Under the same conditions we obtain as well

EpAm/EpAm —
71—>

Note that the value of m obtained in this way by minimizing Δ m strongly

depends on the particular sample. For instance if by chance in this example

~Xn approximates the true value EX\ — 0 very accurately, that is nιl2Xn =

o(l) (which happens rarely), the approximation of Ln(P) by the random

bootstrap distribution Ln(Pn) might be accidentally precise as well (compare

(3.1) and (3.2)). In this case the bias as well as the variance of the estimate

Lm(Pn) will decrease with 7τι which leads to a choice of a large sample size
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m ~ n. Such a case cannot be detected by an average criterion for the
choice of m like say Ep d ίL m (P n ), Ln(P)J, which would lead to a much less
adaptive and accurate choice of m for such an exceptional sample.

Similar arguments apply to the moon bootstrap without replacements.
We will show under certain conditions (see Theorems 2.1, 2.3 and Remark
2.1) that, for L2-distances of distribution functions say d, the random dis-
tance Δ£j = d(L^(Pn),Ln(P)) is stochastically equivalent to the distance
Δ ^ = d(L^(Pn), L^2(Pn)). More precisely, for some model dependent rate
0 < a < 1 and sequences m(n) such that 7 = limn m(n)/na € [0,oo] exists
we have

Δ* T)
771 ί y .

where 770 is a constant depending on P and, for 0 < 7 < 00, ηΊ is a random
variable depending on P. Typically wejξet EpA^/EpA^ -» c7 (see Remark
21) Thi i * Δ

j
2.1). This motivates m* = argminΔ^ as a random choice of m for the
(m) "bootstrap.

Figure 1. Smoothed graphs of the functions m -» Δ m (dot line) and m -¥ Δ m (solid line)
from Example 1.1, where P is a centered χl distribution. Sample size n = 400.

In Figure 1 we consider Example 1.1. It shows (smoothed) graphs of
the functions m -» Δ m (dot line) and m -> Δ m (solid line), where P is a
centered χ1 distribution. The simulations were done for a sample size of
n = 400.

In Fig. 2 the true and estimated Kolmogorov distances m -> Δ ^ and
m -> ΔJ^ are smoothed and plotted based on an individual sample of size
n = 400 and m < n/2 when sampling without replacement. The first plot
shows the behavior of sampling without replacement in the setup of Fig.
1 with P = χι. The second and third plot represents a parametric case:
Student's t-test with P = 7V(0,1) and sampling with/without replacement.
The third one represents a nonparametric case: distances for the normalized
distribution of the largest order statistic for P = Uniform(0,1) and sampling
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Figure 2. True and estimated Kolmogorov distances m —> Δ ^ and m -> Δ™ smoothed
and plotted based on an individual sample of size n = 400 and m < n/2 when sampling
without replacement.

without replacement, see also Example 2.2 below.

The paper is organized as follows. In Section 2 we investigate the moon
bootstrap without replacements. To this aim Hoeffding expansions for U-
statistics are used for m/n = o(l) in order to evaluate the error of the
random approximations. In Section 3 we investigate as well the moon boot-
strap with replacements representing our statistics in terms of empirical
processes. Here, following Beran (1997), we require that the sequence of
statistics should be locally asymptotically weakly convergent. Furthermore,
we shall use Edgeworth expansions to prove the stochastic equivalence of the
random distances in the examples studied in this paper. Finally, Section 3
contains the proofs of our results.

Throughout the paper we write m G n(α^) to indicate that m = m(n)
is a sequence such that m -> oo, m/n ->• 0 and limn m/nα = 7 exists
allowing 7 £ [0,00].

2 Moon bootstrap without replacements

In this section we let Xi, , Xn denote a sample of i.i.d. random elements
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from an unknown distribution P on a measurable space (S,A), and let Tn =

Γn(-XΊ,... ,Xn; P) denote a sequence of statistics with distribution Ln{P).

We assume that Tn converges in distribution to a random variable T ^ .

Let θn(P;α) = Eh(Tn;α), where h : R x R -> R is a real measurable

bounded function, denote a family of parameters indexed by α G JR. The

moon bootstrap without replacements estimates θn(P\α) by

θmn(Pn;α) = L*m(Pn)h(;α) = J L ]Γ h{Tm(Xil,...,Xin;Pn);α).

As distance d between Ln(P) and L^(Pn) we choose the Z^-distance between

θn{P;α) and β m n ( P n ; α ) writing

Δ^ = (jR{θmn{Pn α)-θn{P ,α))\{dα))l'\
, r ^ 9 v i / 2

A*rn=(JR {Omn(Pn\α) - θMn(Pn] α)) μ(rfα)) , M = m/2,

where μ is a probability measure. For indicator functions h(x; ά) = l{x < α},

ΔJ^ reduces to the integrated square error between the distribution func-

tion L n ( P ; α) and its Q ) -bootstrap estimator L ^ ( P n ; α). For special discrete

measures μ, ΔJ^ may then be written as

^ shall give conditions which ensure the stochastic equivalence of ΔJ^

and A^. First, we impose some restrictions on the sequence of statistics Tn.

