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Abstract

Bruss (1987) has studied a continuous-time generalization of the
so-called secretary problem, where options arise according to homoge-
neous Poisson processes with an unknown intensity of λ. In this note,
the solution is extended to the case with random availability, that is,
there exists a fixed known probability p(0 < p < 1) of availability, and
the number of offering chances allowed at most is m(> 1). The case
when the probability of availability depends on m is also studied.
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1 Introduction

Bruss (1987) has studied the following problem. A decision maker has been
allowed a fixed time T in which to find an apartment. Opportunities to
inspect apartments occur at the epochs of a homogeneous Poisson process
of unknown intensity λ. The decision maker inspects each apartment im-
mediately when the opportunity arises, and he must decide immediately
whether to accept or not. At any epoch he is able to rank a given apart-
ment among all those inspected to date, where all permutations of ranks
are equally likely and independent of the Poisson process. The objective is
to maximize the probability of selecting the best apartment from those (if
any) available in the interval (0,Γ]. This is an extension of the problem
studied by Cowan and Zabczyk (1976), who assume that the intensity λ of
the process is known. Bruss (1987) has shown that if the prior density of the
intensity of the Poisson process is an exponential with the rate parameter
a > 0, then the optimal stopping rule is to accept the first relatively best
option (if any) after time s* = (Γ + a)/e - a. Sakaguchi (1989) has studied
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the full-information problem. These problems may be regarded as the ex-
tended problem of the classical secretary problem, whose history is reviewed
in the papers of Ferguson (1989) and Samuels (1991).

This note extends Bruss' problem to the problem in which each owner of
apartment can accept the offer proposed by apartment's searcher with a fixed
known probability p(0 < p <l,q = 1 — p), and the decision maker is allowed
to make at most m(> 1) offers, where m is a predetermined number. When
an offer is made, even if an apartment is not available m drops to m — 1.
The case of p = m = 1 equals Bruss' problem. Bruss considered also the
case of an inhomogeneous Poisson processes, but this case is not considered
in this paper.

The secretary problem with random availability of each secretary is some-
times called the problem of uncertain employment. Smith (1975), Tamaki
(1991), Sweet (1994) and Ano, Tamaki and Hu (1996) have studied the prob-
lem of uncertain employment. Viewing applications to real world problems,
this setting of random availability is more attractive.

We show that the optimal stopping rule for the problem with a Poisson
arrival at intensity λ > 0 having a prior exponential distribution with rate
parameter a > 0 and a probability p availability when we can make m more
offers is to make an offer to the first relatively best option (if any) after time
s^ = (Γ + α) exp{-C ( m )(g)} - α, where C(m)(<?) is constant. For a = 0, it is
interesting to compare the values s\ = Texp{—1}, s?; = Texp{—(1 + g/2)},
si = Γexp{-(1 + q/2 + q2/3 + <?3/8)},... with the values s\ = nexp{-l},
si = πexp{-(l + q/2)}, s% = nexp{-(l + q/2 + q2/3 + <?3/8)}, for large
n in the no-information secretary problem with probability p of availability,
which has been solved by Ano, Tamaki, and Hu(1996). They have studied
the case of a fixed sample size n of apartments and shown that the optimal
stopping rule is to give an offer the first relatively best option which appears
at period s^ or after period s^.

In Section 2, we formulate the problem. Section 3 gives the optimal
stopping rule for the cases with m = 1,2. Section 4 involves a consideration
of the general case with m > 3. Section 5 considers the case when the
probability of availability depends on m.

2 Formulation

Let τi, T2,... denote the arrival times of a Poisson process in chronological
order, and let {N(t)}t>o t>e the corresponding counting process. For the
unknown intensity λ of the process, we suppose a prior gamma distribution
with parameters a and Z, i.e.,

aιλι~1{exp(—a\)/(l — l)!}/(λ > 0), where a is a known nonnegative pa-
rameter. The corresponding conditional density of λ given {T* = s} can be



Bruss' stopping problem with random availability 73

straightforwardly computed and yields

/(λ|r< = s) = X^-^s + α)ι+i{exp{-λ(s + α)/{l + i - 1)!)}

The posterior distribution of N given {τι = s} is found in Bruss (1987)

and turns out to be a Pascal distribution with parameters (i + Z) and (5 +

α)/(T + α), i.e.,

When Z = 1, the prior gamma density equals an exponential density.

