
Games against a prophet for stochastic processes

A. Meyertholeα and N. Schmitz6*

αGesellschaft fr aktuarielle Beratung, Berrenrather Str. 197; 50937 Kin,
Germany
6Institut fr Mathematische Statistik, University of Mnster, Einsteinstr. 62;
D-48149 Mnster, Germany

Abstract
Two players (the ,,prophet" and the gambler) observe a uniformly bounded

stochastic process (Xs)s€S> The prophet's maximal expected gain
E(s\xpseS Xs) is compared with the maximal expected gain supτ EXT of the
gambler who is restricted to use stopping rules r. Games against a prophet
are two-person zero-sum games where the prophet picks the distribution and
the gambler chooses a stopping rule. To obtain minimax-theorems for these
games one has to admit mixed or randomized stopping rules. It is shown
that mixed threshold stopping rules can be used to construct saddle-points
for several cases.
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1. Introduction

Prophet theory is concerned with problems of the following kind: Two play-
ers, the prophet and the gambler, observe a (uniformly bounded) stochastic
process Xs = (Xs)seS where S = {1,..., n} (finite horizon), S = ΊN (infinite
horizon) and S = [α, b] C [0, oo) (continuous time) are the most interesting
special cases. The gambler may stop this process at any time s € S. His
decision, leading to the reward Xs, may take into account the previous ob-
servations X^t < 5, but not the future ones, i.e. he is restricted to use
non-anticipating stopping functions r. The supremum over the expected
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54 Meyerthole & Schmitz

rewards EXT is

V(Xs) := sup{E Xτ : r stopping rule}.

The prophet has complete foresight; the supremum over his expected rewards
is therefore

M(Xs)~E(supXs)
ses

(in the continuous time case obviously some measurability conditions are
needed). Prophet theory compares the functional M and V; in particular,
for a variety of classes of (discrete time) stochastic processes sharp inequal-
ities for the difference M(XS) - V(XS) and the ratio M(XS)/V(X8) have
been derived (for details we refer to the excellent review articles by Kertz
(1986) and by Hill and Kertz (1992) and to the monograph by Harten, Mey-
erthole and Schmitz (1997)). According to the interpretation as returns of
a gambler and a prophet „playing the same game" (see Kertz (1986)) it was
shown (see Gdde (1991), Schmitz (1992)) that these bounds turn out to be
the lower values of special zero-sum games, and game-theoretical solutions
for mixed extensions of these games have been derived. Our goal is to con-
sider games of this kind for stochastic processes:

Definition 1.1.
a) A game against a prophet is a zero-sum two-person game Γ = ('P, T, α)
where V is a class of distributions on (IR5, IB5), T ist a class of (generalized)
stopping rules with respect to a filtration (Gs)seSi and a: V x T —» IR is
a pay-off function of the form a(P,r) = ά(Ep(supsesXs), Ep(Xτ)) where
α is increasing in the first and decreasing in the second component and
Xs,s € 5, are ^-measurable random variables (r.v.) which are integrable
for each P eV.

b) A prophet inequality is an upper bound for the lower value

W*(Γ) = sup inf α(P,τ)

of a game against a prophet; a sharp prophet inequality is the lower value
W*(Γ) of a game against a prophet.

To illustrate this notion we mention two examples:

Examples 1.2.

a) The famous result, due to Krengel and Sucheston (1978), to Garling and
to Hill and Kertz (1981 a)), that M(Xχ,..., Xn) < 2 V{Xi, ...,Xn) holds
true for all non-negative, independent random variables Xi , . . . , Xn and all
n > 2, gives the lower values 2 for the games Γ n = (Vn,%i,a) against a
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prophet where Vn = {ΠΓ=i^> Pi probability measure on [0, oo)}, X{ = TΓ*
(i-th projection), G% = σ(X\,... ,X%), Tn = {r : r stopping rules < n w.r.t.

b) Similarly, the result by Hill and Kertz (1981 b)) that M{XU... ,Xn) -
V(-XΊ,...,Xn) < (d — c)/4 holds true for all independent, [c,devalued
random variables X\,..., Xn and all n > 2 gives the lower value (d —
c)/4 for the corresponding games with the pay-off function αr>(P,τ) =

Xfi - EP(XT). Π

Moreover, a great variety of classes V (e.g. i.i.d. sequences, mixtures of

i.i.d. sequences, discrete-time martingales, general sequences), of classes T

(e.g. bounded stopping rules, generalized stopping rules, threshold stopping

rules) and of pay-off functions α (e.g. discounted rewards, rewards with costs

of observation) has been considered; see Hill and Kertz (1992) and Harten,

Meyerthole and Schmitz (1997).

