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ABSTRACT. In this paper we explore the relationship between multivariate data
analysis and techniques for graph drawing or graph layout. Although both classes
of techniques were created for quite different purposes, we find many common
principles and implementations. We start with a discussion of the data analy-
sis techniques, in particular multiple correspondence analysis, multidimensional
scaling, parallel coordinate plotting, and seriation. We then discuss parallels in
the graph layout literature.

1. DATA AND GRAPHS

The amount of data and information collected and retained by organizations and
businesses is constantly increasing, due to advances in data collection, comput-
erization of transactions and breakthroughs in storage technology. Typically, the
applications involve large-scale information banks, such as data warehouses rang-
ing in size into terabytes, that contain interrelated data from a number of sources
(e.g. customer and product databases). In order to extract useful information from
such large datasets, it is necessary to be able to identify patterns, trends and relation-
ships in the data and visualize their global structure to facilitate decision making.
Graph theoretical concepts are capable of capturing complicated structures and re-
lationships in both numerical and categorical data. In this paper we explore the
relationship between multivariate data analysis and techniques for graph drawing
or graph layout, and examine how coupling ideas from these two fields can lead to
new and improved methodology and tools for mining large databases and presen-
tation of large datasets.

1.1. Multivariables and Coding. The data structure we are interested in consists
of n observations on m categorical variables, where variable j has kj categories
(possible values). Using categorical variables causes no real loss of generality: so-
called continuous variables are merely categorical variables with a large number of
numerical categories. We use K for the total number of categories over all variables
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In somewhat more abstract terminology, which generalizes to (theoretical) situ-
ations in which we have an infinite number of objects or variables, a variable is a
function φj defined on the set of objects I and with range Vj (φj : I »-» Vj).
A continuous variable, for example, has domain I = {1,2,...,n} and range
Vj = R A multivariable Φ = {φj}jej is a s e t of variables with the same do-
main I but with different ranges Vj.

In the finite case the variables are coded as m indicator matrices or dummies
Gj, where Gj is a binary n x kj matrix with exactly one non-zero element in
each row i (indicating in which category of variable j object i falls). The n x K
matrix G = {G\\... \Gm)9 which codes the multivariable, is called the indicator
supermatrix. Obviously the representation of the data by the indicator supermatrix
implies no loss of information, since all the original classifications are still present.

It must be emphasized that the coding is unique, given the definition of the multi-
variable. But in defining the multivariable, many choices must be made. Suppose,
for instance, that the ranges Vj are the same for all j , with k elements. Then we can
define a single variable φ on the new domain X <g> J with range V. This amounts
to stacking the indicator matrices on top of each other. Or, even if the ranges are all
different, we can define a single variable φ with domain X and range Vi ®. . . ® Vm,
which amounts to coding the m variables interactively, so that each profile (cell)
corresponds to a category of the interactive variable.

In the sequel we assume all these coding decisions have been made, and conse-
quently we deal with a single indicator supermatrix G.

1.2. Graphs. One can represent all information in the data by a single bipartite
graph1 with n + K vertices and nm edges. We call such an object the multivariable
graph. Each edge connects an object and a category. Thus, all the n vertices
associated with the objects have degree m, while the K vertices associated with
the categories have varying degrees, equal to the number of objects in the category.
In Figure 1 the multivariable graph of a toy example corresponding to a 4 x 3
contingency table with 7 objects is shown. The indicator supermatrix G is related

Objects

Categories of

first variable

Categories of

second variable

FIGURE 1. The multivariable graph of a toy example

1 A bipartite graph is a 2-layered graph, where edges only go from one layer to the other layer.
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in a very simple way to the adjacency matrix A of the graph. In fact,

(1.1) Λ=[£ o

1.3. Example. The same representation of a multivariate data structure is also
used informal concept analysis (FCA) [22]. This is a data analysis method which
is quite popular in Germany. Multivariables are called a many-valued contexts. In
this paper we shall use an example taken from the formal concept analysis litera-
ture [50]. Table 1 describes 21 sleeping bags in terms of five variables2.

Sleeping Bag |

One Kilo Bag

Sund

Kompakt Basic

Finmark Tour

Interlight Lyx

Kompakt

Touch the Cloud

Cat's Meow

Igloo Super

Donna

Tyin
Travellers Dream

Yeti Light

Climber

Viking

Eiger

Climber light
Cobra

Cobra Comfort

Foxfire

Mont Blanc

Fabricate

Wolfskin

Kodiak

Ajungilak

Finmark

Caravan
Ajungilak

Wolfskin

The North Face

Ajungilak

Ajungilak

Ajungilak
Yeti

Yeti

Finmark

Warmpeace

Yeti

Finmark
Ajungilak

Ajungilak

The North Face

Yeti

Temperature T

7°C

3°C

0°C

0°C

0°C

- 3 ° C

- 3 ° C

- 7 ° C

- 7 ° C

- 7 ° C

-15° C
3°C

3°C

- 3 ° C

- 3 ° C

- 3 ° C

- 7 ° C
- 7 ° C

-10° C

-10° C
-15° C

Weight W

940 g

1880 g

1280 g

1750 g

1900 g

1490 g

1550 g

1450 g

2060 g

1880 g

2100 g

970 g

800 g

1690 g

1200 g

1500 g

1380 g

1460 g

1820 g

1390 g

1800 g

bf Price

149,-

139,-

2 4 9 , -

179,-
2 3 9 , -
2 9 9 , -

2 9 9 , -
3 3 9 , -
2 7 9 , -

3 4 9 , -

3 9 9 , -
3 7 9 , -

3 4 9 , -

3 2 9 , -

3 6 9 , -
4 1 9 , -
3 4 9 , -

4 4 9 , -
5 4 9 , -

6 6 9 , -
5 4 9 , -

Material ||

Liteloft

Hollow Fiber

MTI Loft

Hollow Fiber

Thermolite

MΉ Loft

Liteloft

Polarguard

Terraloft

MTI Loft

Ultraloft

Goose-downs

Goose-downs

Duck-downs

Goose-downs

Goose-downs

Goose-downs

Duck-downs

Duck-downs

Goose-downs

Goose-downs

TABLE 1. Many-valued Context: Sleeping Bags

From the many-valued contexts FCA derives formal contexts, which are defined
by binary variables derived from the many-valued contexts. From the many-valued
sleeping bag context [50] derives a context by using a terminology for logical scal-
ing. The terminology is given in Table 23. This results in Table 3, which actually
displays the indicator supermatrix for this example. There are indicator matrices
Gj for Price, Fiber, and Quality. From here on, FCA goes its own (abstract alge-
braic) way. We are merely interested in the (critical) step to derive formal contexts