Hereafter we focus on the case of Z = 1, because then we can show that the

one-step look-ahead function (defined later) is independent of i.

We define the state of the process as (i,m,s), when we observe that

the ith option arriving at time s is the relatively best option, and we can

offer more m options thereafter. Let W^ (s) denote the maximum prob-

ability of obtaining the best option starting from state (i,m, s). Similarly,

let Ui\s)(Vi(s)) be the corresponding probability when we make an

offer(we don't make an offer) to the current relatively best option and pro-

ceed optimally thereafter. Then, by the principle of optimality, we have for

i,m > 1,

(2) Wim){s) = max{C/fm)(5), V$(m)(s)} for s € (0, Γ]

with boundary conditions W^(T) = p for i, m > 1 and W^ \s) = 0 for
all i and s.

Using (1), we can show (Z = 1)

Let pL's) denote the one-step transition probability from state (i,s,m)

to state (i + &, s + μ, m). We then have

(4) VΓ(s)--

and for k > l , μ € (0 ,Γ-β],
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+ k -1)(< +
J Λ

+ a ίi + k — 2\ / s + a V / μ \ k l

a + μ)2 \ k — 1 y \5 + α + μ/ \s-\-cί-\-μJ

(5) follows from /0°° Xk+ie-χ^a+^dλ = Γ{k + i + l)/(s + a + ,

Let B m be the one-step look-ahead stopping region, that is, Bm is the

set of state (z, 5, m) for which making an immediate offer to the current

relatively best option and to make an offer. Thus

n m — \Vϊ55577i/ u i \s) cL

k>\

Let
rT-s

We call g\ (s) a one-step look-ahead function. Then Bm = {(i, s,m)

9im\s) > 0} and 5 m )(s) can be written as follows from (3) and (4):

(m)

a\ f1'

aj Jo

t1](s + μ)- vfjT^is + μ)}dμ
k>\

Jθ k>l

where we use Σk>iPuf) = {s + a)/(s + a + μ)2^ because p){ ^ = (s + a)/(s +

a + μ)2 x { Pascal distribution with parameters (fc, μ/(s + a + μ))} It is
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well-known that if Bm is closed, e.g., Bm = {(i,s,ra) : r» = s > s^} for
some specified value sj^, then £?m gives the optimal stopping region.

^Let Λ<m)(s) = p-1((T + α)/{8 + α) )^ m ) ( 5 ) . Then, Bm = {(i,s,m) :

Λ̂  (s) > 0}, so that we again call h\m\s) a one-step look-ahead function.

3 The cases m = 1,2

Theorem 3.1 (771 = 1) TΛe optimal stopping rule for the problem with
random arrivals on (0, Γ] following a Poisson process at intensity λ > 0
having an exponential distribution with rate parameter a > 0 and availability
probability p (0 < p < 1) when we can make one more offer thereafter is to
make an offer for the first relatively best option after time s\ = (T+a)/e—a.

Remark: It is interesting to see that p has no influence on the optimal
policy.

Proof. The one-step look-ahead stopping region for m = 1, Z?i, can
be written as Bλ = {(i,s,l) : h^is) > 0} = {(i,s,l) : 1 + log((s + a)
/(T + a))) > 0} = {(t, β, 1) : Ti = 5 > sj}, where s\ = (T + a)/e - a. Thus
Bi is closed and gives the optimal stopping region.

Theorem 3.2 (m = 2, Same conditions as in Theorem 3.1) The optimal
stopping rule is to make an offer for the first relatively best option after time
s* = (T + a) exp{-(l + q/2)} - a.

