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ABSTRACT. Multiple hypothesis testing occurs in a vast variety of fields and for a vast
variety of purposes. Optimality results are relatively sparse in this area compared to
results for tests of individual hypotheses. This paper restricts consideration to cases
in which a finite number of parameters are involved, in which conclusions are desired
for each parameter separately, and in which directional inference may or may not
be involved. The paper does not deal with optimal design, with tests of composite
hypotheses without further resolution, nor with sequential analysis or ranking and
selection procedures. It is primarily a historical survey, concentrating on work of
Erich Lehmann, but relating his optimality results to more recent developments,
primarily in stepwise testing.

1. INTRODUCTION

Testing of more than one hypothesis simultaneously is widely practiced in many

fields and for many purposes. While theory and methods in this area originally arose in

connection with relatively small numbers of treatments being evaluated or compared,

more recently there has been a great increase in applications to situations in which

massive numbers of hypotheses are being considered jointly, such as in large surveys

(for example, the National Assessment of Educational Progress-see Beaton and Zwick,

1992), signal compression, microarray analysis, and astronomy. In some of these situ-

ations, the number of hypotheses ranges into the tens of thousands and higher.

An alternative way of looking at multiple hypothesis testing is as a multiple

decision problem. It turns out to be useful to consider such problems from both multiple

testing and multiple decision perspectives, and sometimes in fact to combine these two

perspectives. These dual perspectives and combinations will be illustrated.
11
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There is some overlap between this paper and Chapter 11 of Hochberg and

Tamhane (1987) on optimal procedures, but the present paper also covers some ma-

terial, related to stepwise hypothesis testing procedures, not covered in that source.

Points of intersection will be noted in the ensuing discussion.

When considering multiple testing problems, the concern is with Type I errors

when hypotheses are true, and Type II errors when they are false. The evaluation

of procedures is based on criteria involving balance between these errors, or special

attention to Type I errors. When considering these problems from a multiple decision

standpoint, losses are attached to each incorrect decision, and some method of minimiz-

ing losses is derived. Bayesian methods incorporate prior distributions on parameters

in addition to other assumptions in each of these approaches.

In the hypothesis testing approach, it is important to specify the type of error

control of interest. The criterion that has been used most widely is control of the

familywise error rate (FWER), following the terminology formulated by Tukey (1952,

1953). This is defined as the probability of one or more errors in a family of hypotheses

under consideration; alternatively, as the probability of one or more incorrect deci-

sions. With small experiments, this rate was sometimes referred to in the past as the

experimentwise error rate, since it was applied over all hypotheses being tested (see

Ryan, 1959). With the increasing application of these ideas to larger and more complex

investigations with many hypotheses, it is appropriate to use the more general term

familywise error rate, since error control of this type may be too conservative when

applied to all hypotheses to be tested. There is no clear criterion on how to define

families over which errors should be controlled; for example, in a multifactor experi-

ment, should errors be controlled at a specified level within each factor? How about

interactions? See Westfall and Young (1993, Chapter 7) for an interesting discussion

of this issue with examples.

An alternative criterion, the per-family error rate (PFER) (Tukey, 1952) is con-

trol of the expected number of falsely rejected hypotheses. When the probability of

rejecting any single hypothesis is small, and the test statistics are independent, the

PFER is only slightly greater than the FWER for most common testing procedures,

and it is conventional to use the same upper limit under both error criteria. With

dependent test statistics the difference can be considerable, making the PFER control
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at a given level substantially more conservative than the FWER control at that level.

Note that the PFER, in distinction to the FWER, can be expressed in an additive

form over the family of hypotheses, using an indicator variable for false rejection of

each hypothesis. This makes the PFER easier to deal with statistically, as will be

illustrated.

Finally, a more recently-introduced criterion, control of the false discovery rate

(FDR), will be discussed briefly.

2. T H E ONE-SIDED PROBLEM

A simple example of the dual way of considering multiple problems relates to

one-sided tests of two hypotheses: Hi : θi = 0 with the alternatives A{ : θi > 0, i = 1,2.

Looked at as hypothesis tests, the test statistics and critical values must be specified

for the two tests. Considered as multiple decisions, probabilities of the four decision

regions (θλ = O,02 = 0), {θλ = O,02 > 0), (θ± > O,02 = 0), and (θλ > O,02 > 0) must

be specified. Alternative formulations replace " = " with " < " in H or replace α > " with

" > " in A, with the obvious changes in the decision regions. With continuous variables,

these different formulations do not affect the procedure. Of course the alternative can

be in the negative rather than the positive direction, again with the obvious changes.

If θi — 0 is considered impossible for all i, the hypotheses can be expressed in the form

Hi : θi < (>)0 with the alternative Ai : θi > (<)0. This formulation does result in a

change in procedure (see Jones and Tukey, 2000, Shaffer, 2002). Further discussion on

this point is in the later section on the two-sided problem.

When k parameters are involved, one-sided tests can be similarly formulated.

Without loss of generality, it will be assumed that θ0 = 0 in all hypotheses.

Hi'.θi = 0(or < 0), i = 1, , k with alternatives A θi > 0.