Assumption (I). There exist measurable functions «, ξ m : S x R —> R such

that

E (Λ(Tm; α)|Xχ) = ^ ( Γ ^ ; α) + πΓλl2κ{X^ α) + ξ m ( X i ; α),

where / β E κ 2(Xi; α)μ(dα) < oc and / β E ^(-XΊ; α)μ(dα) = o(m~ι).

Assumption (J). $R{θmn{Pn\ά) - θmn{P;α))2μ{dα) = oP(m/n + 1/m),

where

(Λ Σ h(Tm(Xh,...,Xim;P);α).
KmJ l<*i<...<im<n

To establish stochastic equivalence of ΔJ^ and ΔJ^ we shall jxmsider

stochastic processes^ζ^n{α) = θmn{Pn; α) - θn(P; α), α e R, and Cmn(α) =

θmn{Pn\o) — θMn{Pn\o), a E R, M — m/2, as random elements in the

space 1/2 (i?, μ). Let ζp denote a mean zero Gaussian process with covariance

given by

EζP(α)ζp(b) = cov(κ(Xi;α),/ς(Xi;6)), α,6 G Λ
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Theorem 2.1 Suppose that assumptions (I) and (J) are satisfied and
αp( ) = E κ(-XΊ ) / 0. Choose a sequence m G n(l/2,7). Depending on
7 = 00 or 0 < 7 < oo choose as norming sequence τnτn = (n/ra)1/2 or ra1/2

respectively. Then

(2 i)
n—ϊoc

in the space L2(i2, μ) x £2(fl, μ), where ("writing c := 1-2"1/2, d := 1 —21/2

>)
(ξoo, tyx>) = (1, c)ζp and (ξ7, r/7) = (7<> + α P , C7<> + dα P ) for 0 < 7 < 00.

Noting that Δ ^ = | |C£ n | | 2 and A^ = HCUh, where || - | |2 denotes the
norm in L2(μ) we have by Theorem 2.1 the following corollary.

Corollary 2.2 Suppose that assumptions (I) and (J) are satisfied and the
sequences m = m(n) and τnπι axe chosen as in Theorem 2.1. Then

(2.2) S A

where r ^ = 1 — 2"1/2, TO = 21/2 — 1 and τ 7 is a random variable for 0 < 7 <
00.

Remark 2.1 Prom the proof of Theorem 2.1 it is clear, that if assumption
(J) is substituted by

L E(θmn{Pn', α) - θmn{P; α))2μ(dα) = o{m/n + 1/m),
R

then, in addition to (2.2), we also have EpA^/EpA^ —> c 7(P). A similar
remark applies to other results in this section. Furthermore, similar results
hold with different c = c(λ) when comparing sample sizes m and λm, 0 <
λ < 1 in Δ^.

In the following we shall discuss the nature of the assumptions of Theo-
rem 2.1. Assumption (J) allows to reduce the analysis of the (^)-bootstrap
approximation 0m7l(^n) to that of [/-statistics emn(P) with increasing de-
gree m = m(n) and values in the space L2(/x). This assumption is satisfied
for a large class of statistics Tn. For example, we consider the estimation
of a parameter Θ(P) of an unknown distribution P by means of a plug-in
estimator θ(Pn). Introduce the statistic Tn = rn(θ(Pn) — 0(P)), where the
normalization τn is chosen such that Tn converges in distribution. If h is a
Lipschitz function, e.g., /(Λ(t; α) - Λ(s; α))2dμ <\t- s|2, we obtain

{n{Pn',α) - θmn(P;α))2μ(dα) < τm\θ(Pn) - Θ(P)\
R
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and assumption (J) is satisfied provided that τm/τn = o^m/

In case h(x; ά) = I{x < α} is an indicator function, we obtain on the set

τm\θ{Pn) - Θ{P)\ < ε, that \θmn{Pn) - θmn(P)\ < Um,nhε, where Um,nhε is

a [/-statistic with kernel /i ε (Xi,.. ., X m ) = I{ α ~ ε < Tm(X\,..., X m ; P) <