Proof Prom Theorem 3.1, we have

+ μ) - /O

T-S Σk>l P^ulHis + μ)dμ,
for s + μ > s\

+ μ)-v£l(s + μ),
for s + μ < si

(7) = (j£)

where I (A) is the indicator function of Λ Let h\m\s) = (Γ + o)/((β +

α)p)5ι m ) ( 5 ) a n d w e w r i t e ^ i 1 ^ ) ^ ^ ( 1 ) ( s ) because h^(s) is independent of
i and /ι(χ)(s) = 1 + log((β + a)/(T + a)). FVom (6) and (7),
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(sl-s)+ s + μ + a

Then, for 0 < s < sj,

(8) ^ 2 ) ( S ) - l o

where the constant C^2\q) is calculated by changing variable (s+μ+a)/(T+
a) to v as follows.

T + a

(9) = 1 + qf -(l + \ogv)dv =

Therefore we have for s € (0, s*],

which is nondecreasing in s G (0,5j]. For s € [s*,Γ], Λ(^(s) is nonnegative,

because h^ι\s) in nonnegative in 5 G [s*,T], Then we have B<ι — {(i, 5,2) :

Λ<2)(5) > 0} = {(i,5,2) : r< = 5 > 5^}, where s\ = (Γ + α)exp{-(l + 9/2)}-

β(> s*). Thus JB2 is closed and gives the optimal stopping region.

4 The case m > 3

We extend the results of Section 3 to the general case with m > 3.

Theorem 4.1 (m > 3. Same conditions as in Theorem 3.1) The optimal
stopping rule is to make an offer for the first relatively best option after
time s^ = (T + α)exp{-C ( m )(ς)} - a, where C^m\q) is constant. s*m is
nonincreasing in m.

Proof. We carry out an induction on m. It is sufficient to show that

Bm is closed and h\m + \s) > h\m\s) for any m. So we assume that (Al)
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h\m\s) is independent of i, is nondecreasing in s G (0, s^-i], is nonnegative
in s G [5^_1? T], and can be written as

(10) ΛW (s) = CW (q) + log ( ̂ - ) , /or 0

where

(ii) σ<

and (A2) h^m+1'(s) > h^m>(s) for all s G (0,Γ] and s*m+ι < s*m.

Note that the hypotheses imply that Bm is closed and can be written
as Bm = {(i,s,m) : h^m\s) > 0} = {(i, s,m) : n = s > sĵ },where s^ =

When m = 1, the induction hypotheses are valid from Theorems 3.1 and
3.2. For the rest of the proof, we show that both (Al) and (A2) hold with
m replaced by m + 1.

From the hypotheses, we have

= P

T + a

Then, from (6)

,T + a

+q

log f £ ± ) + Q Γ~S

-s)+ S •

Thus, h^m+1\s) is nondecreasing in s € (0, s^], and is nonnegative in s €
[s^,T], because /ι(m)(s) is nonnegative in s e [s^,T]. For 0 < s < s^,

(12) h^(s) = log (|±^) +
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where

(T+α)exp{-C(m)(9)}+o-s S + μ + a

(13) = 1 + qί -h{m)((T + a)v-a)dυ.
Λxp{-C(™>(<7)} V

Therefore (Al) holds with m replaced by m + 1.

As follows, it can be easily shown than (A2) holds with m replaced by
m + 1. Prom (10) and (12), we have

= qί h{m+ι)(s

> o.

The first inequality follows from the second part of the hypothesis (A2), and
the last one follows from the first part of the hypothesis (A2). The proof is
complete.

The constant C^(q) is easily computed. From (10), we have

0 < s < si

+ (l-g)log[^)-?lo^(4±£], s*,<s<T.

We thus get

rT-s J
q / )

J{s*-s)+ s + μ + a

^

+q -(1 + (1 - q) log v - jr log2 v)dv
Je~x V λ

q q2 q3

1 + - + — + —.
2 3 8



Bruss' stopping problem with random availability 79

Then si = (T + α) exp{-(l + q/2 + q2/3 + q3/8)} - α.
For α = 0, it is of interest to compare the values s* = Texp{—1}, ŝ  =

Texp{-(l+g/2)}, si = Texp{-(l+q/2+q2/3+q3/8)} , , with the values
for large n, s\ = nexp{—1}, sζ = n e x P { ~ ( l + ?/2)}, S3 = nexp{—(l + g/l +
q2/3 + qs/S)} , , of the no-information problem with random availability,
which has been solved by Ano, Tamaki, and Hu (1996).