2Note that one could consider the bag's name as a sixth variable.
3Prediger used a terminology which defined "good" in such a way that it implied "acceptable".

Because we prefer to use mutually exclusive categories we have redefined "acceptable" as "Prediger's
acceptable but not Prediger's good".
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cheap »-»
not expensive ι—>•
expensive ι—>•
down fibers »-»•
synthetic fibers ι->
good ι->

acceptable H-»-

bad H->

(Price < 250)
(Price > 250 Λ < 400)
(Price > 400)
(Material = goose — downs V duck = downs)
(Material φ goose — downs V ducfc = downs)
((0 < T < 7) Λ (W < 1000)) V
((-7 < T < 0) Λ (W < 1400)) V
((-15 < T < -7) Λ (W < 1700) V
(T < -15) Λ (W < 2000))
((0 < T < 7) Λ (1000 < W < 1400)) V
((-7 < T < 0) Λ (1400 < W < 1700)) V
((-15 < T < -7) Λ (1700 < W < 2000) V
(T < -15) Λ (2000 < W)
((0 < T < 7) Λ (1400 < W)) V
((-7 < T < 0) Λ (1700 < W)) V
((-15 < T < -7) Λ (2000 < W)

TABLE 2. Example of a Terminology

from many-valued contexts. In FCA this is called scaling, and various forms of
scaling (conceptual scaling, logical scaling) are discussed in the literature.
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Sleeping Bag || Price || Fiber || Quality |

One Kilo Bag

Sund

Kompakt Basic
Finmark Tour

Interlight Lyx

Kompakt
Touch the Cloud

Cat's Meow

Igloo Super

Donna

Tyin
Travellers Dream

Yeti Light

Climber

Viking

Eiger

Climber light

Cobra

Cobra Comfort

Foxfire

Mont Blanc

0
0

0

0

0

0

0

0

0

0

0

0
0

0

0
0

0

0

0
0

0

1
1

1

]

0

1
0

1

0
0

0

0

0
0

0

0
0

0

0
0

0

0

0
0
0

1

0
1

0

1
1

0

0

0
0

0

0
0

0

0
0

0
]

1
]

]

1

1

1
1

1

1
1

1

1

1

1

0

0

0

0

0

0
0

0

0
0

1

0

1
0

0

0

0

1

0

0

0

1

1

0

1

0

1
1

0

1
1

0

0

0
0

0

1
1

0

0
1

1

0

0
1

0

1

0
0

1

0
0

0

1

0
1

1

0

0

0

1

0

0

0

0

0

0

0

0
0

0

0
0

TABLE 3. Derived Context: Sleeping Bags

1.4. Graph Layout.

1.4.1. Pictures of Graphs. We can make a drawing or layout of the multivariable
graph, by placing the vertices at n + K locations in the plane, or, more generally,
in W. We then connect each object with the categories it is in. Thus m lines are
leaving from each object-point, and the number of lines arriving at a category-point
is equal to the number of objects in the category.

The map of the n + K points and the nm lines is called the graph plot. It is often
useful to think of the graph plot as the overlay of m plots, one for each variable,
which are called star plots. In the star plot for variable j there are n+kj points, and
n lines, each line connecting an object with the category it is in for variable j . The
star plot consists of kj disjoint stars, one for each category, where the star consists
of the lines connecting the category-point with the object-points of the objects in
that category.
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Again, the graph plot does not lead to any loss of information. All the rela-
tionships in the original data are still present in the plot. Nevertheless, it may be
difficult to reconstruct the data from the drawing, because the graph plot has many
overlapping lines and sometimes looks like one large black blob. It helps to look at
the individual star plots, but even these can easily get too crowded and messy when
n is large. Thus, we can now use the fact that our map of the objects and categories
into the plane was completely arbitrary. Suppose we choose a map that makes the
graph plot look as clear or clean or nice as possible. This is typically done with a
graph layout algorithm, and of course there are many of these, because the words
"clean" and "clear" and "nice" can be defined in many different ways.

1.4.2. Overview of the Literature. Since this paper is primarily written for statisti-
cians, and not for computer scientists, we provide a brief overview of the literature
in computer science and computational geometry about methods and criteria to
draw graphs. A good overview of modern graph drawing is given in the chapters
by [23] and [55]. There is also a very extensive annotated bibliography [16] and a
comprehensive book has just appeared [3]. Since 1992 there also has been a yearly
conference on graph drawing. There are many software packages available to draw
graphs. See

http://www.cs.brown.edu/people/rt/gd.html

for references both to the symposia and the software packages. We single out one
of these packages as an example, because it is so easily available. The Java Devel-
opment Kit of Sun Microsystems comes with a GraphLayout applet demo. If you
have a Java enabled browser, go to

h t t p : / / w w w . J a v a s o f t . c o m / a p p l e t s / j d k

and go to the demo section from there.