α + ε}. Hence, E\θmn{Pn) — θmn(P)\ does not exceed the quantity

inf {P{α -ε<Tm<α + ε) + P{τm\θ(Pn) - Θ{P)\ > ε))

which, under the convergence assumption, is typically, of the required order.
Edgeworth expansions are well suited to estimating the accuracy of a

bootstrap approximation (see, e.g., the monograph by Hall (1992)). Assump-
tion (ί) requires certain expansions for the distribution Lm(P) as well as the
conditional distribution Lm{P)\X\. Moreover, by conditioning the statistic
T m on a random sample, we implicitly assume some kind of stochastic expan-
sion for the function Tm in the sense that assumption (I) may be checked by
studying the function y -> g(y) = Eh(Tm(y,X2,... , X m ; P ) ; α ) . Consider,
for example, an i.i.d. sample XL, . . . ,Xn from a distribution P on Rd. Let
EX\ = 0. For a given symmetric d x d matrix Q, consider the statistic Tn =
nQ(Xn), where Q denotes a quadratic form with Q(x) = (x, Qx) for x G Rd,
where ( , ) denotes the Euclidean scalar product. Set Xn\\ = n~lY%=2Xk
and Tn | i = nQ(Xn\ι). If the function h has two bounded derivatives with
respect to the first argument, we have

E (Λ(Γro; α)\Xλ) = Eh{Tm^ α) + 2Eh\Tm^ α)(X

where ER^Xi α) < cm~2 provided £7|Xi|4 < oo. Since m 1 / 2 X m | 1 con-

verges in distribution to a mean zero Gaussian random vector Yp with

cov Yp = cov XL, one needs expansions for the quantities £ ? ^(m 1 / 2 X m μ) and

Eφ{mιt2Xm\i), where φ(x) = h({x,Qx);α), φ(x) = 2h'((x,Qx);α){XuQx).
If the function h is sufficiently smooth, the required expansions axe well

known (see, e.g., Gδtze (1985)).

If h(x] ά) = l{x < α}, then, evidently,

P(Tm < α|Xi) = P(Tm{1 + (XU Q X m | 1 ) < α - m ^ Q ^ ) ) ,

and the problem reduces to proving expansions for the distribution of the

quadratic polynomial Γm | i + (x, QX m | i ) Such expansions have been proved

up to order O(m~ι) in Bentkus and Gδtze (1999).

Prom the proof of Theorem 2.1 it is clear that one needs to control

the variance of E(h(Tm\α)\X\) and the correlation between Eh(Tm',α) and

Eh(Tm/2;b) for α,6 G R. It is also clear that if αp — 0, one needs to as-

sume that a second order approximation for Eh(Tm\α) holds. Consider, for

example,
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Assumption (I\). There exist two functions φuφ2 : R x R ->• -R? possibly
dependent on P, such that for all α,b E R

( ^ ( 6 ) (l)) and

Assumption (I2). EPh(Tm;α) = Eh^T^α) + m~ιβp{α) + ίp,m(α), where

/?P G 1̂ 2 (A*) and 5p> m is ^ ( m " 1 ) in L 2 ( μ ) .

Assumption (J'J. fR{θmn{Pn; α) - θmn{P; α))2μ(dα) = oP(m/n + m~ 2 ).

Let Ci?C2 denote mean zero Gaussian processes with covariances equal
to φι and correlation Eζι(α)ζ2(b) = 2~l/2ip2(a,b), a,b £ R.

Theorem 2.3 Suppose that the assumptions (/i),(/2), and {J1) axe sat-
isfied and βp Φ 0. Choose sequence m G n(l/3,7). Depending on 7 = 00
and 0 < 7 < 00 we may choose norming sequences τmn = (n/m)1/2 and m
respectively such that (2.1) holds where (writing CQ = 2~ιί2)

(foojffco) = (Ci> Ci -C0C2),

(ί7» ^7) = (7Ci + /?P? 7(Ci - co C2) - /?P) for 0 < 7 < 00.

Moreover, (2.2) holds where TQ = 1 aiid r 7 is a random variable when 0 <

7 < 1

Example 2.2 In this example, we assume that Xι,...,Xn is a random
sample from the uniform distribution P on the interval (0, θ). The maximum
likelihood estimator of θ is the extreme order statistic θ = maxi<fc<n Xk- Set

τ T (x x Pλ

Let Ln(P\α) denote the distribution function of this statistic. Its (^)-

bootstrap approximation L^(Pn;α) is defined by

L m(Pn]α)= (n)
\m/

where

S e t /•

El = JR (L*m(Pn; α) - L*m/2(Pn; α))2μ(dα),
E2

m= ί (L*m(Pn;α)-Ln(P;α))2μ(dα).
JRJR

As a consequence of Theorem 2.3 we get in this example:
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Corollary 2.4 Assume that m E n(l/3,7). We have with the notations

and choices of Theorem 2.3

Em v

En

Proof We shall verify the assumptions of Theorem 2.3, for h(x; ά) = ϊ{x <

α}. Obviously we have, for 0 < α < n,

(2.3)
2n n 2 ( l — α/n)2'

where \θ\ < 1. Since Tn converges in distribution to an exponential random
variable T^, the assumption (I'2) with βp{α) = —e~~αα2/2 follows by (2.3).
By straightforward calculations we see that