5 Availability probability depends on m.

We assume that pmqm+i/Pm+i > Pm-iqm/Pm, (?m = 1 - Pro) for m =
2,3, Under this assumption, we can see that the one-step look-ahead
stopping rule for this problem is optimal. By the same method developed in
Sections 2,3,and 4, we have the following one-step look-ahead function,

^ 0
fc>l

Let h\m'(s) = p^{(T + a)/(s + a))g^ (s), then for m = 1, h^(s) = 1 +
log((s + a)/(T + α)), which is independent of i, and is nondecreasing in s.
Therefore the one-step look-ahead stopping region for ra = 1, i?i, is written
as B\ = {s : s > s* = (T+a)/e — a}, is closed and gives the optimal stopping
region for m = 1, where s* is a unique root of the equation h^ι\s) = 0.

For m = 2, we have

(14)/ι(2)(5) = l + l o g ( - ^ - ) + ^ ^ / h{1)(s + μ)dμ.
\T + a/ p2 J(si~s)+s + μ + a

For 5 G (0,5f], /ι(2)(s) = 1 + log((s + a)/(T + a)) + (pi92)/(2p2), which is
increasing in s G (0, sj]. For s G [s*,T], h^2\s) is nonnegative, because
h^\s) is nonnegative for 5 G [s;[,T]. Therefore -B2 can be written as B2 —
{s : s > S2 = (T + a) exp{—(1 + (pi?2)/(2p2))} — «}, is closed and gives the
optimal stopping region for m = 2.

For m > 3, we have the following theorem. It is essentially the same
approach employed in Section 4 to prove it, so we omit the proof.

Theorem 5.1 Suppose that pm9m+i/Pm+i > Pm-iqm/Pm for m = 2,3,....
The optimal stopping rule for the problem with random arrivals on (0, Γ]
following a Poisson process at intensity λ > 0 having an exponential distri-
bution with rate parameter a > 0 and availability probability pm (0 < pm < 1)
when we can make m more offers thereafter is to make an offer for the first
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relatively best option after time s^ = (T + a) exp{—C^(pi, ,Pm)} — α,

where C^m\pi, ,Pm) ̂  constant, s^ is nonincreasing in m.

The constant C^m\pι, ,p m ) is given by

( P i , P m ) Γ
Pm ./(β ,+α)/(T+α) V

where the one-step look-ahead function, h^m\s), for this problem can be
written as

Γ~s — I — i
J(s* ,-s)+ s + μ + aPm J(s*m_1-s)+ s + μ

Monotonicity of s^ can be shown using the same induction on m as the

proof of Theorem 4.1 and the assumption on pm as follows.

f
Pm+l J(s^-s)+ s + μ + a

Prn-1qIn

ίPjrβ^ _Pjn-1qrn\ ίT-S 1 fc(m)(β+ ) r f

V Pm+l Pm J J(s^ι_1-s)+ S + μ + a

> o.

Using hW(s) = log((s + α)/(T + α)) + 1 + (pi92)/(2p2) for s € (0,sj] and
)(5) = log((S + α)/(T + α)) + l - (

Iog2((s + a)/(T + a)} for s € [sϊ,Γ], we have

^
P2

P3 Λ - i t Λ V P2

2

and then s^ = (Γ + α)/exp{l + (p2^3)/(2p3) + (piP2q2qs)/(3p2p3) +

93)/(8p2P3)} - α When P l = p2 = p 3 , (91 = 92 = 93 = g), the values,
sί> S2? S3? coincide with the values, s |, s?;, 53? i n Section 4.
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6 Outlook for further research

The full-information version of our problem, i.e., extension of Sakaguchi
(1989) remains to be solved.
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