It must be emphasized from the start that in many cases the graph drawing algo-
rithms discussed in the computational geometry literature are not intended as data
analysis techniques. They have a different "aesthetic" purpose. If we limit our-
selves to straight-line drawings4 then the aesthetic criteria that are mentioned in [3,
page 14-16] are

• display symmetry,
• avoid edge crossings,
• keep edge lengths uniform,
• distribute vertices uniformly,
• minimize aspect ratio,

and

4and consequently ignore polyline drawings, orthogonal drawings and bended edges
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• minimize area,
• minimize total edge length,
• minimize maximum edge length.

The last group of three criteria is special, because they are "meaningful only if the
drawing convention adopted prevents drawings from being arbitrarily scaled down"
[3, page 14]. Not all of these criteria seem relevant for data analysis. Some of them
were inspired by circuit board design, in which minimizing crossings is obviously
relevant. But in data analysis we do not only want aesthetically pleasing drawings,
we also want drawings that show us important and invariant aspects of the data.

1.4.3. Classes of Algorithms. Basically, there are two classes of graph layout or
graph drawing algorithms. One class is based on logical or binary criteria in which
properties of the graph, such as edge crossings, are counted and optimized. A
problem with these algorithms is that many of the criteria lead to NP-hard problems,
i.e. they are computationally infeasible even for fairly small problems. The other
class is more interesting from the data analysis point of view. It thinks of the graph
as a set of pegs connected by mechanical and/or electric forces. The vertices attract
and repel each other. The total forces on the system can be summarized in a loss
function, and that loss function can be minimized. This approach was introduced
by [17], although there are earlier versions of similar algorithms in circuit board
design. We shall discuss these spring algorithms in more detail below.

2. MULTIDIMENSIONAL DATA ANALYSIS

2.1. Multiple Correspondence Analysis. Multiple Correspondence Analysis, or
MCA, can be introduced in many different ways [4,24,25]. Usually, it is motivated
in graphical language. Complicated multivariate data are made more accessible by
displaying the main regularities of the data in scatterplots. Our discussion of MCA
emphasizes the two types of plots we discussed earlier, the graph plot and the star
plots. This emphasis was first used, briefly, in the review articles by de Leeuw et al.
[14], Hoffman and de Leeuw [32], Michailidis and de Leeuw [47]. We think that it
nicely captures the essential geometric characteristics of the technique.

2.1.1. Loss Function. The basic idea is that if we draw the nra edges, then the re-
sulting graph plot will generally be more informative and more aesthetically pleas-
ing if the edges are short. In other words, if objects are close to the categories they
fall in, and categories are close to the objects falling in them. Thus we want to
make a graph plot that "minimizes the amount of ink", i.e. the total length of all
edges.

Actually, for computational reasons, we will minimize the total squared length of
the edges. To formalize this "minimum squared ink" criterion in a convenient way,
we use the indicator matrices Gj. If the n x p matrix X has the locations of the
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object vertices in W, and Yj has the location of the kj category vertices of variable
j , then the squared length of the n edges for variable j is

(2.1) σj{ΛyYj) = o&H{Λ — Lfjij),

where SSQ() is short for the sum of squares. The quantity (2.1) measures the
amount of ink in the star plot of variable j .

The squared edge length over all variables is

(2.2) σ{X,Y) =

and this is the function we want to minimize. The book by Gifi [24] is mainly about
many different versions of this minimization problem, where the differences are a
consequence of various restrictions imposed on the quantifications Yj.

Minimizing (2.2) without any restrictions on the vertex locations is not possible.
Or, more precisely, it is too easy. We just collapse all vertices into a single point,
and we use no ink at all. Remember the quotation in Section 1.4.2 about graph
layout techniques that only make sense if the drawing cannot be arbitrarily scaled
down. It means that in order to get a nontrivial solution, we have to impose some
form of normalization. In MCA we require that the columns of X add up to zero,
and are orthonormal, i.e. satisfy mX'X = J 5 .

2.1.2. Equations. One of the reasons why squared edge lengths are so appealing
is that the MCA problem we are trying to solve is basically an eigenvalue problem.
We discuss this in some detail, again following [24].

First we define some useful matrices. Define the kj x kι matrix Cjt = G'AG^
Matrix Cjt is the cross table or contingency table of variables j and I. Thus Dj =
Cjj, where Dj is the diagonal matrix with the univariate marginals of variable j on
the diagonal. The K x K supermatrix C is known in the correspondence analysis
literature as the Burt Matrix, after [9]. Write CY = mDYΞ for the generalized
eigenvalue problem associated with the Burt matrix.

We also define Pj = GJDJ1G'J\ then, Pj is the between-category projector,
which transforms each vector in W1 into a vector in W1 with category means. More-
over Qj = I—Pj transforms each vector into a within-category vector of deviations
from category means. Write P* for the average of the P/s (P* = ̂  Σ j L i pj)>and

write Λ for the diagonal matrix containing the eigenvalues of P*.

5 Alternatively, we could normalize Y, i.e. require that u'DY = 0 and Y'DY = I. Here u is a
vector with all elements equal to + 1 , and D is the K x K diagonal matrix with marginal frequencies
of all m variables on the diagonal. It is shown in [24] that the two different normalizations lead to
essentially the same solution.
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Theorem 2.1. Suppose (X, Ϋ) solves the MCA problem. Then

(2.3a) P*X = XΛ,

(2.3b) CΫ = mDΫA.

Proof. Define σ(X, •) as the minimum of σ(X, Y) over all Y. Clearly the mini-
mum is attained for

(2.4) Ϋj = Dji&jX,

i.e. by locating a category quantification in the centroids of the objects in that
category. We see that

(2.5) σ(X, ) = m t r X'(I - P*)X

Clearly we minimize σ(X, •) over mX'X = / by choosing X equal to the eigen-

vectors corresponding with the p largest eigenvalues of P*. Thus P*X = XA

for MCA. Also, Jfrom (2.4), we see GΫ = mP±X = mXK and thus CΫ =

mG'XK = mDΫA. This proves (2.3b). D

There are several aspects of the proof which deserve some additional attention.
Equation (2.4) is called the centroidprinciple. The centroid principle shows clearly
how the star plots get their name in MCA. Category vertices are in the centroid of
the vertices of the objects in the category, and if we have a clear separation of the
kj categories, we see kj stars in W. This also shows that in MCA the category
vertices are in the convex hull of the object vertices, they form a more compact
cloud.