As a decision problem, this involves 2k possible decisions.

Two early articles with optimal results for one-sided tests in a multiple setting

appeared in the same issue of the 1952 Annals of Statistics. Both formulate the problem

as multiple decisions, but use Neyman-Pearson hypothesis testing concepts as well.

Both deal with one-sided hypotheses as formulated above.

The paper by Paulson (1952) is more limited in application than the Lehmann

paper, and is discussed more technically in Hochberg and Tamhane (1987). It assumes
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samples of equal size n from k categories, all observations normally distributed, and

the means of all categories equal except possibly for one higher mean. This is an

example of a slippage problem, an area that has been studied with many variations

since a paper by Mosteller (1948), and which has applications to outlier detection. For

a general treatment of the area, see Schwager (1985). Paulson's paper was the first to

treat a slippage problem from an optimal point of view. Although the present paper

does not deal further with such problems, the Paulson result is included for historical

purposes.

Paulson limited procedures to those with two characteristics:

(1) symmetry: The probability of correctly concluding that category i is best is

the same for each i, ΐ = 1,..., fc,

and

(2) location-scale invariance: Subtracting the same constant from each mean

and/or multiplying each mean by the same constant does not change the procedure.

The null hypothesis is that all means are equal, (without loss of generality equal

to zero) and the alternative is that all are equal except one, which is larger by an

unknown amount Δ, the same value for each category. This restricts the decision

space to k + 1 decisions, Dj, i = 0 ,1 , . . . , fc, where Do is accepting the null hypothesis,

and £) i ϊ i = l,...,fc,is deciding category i is best.

Paulson uses the Neyman-Pearson approach in setting the probability of accepting

the null if it is true at 1 — a. Although no prior probability is then assigned to the

complete null hypothesis, the Bayesian approach is used in assigning the same prior

probability of being best to each category. Given these restrictions, the probability

of making the correct decision (i.e. choosing the category with the larger mean) is

maximized. The optimum procedure is: if

n(xM -x)

select DM] otherwise select Z?o,

where XM is the maximum of xχ7..., x^, x is the mean of all groups combined,

and λα is a constant depending only on a.
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Note that by restricting the situation to only one category being larger than all the

others, which are all equal, the number of decisions to be considered and the complexity

of the distributions is greatly reduced, compared to more general alternatives. While

it seems possible to extend the class of distributions from normal to other independent

distributions, the restriction to a single deviation from a common mean would be harder

to overcome. [Truax (1953) used the same approach and formulation to find an optimal

procedure for a similar slippage problem on normal variances.]

In the same issue of the 1952 Annals, there is a paper by Lehmann entitled

"Testing multiparameter hypotheses." This paper deals with multiple parameters but

most of the paper does not treat multiple comparisons. Instead, it treats composite

hypotheses and alternatives of the forms

(a) Hi : θi < 0*, z = 1,..., A; with the alternative that at least one 0* > 0*, and

(b) Hi : 0i > θ\ or . . . or θk > θ*k with the alternative that all θτ < 0*.

These two situations essentially reverse hypothesis and alternative, but in each

case there is one hypothesis and one alternative. However, one small section of about

one page deals with a multiple testing situation. The discussion is limited to k = 2,

with random variables called X\ and X2. The paper considers a class of distributions

satisfying certain regularity conditions, generalizing well beyond independent and iden-

tically distributed normal variables, and including the situation considered by Paulson

when k = 2. The marginal distribution of Xi is assumed to depend only on 0̂ . Without

loss of generality, let θi0 = 0 for i = 1,2.

The paper restricts attention to one-sided hypotheses, as noted above. The null

hypotheses then are Hi : 0χ < 0, H2 : 02 < 0. Two restrictions for the class of tests

are:

(a) that they be symmetric in X\ and X2 (this assumption may not be necessary

in this context), and

(b) that they be monotone in the regions where both hypotheses are rejected and

where both are accepted, i.e. that if x\ and x2 are in the joint rejection region, and

x\ > X\,x'2 > %2, then x[ and x'2 are in the rejection region. Similar natural monotone

restrictions are imposed in the opposite direction in the joint acceptance region, and

in single-rejection regions.
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In decision-theoretic terms, the four parameter regions of interest are

cc o : θι and Θ2 < 0 ( both hypotheses are true),

ωι : θι > 0 > Θ2 {Hi is false, H2 is true),

ω2 : θ2 > 0 > θι ( H2 is false, H\ is true) and

<*>i2 : #i, #2 both > 0 (both hypotheses are false).

The corresponding correct decisions are do,dι,d2, and di2. The complements of each

set ω will be called αJ, and the set of all decisions except d will be called d.

An optimal procedure is derived as follows, subject to satisfaction of (a), (b), and

some regularity conditions.

1. Set the familywise error rate (i.e. the probability of rejecting one or more true

hypotheses) less than or equal to a preassigned value a. In decision-theoretic terms,

P{do\ωo), P[(dilMi2)|0i < 0], P[{d2\Jd12)\θ2 < 0], and P(d1 2 |άJ1 2) < α.

