
The Almost Sure Number of Pairwise Sums

for Certain Random Integer Subsets

Considered by P. Erdos

Michael J. Klass*
Departments of Statistics and Mathematics

University of California

Abstract

Fix any λ > 0 and let X\, X2,. be independent and identically
distributed 0-1 valued random variables such that

P(Xj = 1)= min

|n/2j

Let Gn = \ J XjXn-j. Gn is the number of times two numbers from
i=i

the random set 5 = {j : X3 = 1} add to n. We evaluate the almost
G G

sure limits lim inf ™ = c\ (Λ) and C2(Λ) = limsup " , showing
that 0 < ci(λ) < 1 < c2(λ) < 00.

Introduction

Around 1932 Sidon asked whether there exist positive integers
a\ < 0,2 < - . such that f(n) > 0 for all n sufficiently large and yet

lim ϊ-^ = 0 for all ε > 0, where
n—KX) n ε

(1) f(n) = φ{i > I : di + ajt = n for some ji > ί).

Fix any λ > 0. Let AΊ, X2>... be independent random variables taking only
values zero and one, as determined by the probabilities

(2) P(Xj = 1) = min
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Ln/2J

Let Gn = 2_j XjXn-j- Using the integers occuring in the random subset

S = {j : Xj = 1}, Paul Erdos [1956] answered Sidon's question, showing
that

G
(3) c\ = cχ(λ) = liminf -=-£- is positive almost surely iff λ > 1,

n-κx> EGn

(4) C2 = C2(λ) = limsup ™ is finite almost surely,

and

(5) ^ G n ~ λ In n as n —•> oo.

Note that Gn denotes the number of instances in which a pair of elements
of S sum to n.

Erdos then wondered whether A-^ can ever tend to a finite, positive

limit. In this paper we evaluate cχ(λ) and C2(λ), showing that indeed they

are distinct for almost all of the subsets S constructed here.

Results

Using exponential bounds and the convergence part of the Borel-Cantelli
lemma it can be easily shown that

\nε\

(6) liπjL l i m s u p £ ^ ^
ε\0 n

I - I2

and similarly that

(7) lim limsup ^ J " £ Γ * = ° a s

z=Lf -nε\

For c > 1 put

(8) Λ I , M ( C ) =

To second order precision (see Lemma 1 of the Appendix)

(9) P{An>kyε{c)) ~ P(Ng{nAε) > cEG[{1+ε)ki)
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uniformly in 0 < ε < 1 and n in (1 + ε)k < n < (1 + ε)k+1 as (1 + ε)k -> oo,
where

(10) p(n,fc,ε)=

and JV7 ~ Poisson(7). Since g(n, k, ε) ~ λA;(l - O(y/ε)) ln(l + ε),

(11) P{An,k,ε{c)) ~ (9(c(l

uniformly in n and ε as (1 + ε)k —• oo, where q(c) = ^ - .
Notice that q(l) = 1 and g(c) is a continuous function on 1 < c < oo

which strictly decreases to zero. By the intermediate value theorem there is
a unique C2 = C2(λ) > 1 such that

Take any c > C2(λ). Then there exists δ > 0 such that for all sufficiently
small ε > 0

(13) (ff(δ(l

and so (by (11) and (13)),

oo

lim £ ^ P(AnAε(c)) < Jim £ ε(l+ε) f e + 1

e-
f e(1 + ί) l n( 1 + e) = 0

Since c > C2(λ) is arbitrary,

(14) lim sup —£- < c2(λ) a.s.

On the other hand, if 1 < c < C2(λ) then there exists δ > 0 such that for all
sufficiently small ε > 0

(15) (g(c(l + O( λ / i ) ) ) ) ( 1 - O ( V i ) ) λ > e~1 + J.

Let 7fc,ε,c denote the interval of consecutive integers n such that (l+ε)k <
n < n^,ε(c), where

fc,ε(c) = the last n < (1 + ε)fc+i .