There is one last important construct in MCA we like to mention. The matrix
YjDjYj = X'PjX is known as the discrimination matrix. It is equal to the
between-category dispersion matrix of variable j , i.e. to the size of the stars for
that variable. The average discrimination matrix is equal to Λ, the diagonal matrix
of eigenvalues. Since P* is the average of m orthogonal projectors, we have A < /.
This can also be seen from the fact that each element of A is the average, over all
variables, of the ratio of the between-category variance and the total variance.

2.1.3. Algorithm. The basic algorithm for MCA is alternating least squares, also
known in this context as reciprocal averaging. An iteration consists of two steps

(2.6a) Y}k) = Df

(2.6b)
m rl

3=1

i.e. we alternate between the first and second centroid principle. After some
of these iterations we reorthonormalize X. This algorithm is identical to Bauer-
Rutishauser simultaneous iteration [53], the natural generalization of the power
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method to compute some of the dominant eigenvalues of a symmetric matrix with
the corresponding eigenvectors.

2.1.4. Example. If we apply (two-dimensional) MCA to the sleeping bag data, we
find the solutions shown in the graph plot and the three star plots below. Notice
that objects with similar profiles are mapped to identical points on the graph plot,
a property following from the second centroid principle. Several things are imme-
diately clear. There are good, expensive sleeping bags filled with down fibers and
cheap, bad quality sleeping bags filled with synthetic fibers. There are also some
intermediate sleeping bags in terms of quality and price filled either with down or
synthetic fibers. Finally, there are some expensive ones of acceptable quality and
some cheap ones of good quality. However, there are no bad expensive sleeping
bags.

1.5

1
expensive t

0.5

I o
α

-0.5

-1

-1.5

cheap

synthetibϋbres

acceptable \

-1.5 -1 -0.5 0 0.5
Dimension 1

1.5

FIGURE 2. Graph plot of the MCA solution of the sleeping bag data

In this case, we could have seen this much faster by looking directly at the data,
without using a computer at all. But the sleeping bag example is far from typical.
In real-life MCA examples we often deal with thousands of objects and hundreds
of variables (see for example [24, Chapter 13], [47], [45]).
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FIGURE 3. Star plot of variable Price
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FIGURE 4. Star Plot of variable Fiber

FIGURE 5. Star Plot of variable Quality
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2.2. Multidimensional Scaling. Multidimensional scaling (MDS) is a class of
techniques in which given distances or distance-like numbers are approximated by
distances in low-dimensional Euclidean space. Thus, given distance-like numbers
δij (i.e. (δij > 0, δu = 0), often called dissimilarities, between n objects, we want
to find n points Xi in W such that their Euclidean distance d(xi, Xj), which we also
write as dij(X), is approximately equal to δij. MDS as a rigorous technique is due
to [38, 39]. Theory and algorithms of MDS are most completely described in [7].

2.2.1. Loss function. We shall restrict our attention to using a least squares loss
function, i.e. we want to create our picture in such a way that

(2.7) σ(X) = ΣΣwijiδij - d^X))

is minimized over X. The w^ are weights, which can be chosen to reflect variabil-
ity, measurement error, or missing data.

In [41] the loss function has weights 5^2. The loss function is interpreted as
the amount of physical work that must be done on elastic springs to stretch or
compress them from an initial length δij to a final length dij. Sammon [51] suggests
Wij = δ^1 for a closely related problem. Connections with the spring algorithms
for graph layout are already obvious, and will be examined in considerable detail
below.

2.2.2. Algorithm. Using the unit vectors e; of order n, we can define the matrices
Aij = (ei — βj)(ei — ej)r, i.e. Aij has element + 1 at positions (z,z) and (j, j ) ,
—1 at (i, j) and (j, i) and 0 everywhere else. Moreover, for a given real symmetric
matrix C, we define the Laplacian of C as

(2.8)

Alternatively C(C) = R — C, where ϋ is the diagonal matrix with row-sums of C.
Now set

(2.9a) S ( j r ) = £ ( W r _ ^ ) >

(2.9b) y = £(W),

where in (2.9a) we take the Laplacian of the matrix with elements Wijδijfdij(X).
Then the algorithm that updates X by

with V* the Moore-Penrose inverse of V, is shown to be globally convergent
in [11] and linearly convergent in [12].
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In order to compute the initial estimate of X Guttman [28] suggested to compute
the dominant eigenvectors and eigenvalues of £ ( Δ 2 ) . This maximizes

under the normalization condition X'X = I. This is easy to see, since d%j(X) =

ijX, and thus λ(X) = trX'C{A2)X.

2.2.3. MDS and MCA. There is a fairly straightforward connection between multi-
dimensional scaling and MCA, outlined for example in [30]. Suppose we define the
loss function (2.7) only for the off-diagonal submatrix G of the adjacency matrix
A. Thus, the loss function σ(X) becomes

n K

(2.12) σ(X) = ΣΣWik<<δik - <MX))2>
i=l k=l

with

if i is in correspondence with fe,ί 1
10

(2.13a) δik {n A .
10 otherwise,

and

ί 1 if i is in correspondence with fc,
(2.13b) wik = <

I 0 otherwise.

With these definitions, obviously σ{X) is again the sum of squares of the distances
between the objects and the categories they are in, i.e. our "minimum squared ink"
criterion. We need some kind of normalization to find a nontrivial solution, and
using X'X = I produces MCA.