2. Maximize min P(do|ΰJo).

3. Maximize min P(di2|ωi2).

This results in the following test procedure, described for simplicity under the assump-

tion that Xι and X2 are identically distributed.

Decide do if max{xι1x2) < a where Po^[max(xι1 x2) < a] = a.

Decide c?i2 if x\ > α, x2 > b or x\ > 6, x2 > α,

where P(XX > b\θλ = 0) = P{X2 > b\θ2 = 0) = a.

Decide d{ if X{ > α, Xi' < 6.

Lehmann formulated this procedure in multiple-decision terms. A reformulation

as a multiple testing problem shows that it is a generalization for two hypotheses of a

familiar step-down test (Holm, 1979).

Step-down tests can be contrasted with single-step tests. With single-step tests,

each hypothesis is tested using a criterion for the test statistic that may depend on the

number of hypotheses k but is independent of the realized values of all test statistics

for hypotheses ί/j, j ^ k. Step-down tests are a subclass of the class of stepwise tests;

the latter are defined as procedures in which there is a single test statistic for each

hypothesis but its critical value depends on the realized values of test statistics for

other hypotheses in a specified pattern.

Some of the earliest stepwise test procedures, although they are not usually des-

ignated by that name, are the multiple range procedures developed for comparing
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parameters (Tukey, 1953, Duncan, 1961, Ryan, 1959, 1960). Lehmann and Shaffer

(1979) defined an optimality criterion and gave optimal choices of critical values for

these methods. However, the methods themselves are not optimal for the problems

being considered, so they will not be treated further here.

The stepwise tests considered in this paper are based on p-values; for other types

of stepwise procedures, valid using resampling methods, see Westfall and Young (1993).

The step-down procedures have the following form: Let pi be the p-value for the test of

Hi, and reorder the p-values and associated hypotheses so that p\ < ... < pk. Suppose

i is the smallest integer from 1 to k for which pi > α .̂ If there is no such integer,

reject all hypotheses. Otherwise reject Hi,..., ί/i_i, and accept Hi,..., H^ The α/s

are selected to satisfy the specified error control conditions.

Thus, in modern terms, the procedure in Lehmann (1952) described above is a

step-down testing procedure. Table 1 specifies the test and the probabilities of the

decision regions at 0» = 0,i = 1,2, for fc = 2, independent test statistics, compared

with those probabilities for a single-stage test with the same FWER.

Step-up testing procedures are in a sense the reverse of step-down testing pro-

cedures. Using the notation above, let pi be the largest integer from 1 to k for which

Pi < ot% If there is no such integer, accept all hypotheses. Otherwise reject Hi,..., Hi

and accept ϋΓi+i,..., Hk- The a^s are selected to satisfy the specified error control

conditions.

Suppose the requirements that result in the step-down procedure of Lehmann

(1952) are modified by reversing steps 2 and 3. The requirements then, each subject

to satisfaction of the previous ones, are:

1. Set the familywise error rate (i.e. the probability of rejecting one or more true

hypotheses) less than or equal to a preassigned value a. In decision-theoretic terms,

P&lωo), P[(diU<*i2)|0i<O], P[(d2lMi2)|02<O], and P(d12\ω12) < a.

2. (formerly 3) Maximize min P(di2|ωi2)

3. (formerly 2) Maximize min P(do\ωo).

This results in the following optimal step-up multiple test procedure for two

hypotheses:

Decide dχ2 iΐmin(xι,x2) > b'', where

P(Xι > b'\θι = 0) = P{X2 > b'\θ2 = 0) = α.
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TABLE 1. The one-sided optimal step-down procedure for one-sided

tests, Lehmann (1952), FWER < α, k = 2, independent test statis-

tics, comparison with single-step PFEΏ-controlling test. Decision re-

gion probabilities are for θιΊθ2 = 0. Let pi = Prob(Ti > U), ordered so

that pi < p2j where U is the observed value of the statistic Ti for testing

Hi.

Let/? = ! - ( ! -

Single-step test

Reject Hi Ίϊpi <β,i = l,2

Step-down test

Step 1: Reject Hi if pi < /?, otherwise accept both

Step 2: Reject H2 if Hi rejected and p2 < a

Single-step test Step-down test

P(do)
P{dχ)

P(cf12

= (1 - βf

= P(d2) =

) = /32

= 1 — a

/3(1 - β)

P(d0) =

P(di) =
P(d12) =

(1 - βf = ]

P ( d 2 ) = /3(]

= 3/32 - 2β3

L — α

L-/3) 2

Decide dι if xλ > α', x<ι < bf; d2 if x2 > d\ %\ < b\ where

P(Xι,X2 > b'\θλ = 0) + P(Xι > a',X2 < V|0i = 0) =

P(Xι,X2 > b'\θ2 = 0) + P{X2 > a',Xι < V\θ2 = 0) = α.

It seems likely that this approach can be generalized to obtain optimality of

step-up and step-down methods, and possibly more general stepwise up-down methods

(Tamhane, Liu, and Dunnett, 1998) for more than two hypotheses, by generalizing the

symmetry and monotonicity assumptions and adjusting the priority ordering of the

requirements, as follows:

Assume k hypotheses Hi : θi < 0, as before, with statistics X^ i = 1,..., k. There

are now 2k regions in the parameter space and 2k associated decisions.