2. Reduction principles for the prophet

To analyze such games one will try to reduce/simplify the intricate set of

strategies of the prophet. A first reduction principle is provided by a tech-

nique which is (in the special case of independent r.v.) known under different

notions (bαlαyαge (see Boshuizen (1991)), spreading (see Kertz (1986)), dila-

tion (see Jones (1990)), r.v. with maximal variance (see Badewitz (1989)):

Definition 2.1. Let Y be a r.v. on (Ω,,F,P),G be a sub-σ-algebra of T

and α, b G IR, a < b. A r.v. Y% s.t.

(i) P(Y> G B\Q) = P(Y € B\Q) V£ G IB|[α,6]β"

(ii) P(Y> = a\G) = E((b - Y)l{γe[aM}\G)/(b ~ a)

(iii) P(Ya

b = b\G) = E((Y - α)l {y€[ β f 6 I } | ί?)/(6 - α)

is called a balayage of Y under Q, for Q — σ(Z) also balayage of Y under Z.

For sufficiently large (Ω, J7) (e.g. for (IR, IB)) there always exists a balayage.

Conditions (ii), (iii) yield that the (conditional) expectations of Y and Y%

coincide; but for the comparison with (/-measurable r.v. the balayage Y% is

,,better" than the original Y:

Remark 2.2. Let X,Y be integrable r.v., a < b,Y% a balayage ofY under

Q and X Q-measurable. Then

a) E{Y*\G) = E{Y\G) P\G- a.s. and, therefore, E{Y*) = E{Y).

b) E(XyY\G) < E(X\/Y£\G) P\G-a.s., and, therefore, E{X\/Y) < E(X\J
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A second reduction principle is suggested by the optional sampling theorem:
If arbitrary dependences are allowed one will expect that the prophet may
restrict attention to (special) super martingales.

Let Yi,i e IN, be the conditional value ess sup{E(Xτ\JΓi) : r G % := {r >
i}} of Xi,Xi+1,... under T{ (see Chow/Robbins/Siegmund (1971), p. 62).
Using Theorem 4.1 of Chow/Robbins/Siegmund one obtains that (Ŷ , ^ ^ G I N
is a [0, l]-valued supermartingale and that M((Xi)ieJN) < - ^ ( ( ^ Z G I N ) - More-
over, the optional sampling theorem (for supermartingales) yields V((Yi)iej^) =
E Y\ = V((Xi)iew). Applying the balayage technique leads to a further sim-
plification:

Theorem 2.3. Let (Xi^^ie^ be a [0, l]-υalued supermartingale (martin-
gale). Then there exists a [0, l]-υalued supermartingale (martingale) (Ŷ , Gi)iew
s.t.

(i) YX = XX (hence V(Xi)iem) = V((Yi)iem))

(ii) P({Yi+i > Yi} U {Yi+1 = 0}) = 1 Vi € IN

(in)M{(Xi)iem)<M((Yi)ieJs).

Proof: According to the convergence of (super-) martingales there exists,
for ^oo := σ( |Ji€ iN^)5 a limit r.v. Xoo s.t. (Xi,fi)iewu{oo} i s a (super-)
martingale. Let Z ^ := (Xoo)o be a balayage of Xoo under ^Όo, Z{ \— X^ and
define (generalized) stopping rules T{ by τ\ = 1, T{+\ \— inf{jf > T{ : Zj = 0
or Zj > ZTi} if Ti < oo,oo else. Then YJ := ZTi,Gi '— TTi yield a (super-)
martingale with the properties (i)-(iii). •

3. Games against a prophet for martingales
a) Time-discrete martingales with finite horizon

First we consider the classes

Xn :χu_^χn is a [Oj i]_valued martingale}

.,xn : χu _ ^ Xγι i s a [Q, l]-valued supermartingale}

of (super-) martingales (with respect to the canonical filtration). The prophet
regions

and the corresponding Π^ M a r t are known to be (see Hill and Kertz (1983),
Kertz (1986))
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TjMart = j-rSMart