There is another way to introduce MCA using MDS ideas, which was first dis-
cussed by [13]. Since that paper the approach has been extended considerably
by Meulman [42, 43] and it has been implemented in the computer program PIO-
NEER [26].

The basic idea here is to scale the objects using some form of MDS. Suppose we
define a distance-like measure 5̂ - between each pair of objects. We now want to
map the objects into points X{ in W such that the distance d(#i, Xk) approximates

We have not specified yet which distances we intend to use, and how we will
measure approximation. In MCA we use chi-square or Benzecri distances. They
are defined on the rows of G. Write gι for the column-vector containing row i of G
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and eι for the ith unit vector. Then

(2.14) 4 = l(ft - giYD-ifa - g,) =

( )'GD-ιG'{ - eά) = (e* - e, )'P*(ei - e )̂ =

ei - e, ) = (z{ - * , ) ' ( * - z ) ,

where P* is the average between-category projector of MCA, and where Z =
XΛ1/2. If we only use the first p dimensions, i.e. the first p columns of Z, then we
underestimate the chi-square distance, i.e. we approximate 5y from below. This
defines MCA. We can also proceed the other way around and define Benzecri dis-
tances between columns of (?, and again come up with the MCA solution for Y.

But instead of approximating squared distances from below, we can also use (2.7)
on the Benzecri distances, or on any other distance function defined on the objects
or categories. We will loose the duality between rows and columns we have in
MCA, but we may find more interesting solutions. The solutions for the sleeping
bag example using (2.7) and Benzecri distances on the objects and the categories
of the variables, are given in Figures 6 and 7, respectively. If we compare them
with the correspondence analysis solution, we see that the "horseshoe" or parabolic
shape in Figure 2 is no longer there. Points are spread more uniformly in the plane.
However, this also results in too many edge crossings for the solution based on
distances between categories.

2.3. Parallel Coordinate Plots. (PCP) There is another simple way to plot multi-
variate quantitative data. This is the parallel coordinate plot discussed by Inselburg
and Dimsdale [33], Wegman [57]. In these plots, we draw m parallel straight lines,
one for each variable. The objects are then plotted on each of the lines, and points
corresponding with the same objects are connected by broken line segments (and
perhaps colored with different colors).

2.3.1. PCP and MCA. There are some interesting connections between PCP and
MCA. Suppose we have the freedom to put the categories of the variables in arbi-
trary locations on the m parallel vertical lines, except that the categories of variable
j must be on line j . Each object now defines a broken line through m category
points. Suppose zij is the induced quantification of object i on variable j , which
is the same number as the category quantification of the category of variable j that
object i is in. We can partition the variance in the induced quantifications, as in Ta-
ble 4. This measures in how far the object-lines deviate from the horizontal lines,
by computing the variance around the best-fitting horizontal line. The best fitting
horizontal line is, of course, the object score of MCA, i.e. x% = z%m. Minimizing
the ratio of the within-object variance yf(D — ^C)y to the total variance y'Dy
amounts to computing the first dimension of an MCA. Observe that this is the same
as maximizing the between-object variance —y'Cy for a given tot al variance, i.e.
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we also want the horizontal lines to be as far apart as possible. This is discussed in
more detail in [24, Chapter 3].

Source

Within Objects, Between Variables

Between Objects
Total Variance

Sum of Squares

Z-α=l 2-*ij=l\zi>3 *ιφ)

2-̂ i=i 2^j=i\ztj z )

Matrix Expression

yf(D ——C)y

y'Dy

TABLE 4. Partitioning Quantification Variance

We illustrate the above with our sleeping bag example (see Figure 8). The basic
classification of the bags is again obvious from this representation. Observe we
have one crossing, basically because some sleeping bags filled with synthetic fibers
are good, while some filled with down are only acceptable.

cheap

not expensive > /

expensive _^_-—

^^sy^itheticJitίrBS

X

1 - — " "Sown fibres

\

'bad

-

\acceptable

-0.5

FIGURE 8. Parallel coordinate plot. The numbers on the edges
indicate how many objects share that particular edge.

2.4. Seriation. Seriation, also known as ordination, is of importance in archae-
ology [1], DNA sequencing [5], hypertext ordering [6], ecology [19], and sparse
matrix ordering [2].

The key concepts in this area are the Robinson and the Petrie matrices. The
Robinson matrix, known in psychometrics as a simplex, is a symmetric matrix R
such that Tij < r ^ if j < k < i and ry > r ^ if i < j < fc. If rows and columns
of a symmetric matrix can be permuted such that it becomes Robinson, we call it
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pre-Robinson. A Petrie matrix is a binary matrix for which in each row the ones
form a consecutive sequence. If we can permute the rows of the binary matrix so
that it becomes Petrie, we call it pre-Petrie. If both rows and columns can be made
to have the "consecutive ones" property, we say the matrix is two-way Petrie.

A closely related matrix is the Guttman matrix, in which the pattern of one's is
triangular. In both a Petrie matrix and a Guttman matrix, the pattern is basically
one-dimensional. If artifacts are found in a particular time interval, or plants are
found in a particular aridity interval, or if politicians vote for a proposition in a
particular left-right interval, then we deal with a parallelogram structure. I such
a case, we have comparison data in the sense of [10] or non-cumulative items in
the sense of [49]. If subjects respond to test items, then they will give the correct
response to all items that are easy enough. These are dominance data, or cumulative
items, and they give rise to a triangular pattern.

In psychometrics the techniques to recover the triangular or parallelogram pattern
are known as Guttman scaling or parallelogram analysis ([10, 20]).