1. Set the familywise error rate (i.e. the probability of rejecting one or more true

hypotheses) less than or equal to a preassigned value a. This requirement is easily

generalized.
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For step-down procedures:

2. Maximize ruin P(do\ΰo). This is also easily generalized and results in: Decide

do if max(xi) < a.

For step-up procedures:

2. Maximize rain P{dι2...k\^i2...k)' This also generalizes and results in: Decide

di2...k if min(xi) > b'.

More requirements are necessary to specify the divisions of the sample space

among the remaining decisions, and to specity the divisions for more general up-down

methods. The monotonicity restriction seems to be very reasonable when the distrib-

utions have monotone likelihood ratios, but recently there has been some development

of tests that are more powerful when that restriction is removed.

In Lehmann (1952), an example of an "unreasonable", more powerful, non-

monotone rejection region for testing the hypothesis

Ho : 0i < 0 or θ2 < 0 with the alternative θλ > 0 and θ2 > 0

was described. Let d0 here mean accepting Ho and d\2 mean rejecting Ho.

Under the monotone restriction, and the Type I error restriction

P(do\Ho) > 1 — α, the procedure that maximizes the minimum power is

Decide dχ2 if min(xi) > b' , where bf is chosen so that P{X\ > bf\θχ = 0) = P{X2 >

b'\θ2 = 0) = α.

Note that the minimum power is < α: e.g. if Xι and X2 are independent, the minimum

power is a2.

Lehmann described a general way of formulating nonmonotone procedures with

greater power than the monotone procedure for testing this hypothesis, in which the

monotone rejection region is increased by a union of one-sided polygonal regions. A

number of papers have considered this and other methods for obtaining more-powerful

nonmonotone procedures for these and for somewhat more general hypotheses. Berger

(1989) has explored this area most extensively, adopting the extension of the monotone

region formulated by Lehmann for testing one-sided hypotheses and generalizing the

approach to tests of two-sided hypotheses. Zelterman (1990) derived a locally-most-

powerful nonmonotone procedure which is somewhat like a smoothed version of the

Berger procedure, with a curved regection region.
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Perlman and Wu (1999) attacked these nonmonotone tests on intuitive grounds.

They support the likelihood ratio principle, which yields monotone tests, but, as they

point out, even the LR principle does not always result in intuitively desirable test

procedures. It seems unlikely that any optimality principle will always yield sensible-

appearing procedures. At any rate, the monotonicity requirement seems as reasonable

as any other criterion that might be applied.

The optimal procedures considered above control the FWER. The PFER, as

noted above, is technically easier to work with than the FWER. Results in Lehmann

(1957a,b) and Spj0tvoll (1972) based on PFER control, will be discussed in the context

of two-sided tests, but they apply also, as in the two-sided case, to yield single-step

one-sided tests.

3. T H E TWO-SIDED PROBLEM

3.1. Directional and nondirectional errors. The treatment thus far has been for

the one-sided problem-testing the hypotheses θ{ < 0 vs. the alternative 0* > 0. Another

major interest in testing hypotheses concerning multiple parameters is the two-sided

problem. The hypotheses in that case are usually formulated as

Hi:θi = θi0,i = l,...,k.

Without loss of generality, it will be assumed that ^o = 0 for all ϊ.

The interpretation of acceptance of a two-sided hypothesis Hi has been a subject

of some dispute. Prom one point of view, it can be interpreted as a decision to behave

as though θi = 0. From an inference point of view, it seems more reasonable to regard

acceptance as uncertainty about the value of 0*. Some but not all investigators consider

any exact value of 0» impossible. Others interpret the hypothesis as meaning that 0* lies

in some infinitesimal region around zero, to be treated as zero (Scheίfe, 1970). In any

case, if the two-sided hypothesis Hi is rejected, it is often important to know whether

θi is positive or negative.

When direction is important, there are a number of different possible approaches

to the treatment of errors. The first is a reformulation of the standard approach to

testing Hi as a joint test of two hypotheses:
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Dl. If ft = 0, any decisions involving ft > 0 or ft < 0 are errors. Thus, there

is a discontinuous increase in the probability of error at ft = 0. The appropriate

formulation is

Hiλ : ft < 0,Aiλ : θi > 0, Hi2 : ft > 0,Ai2 : ft < 0.

D2. If ft = 0 is considered impossible, and Scheffe's alternative of an infinites-

imal region around zero is rejected, then only directional errors are of interest. The

appropriate formulation is

Hn : θi < 0,Λi : ft > 0, Hi2 : ft > 0, Ai2 : ft < 0.

D3. If ft = 0, the decision is unimportant. Only directional errors are counted.

Thus, there is a discontinuous drop (to zero) in the probability of error at ft = 0. The

formulation would be the same as in 1, but with no penalty for any decision if ft = 0.