:= χ

It can be shown that the upper bounds of these regions are attained for spe-
cial martingales which have been introduced by Dubins and Pitman (1980):

Definition 3.1. X = (Xi,..., Xn) *s called Dubins-Pitmαn-mαrtingale for
n and x where n > 2 and x G (0,1) iff

(i) P{XX = x) = 1

(iii) P(Xj = x^\Xj-ι = x^~) = a ̂ ϊ

= 1 - P(X, = 0|X,_i = x 2 ^ 1 ) , 2 < j < n

(iv) P(Xj = Ol^-i = 0) = 1, 2 < j < n.

These Dubins-Pitman-martingales yield extremal distributions; indeed, no
other extremal distributions exist:

Theorem 3.2. (see Harten, Meyerthole and Schmitz (1997), Theorem
(3.6))
Let n em and p* i . ..Λ> e pSMart s t EXχ = x G (0,1). Then M{XU . . . , Xn)
un(x) iff Xi, - 5 Xn is a Dubins-Pitman-martingale for n and x.

By considering tangents of the upper boundary of the prophet region one
obtains sharp prophet inequalities:

Corollary 3.3. Let n > 2, p*i.-.*n e pMart and η e ^^ τ h e n the

sharp inequality

M(Xh ..., Xn) - (1 - 7 ) " < n 7 V(XU..., Xn).

holds. In particular (for 7 = 1 and 7 = 1/n resp.)

(ii)M(Xι,...,Xn)-V(Xu...,Xn)<(^y,

where the equality in (i) holds only for the 0-martingale, in (ii) only for the

Dubins-Pitman-martingale for n and ί22^1)

Prom these results we obtain some game-theoretical results:
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Theorem 3.4.

a) For n > 2 and 7 e [0,1] the game I \ 7 = ( ^ a r t , T n , α7) αgαirwί α
prophet where

aΊ{P,τ) := (EP{ m ω X j )

is strictly determined with value n(l — ηι/n). Each strategy of the gambler
is a minimax-strategy; for 7 ^ 0 £/&e prophet has exactly one minimax-
strategy, namely the distribution of the Dubins-Pitman-martingale for n
and j(n~1)/n; for 7 = 0 (ratio case) the value is n and there does not
exist any minimax-strategy of the prophet

b) For n > 2 and 7 G (0,n] the game Γ2,7 := {Vl£*xt,Tn,aΊ) against a
prophet where

aΊ(P, r) := EP( max Xi) - 7 EP(XT)
l<i<n

is strictly determined with value (\ — η/n)n. Each strategy of the gambler
is a minimax-strategy. The prophet has exactly one minimax-strategy,
namely the distribution of the Dubins-Pitman-martingale for n and (1 —
7/n)"- 1 .

Proof (for part a); part b) is shown analogously): According to 3.3 we obtain

Wς(Γi,7) = sup inf aΊ(P,r)
M t τ€Tn

= sup
M

Since the equality is attained by the Dubins-Pitman-martingale for n and

7"Λ~, and since for each r eTn

sup aΊ(P, r) = sup EP( max X{ - η)/EP{Xχ) = n(l - 7 1 / n ) ,
M t M l<i<n

(
l<i<n

it follows W*(Γi)7) = n(l — 71/™) and, therefore, the assertion. •

b) Time-discrete martingales with infinite horizon

In some aspects the infinite horizon case

is a [0,1]-valued martingale}

is a [0,l]-valued super martingale}
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is the limiting case of the finite horizon cases - in particular the function
u(x) := x — x lnx = limn_>oo un(x) plays an important role - but there are
some differences. An important fact is that the upper bound of the prophet
region Π ^ and Π ^ a r t is no longer attained (see Hill and Kertz (1983),
Theorem 4.2):

By considering tangents of the boundary of Π ^ a r t o n e obtains:

Lemma 3.5. Let p(χ*)ieiN e pMart αnd η > Q τ h e n

this inequality is sharp. In particular:

(i) For each C G IR there exists a [0,l]-valued martingale (Xi)iem s.t

(ii) For p(χi)i€ίs € 7?Mart holds the (sharp) inequality

For our game-theoretical considerations we have to take into account that
the a.s. finiteness of a stopping rule heavily depends on the underlying
probability measure. Hence we consider generalized stopping rules r where

Xτ := limsupXn on {r = oo};
n—*oo

the class of these stopping rules will be denoted by T. According to Theo-
rem 4.7 of Chow/Robbins/Siegmund (1971)/Theorem 11 of Shiryayev (1978)
this generalization yields no advantage for the gambler, and for uniformly
integrable martingales holds E(Xr) = E{Xχ) Vr G Γ.