2.4.1. Sedation, MCA, and MDS. In many seriation examples, MCA is used to
find the ordering of the rows and columns of the matrix. It is shown by [31] that if
a matrix can be permuted to become two-way Petrie, then correspondence analysis
will find the order. It is shown by [27] that MCA produces the correct order for
a Guttman matrix. Other situations in which MCA gives the "correct" order are
discussed by [52].

Kendall [36] applied nonmetric multidimensional scaling to the product moment
matrix GG\ which is pre-Robinson if G is pre-Petrie. He developed the popular
HORSHU method, that produced a two dimensional plot of the seriation, which
often looked like a horseshoe (i.e. a quadratic curve in the plane). See [30] for
additional discussion of the Robinson and Petrie forms of a matrix in the MCA and
MDS contexts, and see [44] for some archaeological examples in which MCA is
used.

2.4.2. Spectral Methods of Seriation. Recent reviews of seriation, from a modern
computational point of view, can be found in [2] and [6]. Both papers rely on a
spectral method of seriation, which is closely related to some of the techniques we
have discussed above. They start with a binary data matrix, which they interpret
as the adjacency matrix G of a bipartite graph. They then embed the matrix in a
symmetric matrix A, using (1.1).

Define now the Fiedler value of a doubly-centered positive-semidefinite matrix
as the smallest nonzero eigenvalue. The corresponding eigenvector is called the
Fiedler vector. Seriation computes the Fiedler vector of the Laplacian C(A), and
uses the rank order of the elements of the Fiedler vector to reorder rows and columns.
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Computing the Fiedler vector means solving the eigenvalue problem

(2.15a) Gy= (m - λ)x,

(2.15b) G'x = (D-\I)y,

which is of course very close to the equations

(2.16a) Gy = m\x,

(2.16b) G'x = \Dy,

that define MCA. As in MCA, it is shown next that if there is a permutation trans-
forming the matrix to Robinson form, then the Fiedler ordering produces that per-
mutation [2].

Theorem 2.2. If a matrix A is Robinson, then it has a monotone Fiedler vector.

Proof. We begin by defining two useful matrices, V\ a (n — 1) x n matrix given by

-1 1
0 -1

0
1

0
0

- 1 1

(2.17) Vi =

0 0

and ^ a n x ( n - l ) matrix given by

(2.18)

Note that for any column vector x we get V\x = (#2 — #1, . , xn — Xn-i)f>
that V\V<ι = In-ι and V2V1 = J n — uef

v where u is a vector comprised of ones
and ei = (1, 0, . . . , 0)'. Consider now any eigenvector x of C(A), except the one
corresponding to the λi = 0 eigenvalue. We then have

(2.19) £{A)x = \

0
1

1
1

0
0

1
1

0
0

. . .

1
1

0
0

0
1

VιC{A)x = XVix & VιC{A){In - ue[)x = \Vλx

& VιC{A)(V2Vι)x = λVix & VVιy = λx,

where V = VιC(A)V2 and y = V\x φ 0. Hence, λ is an eigenvalue for both C(A)
and V, for eigenvectors of C(A) other than u (corresponding to λi = 0). Some
algebra shows that

(2.20a) V(iJ)=

(2.20b)
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which implies that since A is assumed to be a Robinson matrix V(i, j) < 0 for all
off-diagonal elements.

Define V = ζln-ι - V for some ζ > maxi{λi, V(i,i)}. Then, V(iJ) > 0 for
all i, j , has eigenvalues given by X{ = ζ — λ{ and shares the same set of eigen-
vectors with V. But by the Perron-Frobenius theorem, there exists a nonnegative
eigenvector y corresponding to the largest eigenvalue for V and to the smallest
nonzero eigenvalue for V. But y = V\x and therefore x is the Fiedler vector of
C(A). Moreover, since y > 0 it implies that x is nondecreasing and the result
follows. D

Theorem 2.3. If a matrix A is pre-Robinson with a simple Fiedler value and a
Fiedler vector without ties, then the permutation π induced by sorting the values in
the Fiedler vector in increasing order makes A a Robinson matrix. The same holds
true if the elements of the Fiedler vector are sorted in decreasing order.

Proof. Due to the assumptions made, the Fiedler vector x is unique up to multi-
plication by a constant. Notice that permuting A merely changes the order of the
entries in x. Suppose that a permuted version of A is Robinson. By Theorem 2.2 it
has a monotone Fiedler vector x, which is unique since the Fiedler value is simple.
Moreover, since x has no tied values, the permutation must correspond to either an
increasing or a decreasing order of the values of x. D

In the presence of tied values in the Fiedler vector, one needs to examine all
possible permutations induced (for more details see [2]).

2.4.3. Example. The ordering of the sleeping bags and categories computed by
MCA is given in Table 5 below. We see in the parallelogram structure of the table
the same ordering of sleeping bags and categories that we have already seen in
other analyses. Observe that we don't quite have the consecutive ones property.
Major deviations are the 'One Kilo Bag" and the "Kompakt Basic", which are
cheap and filled with synthetic fiber, but still classified as good. Similarly, although
the "Eiger" is expensive and filled with down, it is not good, only acceptable. If we
use the two eigenvectors corresponding to the two smallest nonzero eigenvalues of
C{A) (i.e. the Fiedler value and the second smallest nonzero eigenvalue), we find
the solution shown in Figure 9. The resulting graph plot has a lot of similarities to
the one corresponding to the MCA solution (see Figure 2), since both techniques
recover the parallelogram structure in the sleeping bag data. However, the absence
of a centroid principle for the solution based on the Fiedler vectors results in placing
most vertices (both objects and categories) on the periphery of the graph.