D4. If ft = 0, this is included with either ft < 0 or ft > 0, depending on the

consequences for practice. Thus, the probability of error is continuous at ft = 0. The

appropriate formulation is

Hn : ft > (>)0,Λi : ft > (>)0, Hi2 : ft > (>)0,Λ2 : ft < (<)0.

The two-sided problem can be thought of alternatively as a three-decision prob-

lem: Deciding ft is positive, negative, or possibly zero. If positions D2 or D4 are taken

with respect to ft = 0, it would seem that a two-decision problem results. However,

Bohrer (1979) showed that if the error probability is to be controlled at any level below

0.5, there must be a possible third decision: The sign of ft is indeterminate. Thus, in

all cases in which direction is of interest, three decisions must be permitted, as in the

Lehmann (1957b) formulation.

Shaffer (2002) uses the terms nondirectional error to refer to rejections of true null

hypotheses (even if directional conclusions are attached), and directional error to refer

to false directional conclusions (stating ft > 0(< 0) if in fact ft < 0(> 0). In view of

interpretation D4 above, the definition of directional error should be modified to refer to

rejecting one correct hypothesis of the pair of directional hypotheses when the other is

incorrect, and nondirectional error to refer to rejecting the single hypothesis Hi : ft = 0

for each i, or the pair of hypotheses in Dl, when ft = 0. One might then be interested

in controlling nondirectional error only, directional error only, or both types of errors,
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called combined errors by Shaffer (2002). Some common stepwise multiple testing

methods for the hypotheses Dl do not necessarily control combined errors (Shaffer,

1980, Liu, 1997) while maintaining the nominal familywise error rate (FWER). In

other cases, it is not known whether directional conclusions are permissible without

violating the nominal FWER. For a review of the research on this issue, see Firmer

(1999).

Lehmann (1957a) considered the set of directional hypotheses (Hn,Hi2, i =

1,..., k). For k = 2, for example,

in testing the four hypotheses

# i i : 0i < 0, H12 : 6>i > 0; H2ι : 02 < 0, H22 : θ2 > 0,

the parameter space can be partitioned into nine regions corresponding to all combi-

nations of the possible situations for each 0̂ : that it equals 0, is < 0, or is > 0. For

k > 2, there will be 3k such regions in the parameter space. Decisions are specified

by dividing the sample space into 3fc regions corresponding to those in the parameter

space.

However, under this formulation, some of these regions will be empty in some

important types of problems. For example, for k = 3, suppose there are samples from

three populations and the hypotheses are:

ffn : 0 i - 0 2 < O , # i 2 : 0 i - 0 2 > O ,

H2ι : θ\ — 03 < 0, H22 : θ\ — 03 > 0,

#31 : θ2 — 03 < 0, UΓ32 • 02 — 03 > 0.

There is no set in the parameter space corresponding to the decisions

0! - 0 2 = 0, 02 - 0 3 = 0, 0i - 0 3 ^ 0.

Nevertheless, those decisions are possible when using the tests that are optimal in a

general context.

In a later paper Lehmann (1957b) adopted an alternate formulation that solved

this problem. Instead of partitioning the parameter space, the decision to accept a

hypothesis was interpreted as providing no information on the value of the parameter

involved. So instead of the impossible conclusion

01 = 02? 02 = 03? 01 < 03?

the conclusion would be
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- 0 0 < 0i - θ2 < OO, - 0 0 < 0 2 - 03 < 00, 01 < 0 3 .

Then all decisions are mutually consistent.

3.2. Per-family error control. Lehmann (1957b) approached the problem from a

purely decision-theoretic point of view, and found an optimal procedure given control

of PFER.

The pair of directional hypotheses (1) is tested for each parameter. A loss function

is defined as follows: Loss = 0 for a correct decision, a for rejecting a hypothesis if it

should be accepted, and b for accepting a hypothesis if it should be rejected. Thus,

both directional and nondirectional errors are penalized. Adding the losses over the

two decisions in each pair gives the loss table for comparing that pair; adding the losses

over the decisions involving all pairwise comparisons gives the loss table for the set of

comparisons.

If a (the loss for false rejection) and b (the loss for false acceptance) are the same

for each hypothesis, and if each hypothesis is tested with a uniformly most powerful

unbiased test at level b/(a + 6), the natural resulting multiple procedure is unbiased

(in the sense of Lehmann, 1951) and has uniformly minimum risk among unbiased

procedures.

Spj0tvoll (1972), also in the context of a more general formulation, noted that

optimality results for individual hypotheses would be desirable as well as the optimality

results based on the global criterion adopted by Lehmann. He adopted PFER control,

and gave conditions and stated values under which single-stage two-sided testing pro-

cedures maximized the minimum individual power and the minimum average power of

the tests. His results apply both to one-sided and two-sided tests, as do Lehmann's

(1957a,b). Although he formulated the pair of two-sided hypotheses as

Hi:θi = O vs. Ai:θi> (<)0

rather than the more general

Hi : θi < = (>=)0 vs Ai : 0< > (<)0,

his results, in slightly less generality, would apply to the latter formulation as well.