(16) n
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Then set

(17) Akε(c) = ^J Anjfc>e(c).

By restricting A£ ε(c) to a union over only some of the integers (l+ε)k < n <

(1 + ε) f c + 1 , we will be able to compute the order of magnitude of P(A*k ε(c)).

Applying Lemma 4 of the Appendix to the probability of pairwise intersec-

tions of events whose union comprises Ak ε(c) demonstrates by means of the

Bonferroni inequality

V P(A k (c)) _ I
(18) ^ n> ' S U > 2

that the correct order of magnitude of P{A\ ε(c)) is given by Boole's inequal-
ity:

(19)

Actually, for all ε > 0 sufficiently small and [(1 + ε)k\ sufficiently large

For kf > k + ε~2, Ak,ε(c) and A^/)ε(c) are independent. Moreover, by (5)

and (20), ]Cj£i ^(^tfcε-2! ε(~)) diverges. Hence limsup ™ > c and so

G
(21) limsup — ^ - = c2(λ) a.s.

As for the almost sure lower bound, Erdδs showed in 1956 that c\ =
d(λ) = 0 if λ < 1. In fact, Erdόs showed that Gn = 0 infinitely often
if λ < 1. Suppose, therefore, that λ > 1. By a zero-one law followed by
application of Fatou's lemma,

L = L(X) = ^ G

n-̂ oo EGn n-^oo EGn

\EGn) ~ L

Hence the liminf and limsup of ψ£- are indeed distinct. In an effort to

< liminf E
n—KX)

identify ί/(λ), let c\ = ci(λ) denote the smallest positive root of the equation

λ
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Since q(c) is continuous on [0,1], strictly increasing from e" 1 to 1, it is
clear that 0 < ci(λ) < 1 for λ > 1. Set

(23) Bntktε(c) = ί ^ XiXn-i < cEG[{1+ε)ki } .

Reasoning much as before, if 0 < c < ci(λ) and λ > 1, then

oo

(24) lirn^ Σ ε(l + ε)kP(Bl(1+ε)k+ιΪAε(c)) = 0,
°~+ k=k0

which implies P(Bn^,ε(θ) i o (n)) = 0. Since ε > 0 and 0 < c < ci(λ) are
arbitrary,

(25) l i m i n f - ^ - > c i ( λ ) a.s.

As for the reverse inequality, it is proved by applying an analogue of
Lemma 4 of the Appendix to the analogous Bonferroni inequality for all
fixed c > cχ(λ) and then using the divergence part of the Borel-Cantelli

lemma as before. Consequently, liminf ™ < ci(λ) a.s. and therefore
n—κx> Jb(jrn

l iminf—2-= ci(λ) a.s.
n*oo iίG
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Appendix

Lemma 1. Let (1 + ε)k < n < (1 + ε)k+1 and define An^,ε{
c) as i>n (8).

Then (A9) holds for fixed c> 1 and λ > 0.

Proof. Let Y n̂ = XiXn-i. For each fixed n in the indicated interval and

all |_ε(l + e)k\ < i < ^ + ε

2 —> ^^e random variables Yi>n are independent
Bernoulli's. Letting

(Al) e-χ^ = 1

and introducing independent random variables

(A.2) Wi,n = Pois(λifn),

it is obvious that

Hence we may assume

(A3) Yi<n = min{Wi,n> 1}.

Let

L 2 J

(A4) λ n = ^ λ<in,

ί=|ε(l+ε)fcJ

(A5)

and

(A6) Yn= ^ Yi,n.