238
DE LEEUW AND MICHAILIDIS

Sleeping Bag

Foxfire
Mont Blanc
Cobra
Eiger

Viking
Climber Light
Traveler's Dream
Yeti Light
Climber
Cobra Comfort
Cat's Meow
Tyin
Donna

Touch the Cloud
Kompakt
One Kilo Bag

Kompakt Basic
Igloo Super
Sund
Finmark Tour

Interlight Lyx

p
en

si
ve

3
1
1
1
1

0
0
0
0
0
0
0
0

0

0
0
0

0
0
0
0
0

1
•8
1
1

]

]

]

1
1
1

0
0

0
0

0
0
0

0
0
0
0

1
1
1
0
1
1
1
1
0
0
1

0

0
0

0
1
1

0

0
0

0

ce
pt

ab
le

0
0
0
1
0
0
0
0
1
1

0
1
1
1

1
0
0
0

0
0
0

it 
ex

pe
n

si
ve

^

Ό

c
0
0
0
0
1

1
1
1
1
1
1
1
1
1
1

0
0
1

0
0
0

X
X

c>

c
c
c
c
c
c
c
c
c
c
1
1

1
]

1

ea
p

? -8

0
0

> 0

) 0

) 0

) 0

) 0

) 0

) 0

) 0

0
0

0

I 0

[ 0
L 1
I 1
L 0

L 1
I 1

L 1

Ό

£
0
0
0
0
0
0
0
0
0
0
0
0

0
0

0
0

0
1
1
1
1

TABLE 5. MCA Seriation of Sleeping Bags
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3. LAYOUT METHODS

3.1. Introduction. In this section we discuss the two types of layout algorithms
already mentioned in Section 1.4.3. The first class minimizes the number of edge
crossings in a straight-line layout. It is especially interesting for graphs with lay-
ers, where the only edges are between layers. The second class are the spring or
force-directed algorithms, which use a physical analogy to portray the graph as a
mechanical and/or electric system in which forces pull and push the edges.

3.2. Minimum Straightline Crossing Algorithms. Suppose we have a bipartite
graph. We agree to put the two layers of the graph at equal intervals on two parallel
lines. We then find the permutations of the objects in each layer that minimizes
the number of line crossings. There is also a one-sided version of the algorithm,
in which the order in one layer is fixed. In [18] it is shown that even the one-
sided problem is NP-hard, so heuristics are needed to solve even moderately sized
problems. Among the heuristics discussed most frequently are the barycenter and
median heuristics. In our context, we could fix the objects on one of the lines, and
then compute the category positions as the means or medians of the objects in the
category.

More interesting results on straightline crossing minimization are provided in [34].
The authors implement an exact algorithm for the one-sided case that turns out to
work reasonably well even for problems with up to 60 vertices. For the two-sided
problem the iterated barycenter method, which is basically what we call recipro-
cal averaging, turned out to be the best heuristic. In fact, it even outperforms the
method which iteratively alternates the exact optimal one-sided solutions.

Let us first translate this into the graph-plot we deal with. The objects are located
on one layer, while the categories of all variables on a second layer. But it is more
interesting to look at the m + 1-layered graph, which has a layer for each variable,
and an additional one for the objects. Take two variables, for instance, and locate
the objects in the middle of the three parallel lines. Variable one is on the right
of the object-line, variable two is on the left. If the graph-plot does not have any
crossings, then the categories of a variable correspond with disjoint intervals of
objects. Clearly m variables can be accommodated in a three-dimensional graph
plot, in which the m lines are on a cylinder with the objects on the axes. Finding
orderings without crossings is the same as parallelogram analysis.

3.2.1. Ordering Variables in PCP. One obvious problem in parallel coordinate
plotting is how to order the variables, i.e. how to order the parallel vertical lines in
the plane. This could be done by minimizing the line crossings in the m-layered
graph. It could also be done by minimizing the amount of ink, as we do in MCA.

Of course the MCA solution is completely independent of the order of the vari-
ables. The amount of ink, i.e. the sum of squares of the lengths of the n(ra — 1)
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line segments, does depend on the order. Except for end effects, minimizing total
squared length means maximizing

m-l

over all y such that y'Dy = 1, and this is a function of the order of the variables.
Finding the optimal order is, again, a form of sedation. It is related to the traveling
salesman problem and the existence of Hamiltonian cycles in graphs. If homogene-
ity is large, i.e. if we can scale the variables such that the broken lines in the parallel
coordinate plot are almost horizontal, then changing the order of the variables will
make very little difference.

3.3. Force-directed or Spring Algorithms.

3.3.1. General Idea. In [3, Chapter 10] a general approach to force-directed graph
drawing methods is outlined, that unifies many previous isolated and rather ill-
defined methods. The force on vertex j is made up out of more elementary forces
that are defined for each pair of vertices. There is a mechanical or spring force
pulling at all pairs (i, j) that are connected, and there is an electrical force pushing
at all pairs, also the ones that are not connected. Thus the force on vertex i is

(3.2a) F{i)

where A = {aij} is the adjacency matrix of the graph. It is assumed, in addition,
that the springs follow Hooke's law, and the electrical force follows an inverse
square law. This means that

(3 2b) fij = ψ$

(3.2c) » -

where δij is the zero-energy length of the spring connecting i and j , Wij is the
stiffness of the spring, and Uij is the strength of the electrical repulsion.

The choice of the forces is ad-hoc. In [17] and [54] logarithmic springs are used,
i.e.

In [21], the attractive forces are proportional to the square of the distance, while the
repulsive force is the inverse of the distance. Sugiyama and Misue [54] introduce a
third force, by adding a magnetic field that works globally on all springs, and that
can be parallel, radial, or concentric. This field will tend to influence the global
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form of the drawing. It is clear that spring algorithms are based on a simple and at-
tractive idea, but implementing them requires a number of rather arbitrary choices.
We concentrate on the simpler ones.

3.3.2. Loss Function. Implementing the spring algorithm of (3.2) means minimiz-
ing

(3.4)

This is obviously close to the MDS problem of minimizing (2.7). The difference is
that in the spring algorithm we add a penalty for points being too close together.