For a simple example, if the k pairwise hypotheses specify that the expected values

of k independent normal variables with equal variances equal zero, t tests maximize

the minimum individual power and the minimum average power against a common

alternative Δ.
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Bohrer (1979), under the formulation D4 above, uses Spj0tvolΓs (1972) result and

takes limits as the hypothesized values approach zero to prove, for normally-distributed

variables, that two-sided t-tests of k hypotheses, each at the same level, maximize

the minimum probability of correct classification of the θ^s as positive or negative

(zero included in one of these), under the assumption that the expected number of

misclassifications (the PFER) is < α, for some a. The results apply also under

formulations D2 and D3. Thus, Bohrer considers directional errors only.

The results of Lehmann (1957b), Bohrer (1979), Spj0tvoll (1972), and some

Bayesian results to be discussed below, all involve additive error criteria, and all show

optimality of single-stage tests given such criteria. All of them are discussed more

technically and in greater generality in Hochberg and Tamhane (1987).

3.3. Familywise error control. The results for FWER control in the two-sided case,

as in the one-sided case, demonstrate that single-stage tests are not optimal under that

error criterion.

In Lehmann (1952) the criterion was control of the FWER. This is probably

the most frequent criterion in current practice. With PFER-contτόi, optimal methods

are generally single-stage methods that are unable to take advantage of the potential

increases in power based on rejection of other hypotheses in the family under con-

sideration. Stepwise methods that control FWER but not PFER are more likely

to reject false hypotheses than single-step methods with the same FWER control,

with the advantage of increasing power when some hypotheses are false. The stepwise

test procedure of Holm (1979), for example, which is completely general, improves on

the corresponding single-step Bonferroni procedure. Results of Hochberg (1987) show

superiority of stepwise over single-step procedures in general.

Lehmann (1952), discussed above, dealt with a set of one-sided hypotheses and

control of the familywise error rate. Optimality in the two-sided case is more complex

under this nonadditive criterion.

Such optimality has been investigated by Bohrer (1982), Bohrer and Schervish

(1980), Hochberg (1987), and Hochberg and Posner (1986). They adopted formulation

4 above, treating 0* = 0 as equivalent in decision consequences to either 0» < 0 or

θi > 0. Their results apply equally to formulations D2 and D3, but not to formulation

Dl.
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These papers all require procedures to satisfy a generalization of the symmetry

requirement stated for the one-sided tests in Lehmann, and to what is called upper

convexity, which is a generalization of Lehmann's one-sided monotonicity assumption-

essentially monotonicity in each of the 2k parameter regions in which all hypotheses θi =

0 are rejected. Hochberg and Posner generalize this further to include monotonicity in

the parameter regions in which only some hypotheses are rejected. This more general

criterion can be stated as follows, and implies the Bohrer-Schervish condition:

Let Di = 1,— 1, or 0 as θi is designated positive, negative, or indeterminate,

respectively. Then if Di = 1(—1) given xiΊi = 1,...,fc, for any i, Di = 1(—1) given

CiXi, i = 1,..., k when c* > 1 for all i = 1,..., k.

Interestingly, only Hochberg (1987) cites the Lehmann (1952) paper or notes the

similarity of the criteria to those in that paper. Bohrer (1982), Bohrer and Schervish

(1980), Hochberg (1987), and Hochberg and Posner (1986) consider optimality of vari-

ous kinds when the parameter vector approaches zero, which they call local optimality.

Results are given for normally-distributed test statistics, although presumably

they could be generalized to apply to other distributions. The simplest results apply

when the test statistics are independent, in which case, under very general assumptions,

knowledge of the distribution is needed only for determining critical values for the

relevant statistics. The optimality criterion that receives the greatest attention is

maximization of the expected number of correct decisions as the parameter vector

approaches zero. Sections 3.3.1 and 3.3.2 give results for this optimality criterion.

3.3.1. Independent test statistics, k = 2. For the main part, results are limited to the

case k = 2. When FWER < 1/3, Bohrer and Schervish (1980) obtain a two-sided

step-up procedure as one of a class of optimal procedures, while Hochberg and Posner

(1986) show that the step-up procedure Bohrer and Schervish selected as intuitively

most reasonable in that class is the unique optimal procedure in the limit as (#i, θ2) —> 0

where θλ > 0, θ2 > 0 and at least one θi > 0. (In the course of that proof they give a

rule for maximizing the expected number of correct decisions for all θ\ > 0, θ2 > 0.)

By symmetry, the results apply with obvious directional changes to θ\ >O,Θ2< 0, etc.

The optimal procedure is a two-sided version of the general step-up procedure defined

earlier, allowing directional inferences in both positive and negative directions. The

specific designation of the procedure for independent test statistics is given in Table 2.



26 Shaffer

TABLE 2. The optimal two-sided step-up procedure for two-tailed tests,

Bohrer and Schervish (1980), Hochberg and Posner (1986), FWER < a

for directional errors, k = 2, independent test statistics, comparison

with single-step test controllng PFER for directional errors. Assume

0i702 > 0. Decision region probabilities are limits as 0i,02 —* 0. For

simplicity, assume test statistics % for testing Hi,i = 1,2 with limiting

distributions symmetric around 0. Let p{ = limiting Prob (|T»| > \U\),

(2-sided probability), ordered so that pλ < p 2 , where U is the observed

value of Ti: and where τrf = P (i hypotheses rejected), i = 0, 1, 2.