E\L*m(Pn,α)-L*m(P,α)\<-.
Tί

This, clearly, yields assumption (J ;). To check assumption (I\) note that for

Zm(α) := P(Tm < α\Xι) - P(Tm < o) =

= (1 - α/m)m-1 [(1 - α/m) - 1{XX < 0(1 - α/m)}],

using (2.3) we have EZm(α)Zm(b) = exp{—(α + 6)}min{α; b}m~ι + o{m~ι)
and EZm(α)Zm/2(b) = exp{—(α + 6)}min{α;2b}m~1 + o(m~ι). Hence as-
sumption (Ji) follows, which completes the proof of the corollary. •

3 Moon bootstrap with replacements

In the cases, where the classical nonparametric bootstrap fails for the dis-
tribution Ln(P), it often turns out that the limit distribution of Ln(Pn) is
random. In order to describe it, we introduce, following Beran (1997), a local
weak convergence property of the statistic which we want to approximate in
distribution. In order to introduce this notion, we need some preparation.

Fix a set T C L<ι(β,P). Let ί^F) denote the Banach space of real-
valued bounded functions on T equipped with the supremum norm | | z | | ^ =

|^(/) | . Assume that the envelope function

F(s) = sup{|/(β)| : / ε T} < oo for all a E 5,

and the quantities

sup{|Q/| : / G T] < oo for all Q E Vo,

where Qf = / fdQ are bounded. Then the mappings δs : T —> R given by
δsf = f(s) and Q : T -> R given by Qf = J fdQ, where Q E Vo, are in
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) In order to avoid measurability problems connected with the non-
separability of too^T), we assume throughout, that T is either a countable
or an image admissible Suslin set. For the relevant definitions concerning
these matters, we refer to Dudley (1984).

Let the empirical process up)Tl = (vp,n(f),f G T) be defined by up)Tl =
nιl2(Pn — P) , n G N. Note that, for each Q G Vo, Z/Q,Π is a random element
with values in ί

Definition 3.1 The statistic Tn = Tn(Xι,...,Xn;P) G R is called

locally T-weakly convergent at P eVo, if there exists a family of probability

measures {L(P, z), z G ̂ ooC?7)} on R such that

Ln{Qn) —> L(P,z) weakly
n—>oo

for every z G iooi.?) &nd every sequence {Qn} C VQ such that

\\nl'\Qn-P)-z\W ^ 0.

Remark 3.1 If the model is parametric, e.g., P = PQ, where θ = (

. . . , θd(P)) then the notion of locally .F-weakly convergent statistics reduces

to the notion of a 'LAWC statistic introduced by Beran (1997) when taking

Remark 3.2 If T is P-Donsker and if the statistic Tn is locally .T7-weakly
convergent at P, then there exists a random element Z with values in too{F)
such that the random probability measure Ln(Pn), converges in distribution
to a random probability measure L(P,Z). Indeed, since T is P-Donsker,
the empirical processes vp^n converge in law in ̂ ooC?7) to a Gaussian process
Gp — {Gp(/),/ G F] with zero mean and covariance EGp(f)Gp(g) =
Pfg-PfPg, /, g G T. By a result of Dudley (1985) there exist a probability
space (Ω,Σ,P) and perfect functions gn : (Ω, Σ,P) -> (Ω,Σ,P) such that
p o gn = P and

Hn^ίPnO^-PJ-Gpoflϋl^ ^A 0.

Hence, there is a set Ωo C Ω such that P(Ωo) = 1 and

\\n1'2(Pnogn{ω)-P)-Gpog0(ω)\\r ^ 0

for each ω G Ωo By the definition of .T7-weakly convergent statistics we have

LniPn ° 9n(v)) —> L(P, GP o gQ) weakly.
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Example 3.3 The fact that a characteristic function is real if and only
if the corresponding distribution function is symmetric at 0 suggests the
statistic

+oo / \ 2
^ 2

/
+oo / \ 2

^2Im(cQ^(t)) + α{t)J g(t)dt,
for testing symmetry. Here

/•-f

,n(t) = /
J — O

/•-f-oo

denotes the empirical characteristic function corresponding to the distribu-
tion Q, g is an integrable weight function, and α(t) satisfies / ^ α2(t)g(t)dt <
oo. This statistic Tn is locally .T7-weakly convergent at any symmetric distri-
bution P, when the class T is chosen as T = {x —> cosfcr, t G R}.

A parametric version of the following proposition is given in Beran
(1997).

Proposition 2.2 Assume that T is P-Donsker and that the statistic Tn

is locally f-weakly convergent at P. Let {m(n), n > 1} denote any sequence
of positive integers such that m(n) —> oo and m{n)/n —» 0 as n —> oo. Then
Lm(n)(Pn) is d-consistent in probability, where d is any metric metrizing the
weak convergence.

