# The Square-root Game 

David Blackwell<br>University of California<br>Department of Statistics<br>367 Evans Hall \# 3860<br>Berkeley, California 94720-3860<br>U. S. A.<br>e-mail:david.bl@stat.berkeley.edu


#### Abstract

In this work I give an elementary proof of the following : "The absolute $1 / 2$ moment of the beta ( $1 / 4,1 / 4$ ) distribution about $t$ is independent of $t$ for $0<t<1$.


Keywords : beta distribution, two person game, Richardson extrapolation.

Theorem 1 The absolute $1 / 2$ moment of the beta ( $1 / 4,1 / 4$ ) distribution about $t$ is independent of $t$ for $0<t<1$ :

$$
\int_{0}^{1} p(x)\left(|x-t|^{(1 / 2)}\right) d x
$$

where

$$
p(x)=[x(1-x)]^{(-3 / 4)}
$$

is independent of $t$ for $0<t<1$.
More generally, for any a with $0<a<1$, the absolute $a-$ th moment of the beta $((1-a) / 2,(1-a) / 2)$ distribution about $t$ is independent of $t$ for $0<t<1$.

This note, which I am pleased to write in honor of my old friend Tom Ferguson, is about the process that led to the Theorem.

Quite a few years ago, shortly after Tom Ferguson got his first PC, I asked him about the Square-root Game :

## Square-root Game

Players I and II simultaneously choose numbers $x$ and $y$ in the unit inverval. Then II pays I the amount $|x-y|^{(1 / 2)}$.

Later that day, Tom told me that the value of the game is .59907, to 5 places. I asked him how he got such accuracy, since he could solve games only up to $30 \times 30$ on his machine. He said that he'd used Richardson extrapolation (which I'd never heard of). He told me a bit about Richardson extrapolation, and we turned to other rhings.

Then, in my Fall 1994 game theory class I assigned, as a homework problem, to solve the Square-root Game to 3 places. Several students succeeded, but one group of four students, working together, claimed to have solved the game to 15 places. According to them, if either player used the beta $(1 / 4,1 / 4)$ strategy, then Player I's expected income, as calculated by Mathematica, was constant to 15 places, no matter what the other Player did. They could not prove that a beta $(1 / 4,1 / 4)$ strategy gave a constant income, and neither could I.

Later I asked Jim Pitman about the more general case as stated in the Theorem, and he gave a not-quite-elementary proof. Later he found a generalization to higher dimensions in Landkof [1972]. Finally I found an elementary proof, given below.

The method the four students used to get their solution is simple and instructive.

1. They solved a discrete version, restricting each Player to the 21 choices $0, .05, \ldots, .95,1$. The good strategy for each player was a $U$-shaped distribution, symmetric about $1 / 2$.
2. They calculated the variance of this distribution, and found the beta distribution symmetric about $1 / 2$ with the same variance. It was beta (.2613, .2613).
3. They guessed that .2613 was trying to be .25 , so tried beta $(1 / 4,1 / 4)$ as a strategy.

Here is the proof of the Theorem. Fix $a, 0<a<1$, and put

$$
f(t)=\int_{0}^{1} p(x)\left(|x-t|^{a}\right) d x
$$

where $p(x)=[x(1-x)]^{(-(a+1) / 2)}$.

We must show that $f$ is constant on $0<t<1$. Its derivative is

$$
f^{\prime}(t)=a \int_{0}^{t}\left[(t-x)^{(a-1)}\right] p(x) d x-a \int_{t}^{1}\left[(x-t)^{(a-1)}\right] p(x) d x
$$

With the change of variable $u=1-x$ in the second integral, we get

$$
\begin{aligned}
f^{\prime}(t) & =a\left[\int_{0}^{t}\left[(t-x)^{(a-1)}\right] p(x) d x-\int_{o}^{1-t}\left[(1-t-u)^{(a-1)}\right] p(u) d u\right] \\
& =a(F(t)-F(1-t)), \text { where } \\
F(t) & =\int_{0}^{t}\left[(t-x)^{(a-1)}\right] p(x) d x
\end{aligned}
$$

So we must show that $F(1-t)=F(t)$. To evaluate $F$, make the linear fractional change of variable $z=(t-x) /(t-t x): x=t(1-z) /(1-t z)$ (see Carr, [1970], Formula 2342). We get

$$
F(t)=[t(1-t)]^{((a-1) / 2)} \int_{0}^{1}\left[(1-z)^{(-(a+1) / 2)}\right]\left[z^{(a-1)}\right] d z
$$

So $F(1-t)=F(t)$, proving the Theorem.
So the value of the Square-root game is I's expected income when he chooses $x$ according to beta $(1 / 4,1 / 4)$ and II chooses $y=0$, namely

$$
\begin{aligned}
\Gamma(1 / 2) / \Gamma(1 / 4) \Gamma(1 / 4)) \int_{0}^{1}\left(x^{(1 / 2)}\right)\left([x(1-x)]^{(-3 / 4)}\right) d x & =\Gamma(1 / 2) \Gamma(3 / 4) \Gamma(1 / 4) \\
& =.599070117367796 \ldots
\end{aligned}
$$

So Tom's first five places were correct.

## Aknowledgement

I thank the referee for his kind remarks.

## References

[1] CARR, G. S. (1970). Formulas and Theorems of Pure Mathematics. Chelsea.
[2] LANDKOF, N. S. (1972). Foundations of Modern Potential Theory. Springer-Verlag. N. S.