Whereas the ratio case (i.e. 7 = 0) is, due to 3.5(i), of no game-theoretical
interest we obtain for 7 > 0, analogously to Theorem 3.4, a complete solu-
tion for the corresponding games against a prophet:

Theorem 3.6. For 7 > 0 the game Γ3 ) 7 := (V^^.T, α7) against a prophet
where

aΊ{P,τ) := £P(supJQ) - 7 EP{Xτ)

is strictly determined with value e Ί. Each strategy of the gambler is a
minimax-strategy; there does not exist any minimax-strategy of the prophet
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c) Time-continuous martingales

In the time-continuous case (S = [0, b] horizon b or S = [0, oo) infinite hori-
zon) some additional measure-theoretical problems arise. To ensure that
supseSXs as well as Xτ is measurable we assume (see Meyer (1966), Ch.
IV.3) that {XtiF^tzs, where (F^teS denotes the canonical filtration, is a
[0,l]-valued martingale with right-continuous paths (then the functionals
M(Xs) and V(Xs) are defined and the optional sampling theorem yields
V(XS) = E(X0)). For p g j g = {*>(**)*><> . ( χ t ) ^ 0 i s a [0, l]-valued martin-
gale with right-continuous paths} we then obtain

Theorem 3.7. (see Meyerthole (1995), Harten, Meyerthole and Schmitz

(1997),Theorem (3.21))

Let p(χt)t>o e pMart a n d E X o e (o,l). Then M((Xt)t>0) < EX0 -

EX0 In EX0.

Moreover, one can show that the upper bound in 3.7 is really attained:

Theorem 3.8. (see Harten, Meyerthole and Schmitz (1997), Lemma (3.27))

For each x G (0,1) there exists a p(χ^t>o e pMart s t

EXo = x and E(sup Xt) — x — x In x.
ί>0

A special stochastic process of this kind is (BfAτ)t>o where {Bf)t>o is a
(one-dimensional) Brownian motion with continuous paths starting in x and
τ:=inf{t :B?€{0, l}}.

A further difference to the time-discrete case is that there exists a great
variety of extremal distributions: The trivial modifications

t<h
for t\ < t < t2 , where 0 < t\ < t<ι,

t>t2

of the Brownian motion (B^)t>o yield further (closely related) extremal dis-
tributions. But there are essentially different extremal distributions (due to
a personal comment by F. Boshuizen): Let Z be an Exp(l)-distributed r.v.,
x G (0,1), and define for t G [0, oo)

Then (Xt)t>o is a [0, l]-valued martingale with right-continuous paths and

EXQ = x, E(snpXt) — x — x lnx;
t>o

xeι lfz-

X—λn <r>

for
t<

t>

— In a:

— lnx .
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the ,,discretizations" Xo, X-\nx/{n-ι)i x-2\nx/(n-i), >^-inz yield the Dubins-
Pitman martingales for n and x.

Combining the previous results one obtains:

Theorem 3.9. α) For all b > 0

the extremal distributions are not uniquely determined,

b) For each p(χ*)t>o 6 pM«t and y > 0

M«Xt)t>o) ~ Ί V((Xt)t>o) < e~\

The inequality is sharp; equality is attained.

The game-theoretical analysis of the situation is additionally complicated by
the fact that even the first entrance times

TA := inf{ί > 0 : Xt € A}, where inf 0 := oo,

may fail to be stopping rules for all strategies of the prophet (see e.g. Bauer
(1991), §49). On the other hand, each interesting set of strategies of the
gambler should include the class

Tc := {r = c : c > 0}

of constant stopping rules. But this class is already rich enough to lead to a
saddle-point theorem:

Theorem 3.10. For each 7 > 0 the game Γ4 ) 7 := (V^^yTc, aΊ) against
a prophet

where aΊ(P,τ) := Ep(supt>0Xt) - 7 EP(XT) is strictly determined with
value e~7. Both players have minimax-strategies (in fact, each r G Tc is a
minimax-strategy of the gambler).