Proof We have

\\mι/2(Pn°gn-P)-Q\\r —t 0 a.s.
n—> o o

By Definition 3.1, Lm(Pn ogn(ω)) converges weakly to ί/(P,0) for almost all
ω eΩ. This completes the proof. •

Next we investigate the stochastic equivalence of the random distances
d(Lm(Pn), Ln(P)) and rf(Lm(Pn), Lm/2(Pn))> where d is either the Kolmogo-
rov or the bounded Lipschitz distance. A unified way to consider both
distances is to consider the more general class of uniform distances over a
class of measurable bounded functions Ή, say. Define for distributions F, Q,
the uniform distance

dn(F,Q) = sup \Fh-Qh\.
hen

Indeed, if Ή. is chosen as the class of indicator functions I{(—oo, α]}, α E R,
dκ(F,Q) will coincide with the Kolmogorov distance. If % is the class of
measurable functions h : R —• R such that supα|Λ(α)| + supα_ 6̂ \h(α) —
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h(b)\/\α—b\ < 1, then du{F, Q) corresponds to the bounded Lipschitz metric.
Note that distances du , where % consists of higher order smooth functions,
have been used as well for investigating the accuracy of the bootstrap. Write

Anm = dn(Lm(Pn),Ln(P)), Anm = dn(Lm(Pn),Lm/2(Pn)).

Theorem 2.3 Suppose that the sequence of statistics satisfies assumptions
(A), (£?), (C), and (£>), which are stated and discussed below. Assume
furthermore that T is a P-Donsker class, and that \\upin\\jr is uniformly
integrable. For sequences m G n(l/2,7) we may choose norming sequences
τrnn = (n/m)1/2 and ra1/2 corresponding to 7 = 00 and 0 < 7 < 00 such
that for random variables £,£1,^2 and a constant c\ > 0 which axe defined
in the proof in Section 4

^ ( £ ^ )

where (writing c := 1-2" 1/ 2, d = 2ι'2-l, ) (ξoc,r?oo) = (l,c)ξ, (&,%) =
(1, d) cι and (f7, ηΊ) = (ξu ξ2) for 0 < 7 < 00.

Thus Theorem 3.3 yields the stochastic equivalence of the random dis-

tances A-um and Δ ^ m , as n -» 00.

In order to formulate the assumptions (A) - (D), fix a distance d on the

set Vo and, for given constants Co > 0 and c\ > 0, consider the neighborhood

V(P) C Vo of P defined by

V(P) = {Q e Vo : d(Q,P) < cu \\nι'2{Q - P)\\ < CQ}.

The first assumption concerns the local ^*-weak convergence property of
the sequence of statistics. Roughly speaking, we assume that parameterized
expansions for Ln(Q)h hold uniformly in the neighborhood V(P). A parame-
terization will be given by the quantity nιl2(Q — P) considered as an element
in ίooiJ7). In many cases, T will consist of a finite number of functions only.

Assumption (A). For each Q G V(P), there exist a set {L(Q, z), z G ί

of probability distributions on R and a set {ί(Q, z),z G 4o (F)} of real valued
functions on Ή such that for every h G %

Ln{Q)h = L{Q,nιl2(Q - P))h + n-l'2i{Q,nll2{Q - P))h

+ Rn{Q,nιl2{Q-P),h),

where

sup sup RniQ,^2^ - P),h) = oin-1/2).
Qev(P) hen

Furthermore, we assume first order smoothness for L(Q, z) and a Lipschitz
condition for ^(Q, z) as a function of z G ̂ 0
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Assumption (B). For each h E Ή and Q E V(P) we have

L(Q, z)h = L(Q, 0)Λ + Li(Q, Λ)2r + Λ(Q, h, z\

where L\(Q,h) is a bounded linear functional on ί^F) and

sup sup\R(Q,h,z)\<c2(P)\\z\\2

T.
Qev(P) hen

Moreover, sup^€^ \Lι(P,h)\ < oo.

Assumption (C). There exists a constant κ(P) such that

sup 8vp\i(Q,0)h-£(Q,z)h\ < κ{P)\\z\\?
QeV{P)h£H

and sup Λ € W |ί(P,0)/ι| < oo.

Finally, we need the continuity of the limiting distribution L(P) =
L(P, 0) as well as the continuity of the function £(P) = t(P, 0) at P.