Then
Wn ~ Pois(λn)

and

P(Yn φWn)<
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Since

where \ < θ^n < 1 for all i sufficiently large

(A.7)
4λ2fc2ε2 In i

ε
π2n

where |#n,fc,ε| < \ + 0(ε) for all (1 + ε)k sufficiently large and

(A8) P(Yn φ Wn) <
4λ2k2ε2 In i

ε
π2n

for all (1 + ε)k sufficiently large and 0 < ε < \. Note that g(n, fc, ε) = EYn.
By virtue of {A.I) and (A8), for all ε > 0 sufficiently small and (1 + ε)k

sufficiently large,

o \2L.2-2 j n I

(A9) | P ( i W c ) ) " ^(^(n, fe,ε) > cEGί{1+ε)kl)\ < π 2 ( 1 + g ) f c

£

Lemma 2. Lei iV7 ~ Poi5 7. ΓαA e any 1 < c < c < 00. For c<c<c

uniformly in c as 7 —>- 00. For purposes of comparison, the best possible
exponential upper bound of this probability is

(All)

t = tc = In c. Hence if c< c<c

ec-i\-y

(A12) inf Ee*^'^ < ^2^P(NΊ > σγ)

for all 7 sufficiently large.
Secondly, take any 0 < c_ < c!_ < 1. For C- < c< c*_,

M.1S)
ec-l\7

6e5ί possible exponential upper bound of this probability is

(A14) infinf Ee (
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using t = tc = —In c.
Hence for c_ < c < c*_

(A15) inf Eet{cri-Ni)Ί < y/jP(NΊ < cγ)

for all sufficiently large 7 (since (1 — c)22πc < 1).

Lemma 3. Let (1 + ε)fe < n < n' < (1 + ε) f c + 1 and Jk = {I : [ε(l + ε)k\ <

l<lίktflij}. Then

for all (1 + ε)k sufficiently large (uniformly in n and n1).

Proof. The set Jk can be partitioned into three disjoint subsets (and some-
times two) J^i, Jfcf2 and J^3 such that the variates {XιXn-iXnf-i : I £ Jfĉ }
are independent for each 1 < i < 3.

Letting Ẑ  denote the smallest integer in Jfc, the set J^i can be con-

structed as follows. Let J ^ = {/ G Jjt of the form Ik + {i — ̂ ){\]Lγk\ + 1) +

ϊ + j'(n' -n+ L ^ J + 1) such that 0 < ϊ < [ ^ J and f > 0}. Then let

Λ,2, and Jfc)3 = Λ,3\Λ,i

( Σ XlXn-lXn'-l > 10 ) .

Using an exponential upper bound,

XlXn-lXn'-l > 10 j <J

< e-1Oίexp Σ PiPn-iPn'-i^ - 1)

Then
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as k —» oo and the result holds. D

Lemma 4. Fix any 1 < c < c2(λ). Put gk = gk,ε = £;G[(1 + ε)k\. Then
take ε > 0 sufficiently small. Using the same notations and assumptions as
given elsewhere in the paper,

Proof.

Let Ik = min{Z £ Jk) and 1% = max{Z G Jfe}. Taking conditional expec-
tations given {Xn-iXn'-i : Z € J/J, rewriting the resultant expression and
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then upper bounding that,

TT M _j_ p ^ e t l ^

ieJk

\Ven-J

n-lk

{(14
k

n'-h

ί=n-/ f c+l
n'-ll-l

l=n-l'k
n-lk

X

< exp I 30*2 - (*i + t2)cgk + (e*1 - 1)

+(e t 2 - 1) V PjPn'-j + (e*1 - l)(e t 2 -

J ] (1 + Pn,_;(eί2

len'-Jk

PjPn-j = g{n, fc, ε) and V^ PjPnr_j = g(nf, fe, ε), each of which is asymp-

totic to EG[(i+ε)
k\ uniformly in n,n' as (1 + ε)k —> oo. Letting e*1 =

e "" p(n'fce) ' V/1 1 Z ; o r L e m m a z g l
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and

i)9{n'M < y/2πg(n'9k9e)P(Ng{n,M > cgk).
Note that

(e*i - i ) ( β * - 1) ^ PjPn-jPn'-j - 0

as (1 + ε)fc —> oo. Incorporating Lemma 1 as well as the formula for e*2, etc.,

T2 < (c)312πEG[(1+ε)kiP(AnAM)P(Anf^c))

for all (1 + ε)k sufficiently large. D
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