Proof: The results of 3.7-3.9 yield W*(Γ4,7) = e~Ί and the existence of
minimax-strategies of the prophet. On the other hand, it follows for each
r e Tc that

sup (£(supX t) - 7 EXT) = sup £(supX t) - 7 EXo = W*(Γ4,7).
p^-pMart £>0 p^-pMart t>0

This yields the minimax-property of r and the strict determinedness of Γ4j7.
D

It is obvious that all the results of this chapter hold true for [0,l]-valued
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supermartingales (with right-continuous paths) and that they may be gen-

eralized (by linear transforms) to [c, d ]-valued (super) martingales.

4. Games against a prophet for general stochastic processes

The results of the chapters 2 and 3 represent the essential tools to solve the

general case.

a) Time-discrete processes with finite horizon

For the classes Vn '= {p(*i»-»*n) :Xu...,Xn are [0,l]-valued r.v.} and the

corresponding prophet regions Π n one obtains (see Hill and Kertz (1983),

Theorem 3.2) for each n G IN

Πn = Π^ a r t = {(x, y) G [0,1]2 : x < y < x + (n - l)x(l - x^)}.

It turns out that again the Dubins-Pitman-martingales represent the only
extremal distributions:

Lemma 4.1. Let n G IN and p*u->Xn e γn S t t βXλ = x G (0,1). Then

M(Xχ,..., Xn) = un(x) iff Xi,... ,Xn is a Dubins-Pitman-martingale for n

and x.

Proof: For the remaining part we assume that Y\,..., Yn is the supermartin-
gale which is constructed according to Chapter 2. Due to Theorem 3.2
YΊ,..., Yn must be a Dubins-Pitman-martingale for n and x. By the con-
struction of Yι,...,Yn we obtain {Xi = 0} D {Yi = 0}. To show that

{Xi = x"^} D {Yi = X"171} one may use backward induction. By the stop-
n—i n—i

ping rule r = i, if X{ = x^-i, i +1 elsewhere, one obtains P{X% < xn~ι, Yi =
χ5Ξτ,x i +i = y i + i = x 1 ^ 1 ) = 0. α

By considering tangents of the upper boundary one obtains, in the same way
as before, sharp prophet inequalities.

But under the game-theoretical point of view there are considerable differ-
ences to the martingale case. In particular, it was shown (see Schmitz (1992))
that for the difference case an (see Example 1.2 b)) as well as for the ratio
case CLR the games (Vn,T

n,a) fail to be strictly determined. According to
general game theory one is, therefore, led to admit mixed or randomized
stopping rules (see Irle (1990)). Indeed, it was shown by Gdde (1991) for
the difference case and by Schmitz (1992) for the (modified) ratio case that
this leads to strictly determined games.
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b) Time-discrete processes with infinite horizon

In the same way as in part a) we obtain for

i)i*™ :Xi,ie IN, are [0,l]-valued r.v.}

the prophet region

I L = l £ a t = {(*>y)G ( ° ' v 2 : x ^y < x ~x ln x > u ^ ° ) > ( I Ί ) }
(see Hill and Kertz (1983), Theorem 4.2) and sharp prophet inequalities.

Under the game-theoretical point of view the same difficulties arise as for the
infinite horizon martingale-case; hence we again consider generalized stop-
ping rules. Due to (3.5)(i) the ratio case is of no game-theoretical interest.
For the (generalized) difference case the situation considerably differs from
the martingale case:

Theorem 4.2. For each 7 > 0 the game I \ 7 := (Poo, T,α 7 ) against a
prophet where aΊ(P,τ) := Ep(s\ipiej^ Xi) —7 Ep(XT) fails to be strictly de-
termined; the lower value is W*(Γ5ί7) = e~Ί, the upper value is ty*(Γ5 ) 7) =
1/(1 + 7). A minimax-strategy r* of the gambler is given by

τ*(xux2,...) := inf{% € IN : x{ > 1/(1 + 7)}, inf0:=oo;

there does not exist any minimax-strategy of the prophet.