Assumption (D). dw(L(Pn,0),L(P)) = Op^" 1 / 2 ) and

sup \l(Pn,Q)h - £{P)h\ = Op{n-1'2).
hen

Remark 2.4 If in assumption (B) the first order approximation vanishes,
i.e. if Li(Q, h) = 0, we need again a second order expansion term for L(Q, z)
defined on z E ̂ oo(^) to discriminate between the choice of m verses ra/2
although now at a lower level. Hence, assumption (B) should be replaced
by the following:

Assumption (Bf). For each h E Ή. and Q E V(P) we have

L(Q, z)h = L(Q, 0)h + L2(Q, h)z2 + R{Q, Λ, z),

where L2(Q,Λ) is a bounded bilinear functional on ̂ (J7) and

sup

QeV(P

Moreover, s u p ^ ^ |^2(P, Λ)| < oo.
Example 2.5 Here we continue example 3.3. Consider the uniform dis-
tances

Δ m = sup|Lm(Pn;r) - L n(P;r) | ,

(2.4) . r^° .
Δ m = sup|Lm(Pn;r) - Lm/2(Pn;r)\

r>0
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corresponding to the distribution function of the statistic Tn defined in Ex-

ample 3.3. There we assume α φ 0. Write Tn(Q) = φα(Sn + zn), where

Sn(t) =n-1/2Σk=ir)k(t), ηk(t) = [cos Zkt - E cos Zkt], φα(x) = Πo(a(t) +
α(t))2g(t)dt and, finally, zn(t) = nιl2Ecos Z\t. We consider Sn as a sum of

i.i.d. random elements in the Hubert space L2(R,g{t)dt). We obtain, by the

general result given in Theorem 2.4 below, that the random distances Δ m

and Δ m are stochastically equivalent as n —> oo. Namely, if m G n(l/2,7),

then Δ m / Δ m -^» £7, where £<» = 21/2 - 1 , £0 = 1-2"1/2, and £7 is a random

variable for 0 < 7 < 00. Moreover, we get EpAm/EpAm —> c τ(P), where

cΊ (P) is a constant depending on 7 and P.

Example 2.6 Let H be a separable Hubert space with the norm || || and
inner product ( , •). Consider random elements ΛΊ,. . . , Xn,.. in H that are
independent and identically distributed with distribution P. Assume that
EX\ = 0 and P is taken from a class Po, with the following properties: i) Q
is non symmetric around zero, ii) JH \\x\\4:Q(dx) < 00, and iii) the covariance
operator VQ of Q has at least 13 (counted with multiplicities) eigenvalues
exceeding a given β > 0.

The eigenvalues of a positive operator V : H —» H will be denoted by

λi(V) > λ2(Vr) > . It is well known (see, e.g., Gohberg and Krein (1969))

that |λj(Vί) — λj(T^)| < ||Vi — V |̂| for linear completely continuous positive

operators Vi, V2 on H. Let || H2 denote the Hilbert-Schmidt operator norm.

One easily checks that

en
1 f \\x\\4P(dx).

It follows that, with probability tending to one, at least d > 13 eigenvalues

of the covariance operator Vp will exceed a number βo > 0. Hence, without

loss of generality we can assume that VQ contains the empirical distribution

PnofPeVo
For Q € VQ and αE H, α φ 0, define

n

Tn,α{Zu •• ,Zn;Q) = n\\n-1 Σ,Zk + α | | 2 .
fc=l

Let LnjO(Q, r) denote the distribution function of this statistic. Furthermore,

let T denote the class of functions on H given by x\(z) = (x, z) together with

2̂ 2(2) = (s, z)2 indexed by x £ H with ||x| | = 1. Note that the evaluation at

a point y E H defines an embedding H C ^ocC?7), via y{x\) := x\{y) — (z,y)

and foryeH and 2/(2:2) := 2:2(1/) = (x,y)2

It is easy to verify that the statistic Tn,α is locally ^-weakly convergent at
any P E VQ which has zero mean. We aim to prove the stochastic equivalence
as n -¥ 00 of the uniform errors Δ m and Δ m defined by (3.1).
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Denote by μQ the mean zero Gaussian measure on H with covariance
operator VQ, and let D^(x)μQ be the jth directional derivative of μ in the
direction of x. Set Vr(z) = {x E H : \\x + z\\2 < r}. For P,QG VQ, consider
the distance

d(Q, P) = \JH \\x\HQ(x) - P(x)]\ + \\VQ - VP\\.

Define V(P) = {Q E V : d(P,Q) < cu nιl2\\Q - P ^ < c2}. An
inspection of the proof of Theorem 2.1 in Bentkus (1984) gives the following
uniform expansions (compare with assumption (A)). For any Q G V(P) we
have

Ln(Q,r) = μQ(VΓ(α + zn))+ln-1/2ED3(Z1)μQ(Vr(α + zn))
0

(2.5)

where zn = nll2EZ\ and, for any ε > 0 and Co > 0, there exists a constant
c > 0 such that

SUp SUp SUp Rn(Q, 2, 0 = C7l~1+ε.
<3eV(P)||α||<c0r>0

Furthermore, note that, for z E if, we have

(2.6) μg(Vr(α + z)) = μQ(VΓ(α)) + £>(2ί)μg(Vr(α)) + Λ(Q, z; r),

where
sup sup sup|,R(Q,z;r)| < c2(P)|k||3τ.