Let β = 1 - (1 - α

Single-step test

Reject f/i if p» < 2/3, i = 1,2, and decide 0* is sign of U.

Step-up test

Step 1: Reject Hi and H<ι if p2 < 2a and decide 0; is sign of tiΊ i = 1,2;

otherwise accept i ί 2

Step 2: Reject Hλ if px < 27 and decide 0i is sign of tλ

Single-step test Step-up test

TΓo = ( 1 -

= β{l - 2β)

τr0 = 1 - 2α + 2α2

π i = (α - 3α2)/2

τr2 = α 2

3.3.2. k > 2 and/or correlated test statistics. The methods used in Bohrer et al and

Hochberg et al insure that the probability of one or more errors is < a as all values

of 0 approach zero. The results described in Section 3.3.1 for independent random

variables, k = 2, carry over to correlated random variables for k = 2, and Hochberg

et al note that with independent test statistics, a step-up procedure for k = 3 can be

shown to be locally optimal under symmetry and monotonicity requirements, as for

k = 2. However, although for k = 2 and independent test statistics, the FWER can

be shown to be < a for all values of the 02, Bohrer et al show that the FWER can
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be > a for some values of 0/, 02 with correlated test statistics. Furthermore, Hochberg

et al note that for k = 3, even for independent test statistics, "there is difficulty in

establishing the required control of the probability of any error under all 0." Thus,

FWER is not controlled at level a for k = 2, correlated test statistics, and is not

known to be controlled at that level for the defined step-up test procedures for k = 3.

3.3.3. More general optimality criteria. Other regions are optimal with other optimal-

ity criteria, although some axe unappealing on intuitive grounds (such as never permit-

ting a directional decision for more than one parameter, or only permitting directional

decisions jointly for both parameters.) The variety of results for different choices of

local FWER and different optimality criteria is too extensive to discuss in detail here.

However, a generalized set of optimality criteria discussed by Hochberg et al in the

case of two independent test statistics with FWER control at a < 1/3 connects in an

interesting fashion to the one-sided results.

In order to discuss this generalization, more detail on the methods used in both

Bohrer et al and Hochberg et al are necessary. In both papers, as noted previously, the

procedures are discussed in terms of decision regions. As pointed out in the discussion

of Lehmann (1957b) above, there are nine possible decision regions; all combinations of

the three decisions for each θ{- that it is positive (perhaps including zero), negative, or

indeterminate. These regions will be labelled (al,a2), where α* is +, -, or 0 according

to whether θι is called positive, negative, or indeterminate. The symmetry assumption

requires that as θi —» 0, the decision regions (0,-f), (0Γ), (+,0), and (-,0) approach equal

probabilities, each denoted TΓI, and (+,+), (+,-)> (->+) a n d (-,-) have equal probabilities,

each denoted π 2 . Without loss of generality, assume #i, 02 are positive. The probability

of the decision region (0,0) is denoted π 0 . Given the symmetry assumptions, local

control of directional error requires 2τri + 3π2 < α, and probability theory requires

π 0 + 4τri + 4τr2 = 1.

The expected number of correct sign designations is 2τri + 4τr2. Hochberg and

Posner consider a generalization, απi + 6π2, giving arbitrary weights to decisions with

one correct sign designation and two correct sign designations. Given the symmetry

and probability requirements, the solution requires maximizing ατri + δπ2 subject to

(i) 2τri + 3τr2 < a

(ii) π 2 < a2
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(iii) TΓI + τr2 < 1/4

(iv) πχ,π2 > 0.

They obtain results for a/b < 2/3 and for a/b > 2/3. When a/b < 2/3, the optimality

results are the same as for maximizing the number of correct sign designations; a

two-sided step-up procedure is optimal as in Table 2.

When a/b > 2/3, and a < 1/2, a single-step procedure is optimal. This criterion

(a/b > 2/3) seems undesirable, since it favors decisions with the sign of one parameter

designated over those with the sign of both parameters designated when the FWER

restriction permits both to be designated.

How about a/b = 2/3? Hochberg and Posner state in the last paragraph:

"We have omitted the case of a/b = 2/3 from our discussion. When a < 3/4,

the optimal solution to this case will not be unique. Thus, examination of additional

criteria will be required to fix π x and π 2 . We leave this to future research."

Note that a/b = 2/3 is the criterion of maximizing the local probability of at least

one correct sign designation. Note that it is also the local probability of at least one

incorrect sign designation, the FWER at the origin, which is also the global FWER

in the independent case with k = 2. Without loss of generality we can take a = 2

and b = 3, in which case the maximum by requirement (i) is α, and the maximum is

attained by any procedure that controls the maximum FWER exactly at a. Given

all such procedures, note that the expected number of correct sign designations equals

a + τr2. Therefore, a solution that maximizes π 2 at a2 (requirement (iii)) is optimal

both for maximizing the probability of at least one correct sign and for maximizing

the expected number of correct signs, another way to look at the optimality property

of solutions in this class, including the optimal step-up procedure in Table 2.