Proof: The statements on the lower value and on the non-existence of
minimax-strategies of the prophet follow from Lemma 3.5. On the other
hand, one obtains for each T GT

sup (sup a;* — 7 xτ)
x < € [ 0 , l ] i l N

> sup /
PeVooJm e

= sup (Ep(supXi) - 7 Ep(Xτ)) > sup (supx^ - 7 xτ).
φ] IN

Defining Bτ := {x G IR : τ(x,...) = 1} and

(1/(1+ 7), 1,0,...) eBτ

i f V ( l + 7 )
[ (1/(1+ 7),0,0,...) ΪBT

leads to
sup (sup Xi — 7 xτ) > 1/(1 + 7)

«*€[0,l] i€lN
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and, therefore, W*(Γb,Ί) > 1/(1 + 7). But for each (^)< €IN € [0,

ί sup ί G l N Zi-ηKmzi < 1/(1 + 7) if all z{ < 1/(1 + 7)
sup Zi 7 *τ*-^ s u p . e I N Zc^ Zko < 1/(1 + 7 ) if fc0—inf{j : Zj. > _ !

Hence W*(Γsn) = 1/(1 + 7) and r* is a minimax-strategy of the gambler.•

Therefore, one is again led to consider randomized stopping rules. In the
difference case (7 = 0), according to Gdde (1991) a canonical candidate for
an optimal strategy of the gambler seems to be φ* = (ψn)neΊN where

V ( ( a ) ) - I 0 elsewhere,

~ {zn - max{xi,..., xn-i, l/e})+/xn

where 0/0 := 0 and z+ := max{0, z}. To show that φ* is really a generalized
randomized stopping rule, we mention that for each sequence (yi)ieJN0 s.t.
Vi e [0,1] and yι-ι < y{ Mi e IN holds

y

Applying this to the indices nj where φnj{(^i)ieΊN) Φ 0, i.e. 1/e =: xno <

x n i < •->, y i e l d s

oo

Σ Ψn((Zi)i€TB) < 1 V(Xi)i€lN € [0, if*]
n=l

hence y?* is a generalized randomized stopping rule.

Theorem 4.3. The game TQ := (Poo,Φoo?̂ 4) against a prophet where Φoo
denotes the class of all generalized randomized stopping rules and

, φ) := Ep(sapXi) - EP(Xφ)
iΊN

is strictly determined with value 1/e. φ* is a minimax-strategy of the gambler
whereas the prophet has no minimax-strategy.

Proof: The statements on the lower value W*(Γt) and on the non-existence
of minimax-strategies of the prophet follow from Theorem 4.2. On the other
hand,

A(P,ψ) = f ^{sMpXi-Xj) φj(
J ieϊΰ i 6 l N

< sup y * (sup Xi - Xj)
e[oi] <eiN



Games against a prophet for stochastic processes 65

where Xoo := limsup^ X{ on {</?oo := 1 — Σ j l i Ψj > 0}, and therefore

sup A(P,φ)= sup A(δ{x.)iemJφ).

It is sufficient to consider the case sup i G l N xι > 1/e. If sup ί G l N X{ — x^ then

k

= Xk~Σ X3r Jr ^ 1

r=l >
where 1 < j\ < . . . < js < k are those indices < k for which ψ^r Φ 0

and Xj0 := 1/e

If xn φ sup ί G l N X{ = Zoo Vn G IN we obtain in a similar way

3=1
0 0

τ . - r
Jr 3

)r=l X >

where (ir)reJN are the indices s.t. φ*r φ 0

< Xoo - lim xιr + xio = 1/e. D

As for the finite horizon case (see Gdde (1991)) there exist further minimax-
strategies of the gambler.

Besides randomized stopping rules one may consider also mixed stopping

rules (see Irle (1990)). Since these turn out to be important also for the time-

continuous case we prove a minimax-result for this class, too. In particular,

we consider mixtures of threshold stopping rules

τ(c) := {n e IN : Xn > c}, inf 0 := oo

and identify these with their thresholds c G [0,1]. Mixed threshold stopping

rules may then be identified with probability measures on ([0, l],Π3|[0)i]); let

G denote the class of all these stopping rules.