QeV(P)\\α\\<cor>0

Indeed, by standard arguments (inversion formula, Lebesgue lemma) it easily
follows that

(2.7) Dt{z)μQ{Vτ{α)) = (2π)"1 £ j ~ [(it)~ιe~itrqt(α + τz)\ \τ=Qdt,

where qt(α) is the characteristic function corresponding to μQ(Vr(α)). By
elementary calculations one proves that

(2.8) \D2(z)μQ(Vr(α))\ < C^Q) • X,(Q))-1/2 max{l, | |α||2}| |z| |2.

Hence, (2.6) follows by Taylor's formula and (2.8). Note, that (2.6) implies
assumption (B). By (2.7) (which is assumption (C)) we get

\ED\Z{)μQ{Vr{α + z)) - ED\Zx)μQ{α)\
( ' ' < C(λx(Q) ••.λ 9 (Q))- 1 /2 m a x { i ) | | α | | 4 } | N | £ J | | Z | | 3 .

Finally, collecting the bounds (3.2), (3.3), and (3.6) we have proved the
following result.
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Theorem 2.4 Suppose that Q E V(P) and J xQ(dx) φ 0. Then, for any
constants Co > 0 and ε > 0, there exists a constant c > 0 such that

Ln(Q,r) = μQ(Vr(α)) + D(zn)μQ(Vr(α))
1 3

where

sup sup sup\Rm,n(r)\ < c ( n ~ 1 + e + | |2 n | | 3 + n-1/2||zn||).
' " |H|<cor>O

Arguing as in Gδtze and Zitikis (1995) one can prove that

sup sup I/is (VΓ(α)) - μp{Vτ{α))\ =
||α||<cor>0 ^n

and

sup s u p K 1 Y^D\Xk)μp (Vr(α)) - EPD
3(X^P(Vr(a))\ =

IMI<<* Γ>o fc=i

Combining this with Theorem 2.4, we get

Corollary 2.5 If the sequence m € n(l/2,j), then

where ξo = 1? Coo = 1 — 2"1/2, and ξ7 is a random variable for 0 < 7 < 00.

Remark 2.7 We excluded the case α = 0 since here Z ) ( ^ ) ^ Q ( K ( 0 ) ) = 0 and
D3(z)μQ(Vr(0)) = 0. Therefore, here one needs to use asymptotic expansions
for Ln(Q\r) up to order o(n~1.) This would require some additional use of
Cramer's condition of smoothness for the measures Q E V(P).

3 Proofs

Proof of Example 1.1 Set ΐ_ = (ί - ~Xnm
ι/2)/σ, t+ = (ί + Xnm

ι/2)/σ,
where, as usual, σ2 denotes the sample variance. We also denote, for s > 0,
κ s = EX*. By Edgeworth expansions we have

P(m(X*m)2 < t2\Xu...,Xn) = Φ(ί_) + Φ(ί+) - 1
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where

and Qi and Q2 denote the plug-in estimates of Q\ and Q2 respectively. Here
Hs denote the standard Hermite polynomials. Straightforward calculations
show that

P(m(X*J2<t2\Xu...,Xn)

( 3 > 1 ) = 2Φ(i/σ) - 1 + ̂ Φ"(t/σ)Yt - - ^

m

where Yn = (nι/2Xn)/σ. Furthermore,

(3.2) P (n(Xn)
2 < t2) = 2Φ(ί/σ) - 1 + -

Set

and ζ m (ί) = ζm(t) - Cm/2(*) If n/m2 -> 0, then (4.1) and (4.2) together
yield

- s u p | C m ( ί ) | = y n

2 s u p | Φ " ( t ) | + o F ( l )
TΠ t>0 ί>0

and

- sup \ζm(t)\ = 2-^ sup |Φ"(ί) | + op(l).
^ t>0 t>0

Combining this with the central limit theorem we get (1.2). The proof of
(1.3) immediately follows by (4.1), (4.2), and the law of large numbers. For
the proof of (1.4), we have, by (4.1), (4.2) combined with the law of large
numbers,

ί>0

= sup |(m/n 1/ 2)Φ"(ί)yn

2 - 2Q[(t)Yn + 2{nιl2/m)Q2(t)\ + oP(l)
t>0

and

| |
t>o

= sup |(m/2n1/2)Φ / /(t)yn

2 - 2(n 1 / 2 /m)Q 2 (t) |
t>o
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It is not difficult to verify that (1.5) is valid with fι(Y) = sup t>0 \ηΦ"(t)Y2-

2Q[(t)Y + 2Ί-
ιQ2(t)\ and f2(Y) = supt>0 \2'^

The proof of Theorem 2.1 is using two results about [/-statistics due to

Vitale (1992) which we state below. For a sequence of i.i.d. random elements

Xι,...,Xn taking values in a measurable space (S,A) and a sequence of

functions (/ιm), where hm : Sm -» R is a real-valued kernel of degree m < n,

define the [/-statistic Un^mhm by

/ \-i

Unrnhm= I I 2,
V ' V l < 2 < <

whereas the conditional kernel hm^ : Sk —> R is defined by

hm(xι,...,xm)P{dxk+ι) 'P(dxm)= /
Jsfs Js

Then the Hoeίfding decomposition of Un,mhm is given by

where

The degree of degeneracy of the [/-statistics Un,mhm is the largest integer r
such that /ιm(fc) = 0 for k = 1,..., r.