Along the same lines as before, we can show that the algorithm that updates X as
follows

(3.5a)

where

(3 5b)

and U/DS(X) is the matrix with elements Uij/d^{X), is globally convergent.

3.3.3. The Barycentric Method. One of the earliest graph drawing methods is the
barycentrίc method of Tutte [56]. It is the special case of (3.2) in which δij = 0,
wij = 1, and there are no electrical forces. Thus the loss function is simply given
by

(3.6)

This is the same loss function as the one used in MCA, and it leads to a familiar
problem. The minimizing solution is X = 0. Unlike in MCA we do not normalize
this problem away by requiring XfX = I, but we partition the vertex set into a set
of (at least three) fixed vertices and free vertices. We then minimize over the free
vertices. In a one-dimensional MCA context this approach was already discussed
in [29].

Not surprisingly, the algorithm that solves this problem is to set the location of
a free vertex equal to the centroid of its neighbors, and to cycle over free vertices.
In the case of the graph with adjacency matrix given by (1.1) this is precisely the
reciprocal averaging algorithm of MCA (without normalization, and without up-
dating the fixed vertices). We refer to [3, Section 10.2] for a discussion on how
well the barycentric method draws typical graphs. From the data analysis point of
view, we merely have to compare normalizing by fixing a number of points with
normalizing by requiring orthonormality. The obvious question in this context is
"Which Points ?" to fix.
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For our example, we give two different solutions. In the first one (see Figure
10) we fix the three categories of variable "Price" at the corners of an equilateral
triangle, and we fit in the remaining points. In the second solution (see Figure 11)
we fix the three categories of variable "Quality" in the same way. In both plots
we insert the category quantifications by using the centroid principle, and we draw
the graph plot. These graph plots are less satisfactory than the MCA graph plot
2. Fixed points are at the outskirts of the plot, the other points are clumped on
the inside near the centroid of the plot. This becomes obvious if we rewrite the
stationary equations for the barycentric method, with a number of category points
fixed, as

m

(3.7b) Y2 = D2 Gτ2A,

where YΊ,Gi,D\ correspond to the fixed vertices and Y<Σ,GΊ,D2 to the free ver-
tices. If we solve these equations we find

yD.Oa) -Λ — — y l — — y j ^ U n ^"2/ 1 1 )
771 771

C\ CM V Π~l/Of/ Π V
{ό.QΌ) 12 — --Un W2VJ1M

This shows that objects and free categories will be inside the convex hull of the
fixed categories, and clumped in the middle especially in case m is large.

As an experiment, we also implemented a version of the barycentric method using
the penalty terms in (3.2), so that δij = 0 and w^ = 1 and mj = .01. This does
not look good at all, so it seems the penalties are much too harsh. More research,
perhaps also with other penalty functions, is obviously needed here.

3.3.4. More on Springs and MDS. A two-dimensional graph layout algorithm that
is basically MDS was proposed by Kamada and Kawai [35]. Essentially the same
algorithm was proposed earlier in [37]. A (straightforward) three dimensional ex-
tension is discussed by Kumar and Fowler [40]. It is argued in [8] that three-
dimensional pictures of graphs, such as the ones based on MDS, often are more
"nice" than two-dimensional ones. The main idea in this class of graph layout al-
gorithms is to approximate path length distances in a graph by Euclidean distances.
We assume a connected graph with n vertices, in which there is a path between
any two vertices. The loss function is (2.7), where δij is the path length distance
between nodes i and j , and w^ is some known weight. Kamada and Kawai [35]
suggest using Wij proportional to δ^2. Kruskal and Seery [37] seem to use w^ = 1.
They also assign a large number for the distance of a pair of vertices that are not
connected.

Now of course our bipartite multivariable graph is not connected. In fact, the
graph theoretical distances are either zero (for the self-distances), or one (for ob-
jects and the categories they are in), or two (for objects which share a category, or
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categories which share an object) or infinity (for the rest). It may not be useful to
apply MDS to these distances directly. In fact, Kruskal and Seery suggest using
non-metric multidimensional scaling, in which we minimize

(3.9)

over all drawings X and over all Δ = {δij} that are monotonic with the graph
theoretical distances.

On the other hand, we can use MDS on the off-diagonal distances only, as we
have done in MCA, the barycentric method, and the spring algorithm with inverse-
distance penalty terms.

4. CONCLUDING REMARKS

In this paper we have considered several popular multivariate data analysis tech-
niques such as MCA, MDS, parallel coordinate plotting, seriation, and graph layout
methods, such as force directed and minimum straightline crossing algorithms, and
explored the relationship between the two classes. The representation of a multi-
variate (categorical) data set as a bipartite graph and the desire to make the patterns
in the data more accessible by displaying them in a picture, provide the common
links between these two sets of techniques. Moreover, it is shown that some of the
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popular graph drawing algorithms are closely related to MDS. Some of these tech-
niques, such as MCA and spectral methods of seriation, are easy and inexpensive to
apply to large data sets (both in terms of objects and variables), while the remaining
ones are much more computationally demanding since they rely on iterative algo-
rithms, thus rendering them inefficient for mining and analyzing large databanks. It
is interesting to examine how these techniques perform when applied to more com-
plicated data structures than the one examined here. A first step in that direction
is taken in [46, 48], where MCA is extended to handle hierarchical data (e.g. stu-
dents clustered within schools) that can be represented by direct sums of bipartite
graphs. However, relational databases give rise to more complicated graph struc-
tures such as multipartite graphs and new tools are needed for their efficient visual
representation. Finally, further research is required to shed light to the following
third questions: first, what is the appropriate dimensionality that provides a "satis-
factory" drawing of a graph, second, what are the most "useful" and "informative"
distances to be approximated by MDS type methods and third how penalty methods
can lead to improved drawings. A general data analytic framework is introduced in
[15] that addresses the latter two questions.
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