Theorem 4.4. For each 7 > 0 the game ΓγjΊ := {Poo,ΓUβ, AΊ) against a

prophet where

AΊ{P,τ) := Ep(snpXi)-ΊEP(XT) for r eT

A7(P, Q) := EP(snpXi) - 7 EP( ί Xτ(c)dQ(c)) for QeG,
i€lN •/[0,l]



66 Meyerthole &; Schmitz

is strictly determined with value e~Ί. The mixed threshold stopping rule Q*

defined by the Lebesgue-density l[e-7 1](c)/7C is a minimax-strategy of the

gambler whereas the prophet has no minimax-strategy.

Proof: Since

A(P,Q) = JQi{EP(8upXi)->rEp(Xτic))dQ(c)

Zi)-ΊEP{XT))
reT

the statements on the lower value and the non-existence of a minimax-
strategy of the prophet follow as before. On the other hand, we obtain for
sup i G l N Xi < e~7 that AΊ(δ{x.)ieJN, Q*) < e~7, and for Xoo := snpieΊN x{ > e~Ί

that

A(5(χi)iGiN' Q*) = χoo - 7 / zr(c)dQ*(c) <x<χ>-Ί I c dQ*(c) = e " 7 .

This yields VF*(Γ7)7) < e 7 and, therefore, the remaining part of Theorem
4.4. ' D

c) Time-continuous processes

Due to the same reasons as for the time-continuous martingale case we re-
strict attention to stochastic processes with right-continuous paths, i.e. we
consider the classes

φ — sp(χt)t>o . (χt)t>o is a [0,l]-valued stochastic
[0,00) 1 p r o c e s s w i t h right-continuous paths}

and (for b > 0)

γ — Sp(Xt)te[otb) : iXt)te[o,b] ™ a [0,l]-valued stochastic 1
\ process with right-continuous paths J

and the corresponding prophet region Π[oj00) and ΠΓQW.

Theorem 4.5.

Π[0,oo) = Π[0,6] =

= {(x,y) G (0,1)2 : x < y < x - z l n z } U {(0,0), (1,1)}

Proof: Obviously Πf^^ C Π[oj0o) F° r the remaining part we assume that
there exists
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a (x9y) e Π [ 0 ) O O ) \ Π ^ ) ? i.e. there exists a p(**)*>o € p [ 0 o o ) s.t. 0 <

V((Xt)t>o) < 1 and

t>o) - V((Xt)t>o) In( ((
ί>0

Since Q+ is a separating set for (Xt)t>o w e have E(supt^+ Xt) = E(supt>0 Xt).
Considering the ordered initial parts of a counting of Q + (and using mono-
tone convergence) we obtain from (•) a contradiction to the results of parts
a), b). The case Π^&j is treated in an analogous way. D

A special consequence of this result is that the reduction to martingales is
also possible in the time-continuous case. Moreover, one immediately ob-
tains sharp prophet inequalities:

Corollary 4.6. Let p(χ^t>o e V[0iOO) and 7 > 0. Then

M((Xt)t>o)-e-*<>rV((Xt)t>o)i

equality is attained e.g. by a stopped Brownian motion (£W)t>o wift start
in e~Ί and stopping rule τ := inf{ί > 0 : Bt € {0,1}}. For each C > 0 there
exists a p(χ*)t>o e p [ 0 o o ) s.t

M((Xt)t>o) > C V{{Xt)t>o).

For a game-theoretical analysis of the situation one has to ensure that each
strategy of the gambler is, for each strategy of the prophet, a stopping rule.
Hence we restrict attention, on the one hand, on the class V?o ̂  of stochastic
processes with continuous paths and, on the other hand, to threshold stop-
ping rules (and their mixtures); then according to Bauer (1991), Theorem
49.5, the desired property is fulfilled.

Theorem 4.7. For 7 > 0 the game Γ7 = {Vf0ooy G, AΊ) against a prophet
where

AΊ(P, Q) := Ep(mpXt) - 7 EP(J ^ Xτ{c) dQ{c))

(and hence each larger mixed extension) is strictly determined with value
e~Ί. The stopped Brownian motion Bt with start in e~Ί and stopping rule
r := inΐ{t > 0 : Bt G {0,1}} is a minimax-strategy of the prophet; the distri-
bution Q* with Lebesgue-density l[e-7,i](c)/7 c is a minimax-strategy of the
gambler.

Proof: Using similar arguments as in the proof of 4.4 one can show that the
stopped Brownian motion and the distribution Q* build a saddle-point. •
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