Lemma 3.1 Suppose that Uniπιhm is the U-statistic based on the sym-
metric kernel hm satisfying Eh^ < oo. If the degree of degeneracy of Un is
equal to r — 1, then

/m\2 / m \

var(ϋn) < ^ - var(/>m|r) + ^ ( V a r ( / ι m ) - (7) v
\r) \r+V

Lemma 3.2 if [/n?m/ιm is as in Lemma 3.1, the sequence
where k = r , . . . , m is nondecreasing.

Proof of Theorem 2.1 Write

Cn,m(<0 = ^ m W + Km(α) + Λπm(α),

where Unm(α) is the [/-statistic with kernel

Λ m (xi, . . . , x m ; α) = h{Tm(xu . . . , xm; P ) ; α) - 0 m ( P ; α);
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Vnm{α) = θm(P] α) - θn{P; α), Rnm{α) = θmn{Pn; α) - 0 m n ( P ; α), α e R. By

assumption (J), ||i2nm||2 = oP({m/n)1/2 + πΓιl2) whereas assumption (I)

yields

Km(α) = -7=-Bκ(-XΊ; α) + vnm(α), α e R,
/m

where ||vnm||2 = o(m~ιl2). Hoeffding's decomposition yields

where

gm{x\α) = £7(Λ(Tm;α)|Xi = x) - 0m(

and, in view of Lemma 4.1 and Lemma 4.2, we obtain

Er2

nm(α) < ^EihiTm α) - θm(P;α))2.
Tli

This gives | | r n m | | 2 = op^m/n)1/2 +m~1/2). Finally, assumption (J) leads to

(3.3)

for every α £ R, where | |κ m , n | |2 = op^m/n)1/2 + 1/ra1/2). Now the result
easily follows from the representation (3.3) and the central limit theorem in
Hubert spaces. •

Proof of Theorem 2.3 Under the assumption (J1) the L2-weak limiting
behavior of the process r m n ζ ^ coincides with that of the process τ m n £ 7 n m ,
where Umn denotes the L2-valued [/-statistic, Umn(α) = θmn(P\ α) — θn(P\ α)
(where α E R). Hoeffding's decomposition, Lemma 4.1, Lemma 4.2 and
assumption (J2) reduce the proof to the weak convergence of the L2-valued
random elements

1
Smn{α) = —^gm(Xk;α) + —βp{α), α e R.

n ^ m
m

This can be easily shown using the results of Cremers and Kadelka (1986)
on weak convergence in Lp spaces. •

Proof of Theorem 2.3 Introduce τ m > n = (m/n)1/2 + m~ιl2 and fixing
constants CQ > 0,c\ > 0, define the set Ωo = {ll^nll j 7 < coίn/m)1/2} Π
{d(Pn,P) < ci}. On this set Ωo, we have by assumption (A)

H{h) := Lm(Pn)h - Ln(P)h = L(Pn,m^2(Pn - P))h -

n - P))h - ^
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where s u p Λ e 7 ί \Rm,n(h)\ = o P ( m ^

Write αn(h) = Lι{Pn,h)(vp,n), bn{h) = £(Pn,0)h. Using assumptions

(5) and (C) we get

H(h) = {m/n)ιl2αn{h) +πC1l*bn{h) +Tmn(h),

where sup^ e ^ |Γm n(Λ)| = op(τmn). In view of assumption (2?), we conclude

(3.4) H(h) = (m/n)ι/2αn(h) + m~ιl2b{h) + Tmn(h),

where

αn{h) = Xi(P,Λ)(i/p>n), b(h) = £(P,0)h.

Now (3.4) yields
(3.5)

H*(h) := Lm(Pn)h- Lm/2(Pn)h

_ 1)m-Φb{h)

where sup / ι G^ |T^ n (/ι) | = o p ( r m n ) . Since J 7 is P-Donsker and ||^p,n||.F is
uniformly integrable, we obtain

(3.6) sup\αn(h)\ A sup |Li(P,Λ)G P | .
hen n^oc hen

Using (3.4), (3.5), and (3.6) it is easy to complete the proof of the theorem.
Moreover, we observe that ξ = sup / ι 6 ? ΐ \Lι(P, h)Gp\, c\ — sup / ι G^ |
whereas

ξι = sup I7L1 (P, Λ)Gp + b(h) \ and

ξ2 = sup | 7 ( 1 - 2" 1 / 2 )L 1 (P,/ i )Gp + (1 - y/2)b(h)\.
hen

This concludes the proof •
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