3.3.4. Further considerations, FWER control When only directional errors are con-

sidered, the two-sided step-down procedure is not optimal under any of the optimality

criteria considered. Bohrer and Schervish note that under their optimality criterion,

maximizing the number of correct sign designations, the two-sided step-down proce-

dure is optimal if the (0,0) region is required to be square, but that requirement is not

especially appealing. However, if nondirectional errors are the only ones considered,

neither the two-sided step-down nor step-up procedure dominates the other (Dunnett
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and Tamhane, 1992), so it is possible that step-down procedures may be optimal under

some reasonable criteria in the two-sided case under formulation Dl.

As is the case with the Lehmann (1952) paper, Bohrer et al and Hochberg et al

described the procedures in terms of multiple decision regions of the sample space. The

alternative way of thinking about such procedures and describing them as step-down

or step-up hypothesis testing procedures began much later. Both points of view can

be useful in giving insight into properties of procedures.

3.4. False discovery rate control. Recently, a new criterion has been proposed for

error control in multiple testing: the false discovery rate (Benjamini and Hochberg,

1995). This is defined as the expected value of Q = V/R, where V is the number

of true hypotheses that are rejected (i.e. Type I errors), and R is the total number

of rejected hypotheses. When R = 0, Q is defined as 0. Benjamini and Hochberg

(1995) proposed a step-up method that controls the FDR at a designated level α

for independent test statistics, and has been shown to control it for some types of

dependent test statistics. For two-sided tests, these results hold under the two-sided

formulation Dl.

When all hypotheses are true, FWER and FDR procedures using the same level

of α both control the FWER at that level. However, when some hypotheses are false,

the probability of rejecting hypotheses is increased using the more lenient criterion of

FDR as opposed to FWER control. This alternative F£>i?-controlling criterion seems

especially reasonable when massive numbers of hypotheses are being tested and when

many are assumed false, such as in microarray analysis in genomics, and when positive

results will be followed up by further investigation before final acceptance.

There is a great deal of current work on properties of the false discovery rate,

including some on optimality properties. Benjamini and Hochberg (1995) described a

post-hoc choice of α as satisfying a constrained optimization problem. Abramovich,

Benjamini, Donoho, and Johnstone (2000) make some connections between the use

of an FDR method, asymptotic minimaxity, model selection and decision-theoretic

analysis in wavelet image analysis. In a Bayesian context Genovese and Wasserman

(2002), Efron, Storey, and Tibshirani (2001), and Storey (2002) have some optimality

results. This area is changing fast, and a description is beyond the scope of this paper.
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4. BAYESIAN APPROACHES

Duncan, in a series of papers beginning in the 1960's (see, e.g., Duncan, 1961,

Waller and Duncan, 1969, Duncan and Dixon, 1983)), developed a Bayesian procedure

for comparing means of normal distributions based on the assumption that the true

means are realizations of independent normal random variables. He used Lehmann's

(1957b) theorem with a somewhat different loss structure to show that his procedure

has minimum Bayes risk.

The modified loss functions are as follows: Instead of loss a for incorrect rejection,

the loss is a\θι — #21, and instead of loss b for incorrect acceptance, the loss is b\θι — ^ l

In other words, the loss depends on the magnitude of the incorrect decision-the loss in

saying θ\ — θ2 < 0 when the true difference is positive and large is greater than when

it is positive and small.

Lewis (1997) adopted the Bayesian assumption of Duncan on the distribution of

true means, but controls the maximum PFER averaged over the distribution of means.

Shaffer (1999) adapted the Duncan approach to require the procedure to control the

maximum FWER. Shaffer found surprising similarity in power functions between this

Duncan adaptation and the FDR-controlling test of Benjamini and Hochberg (1995).

Lewis and Thayer (2002) give some heuristic arguments to account for this relationship.

Since in Duncan's formulation the loss when testing Hi is zero if θi = 0, regardless

of the outcome, directional errors are the only ones that are counted as losses. This is

one of two main approaches Bayesians have taken. Recently, Gelman and Tuerlinckx

(2002) and Lewis and Thayer (2002) have considered the same structure as Duncan,

but used 0-1 loss functions for directional errors, as in Lehmann's approach, without

considering the magnitude of those errors. The Bayesian solution, supplemented by

corrections for multiplicity, is very much like that in Lehmann's frequentist approach,

but has an extra term depending on the prior variance of the true mean distribution.

The Duncan, Lewis, Shaffer, Gelman and Tuerlinckx, and Lewis and Thayer approaches

are similar in that under all of them the prior probabilities that the θ^s = 0 are zero,

so that only directional (Type III) errors are possible.

Berger and Sellke (1987) used a different approach that allows for the possibility

θ = 0 by introducing a prior with a point mass probability at θ = 0. They obtain

the posterior probability that θ = 0 under a variety of assumptions on the remainder
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of the prior distribution. This leads to interesting comparisons with classical p-values,

beyond the scope of this paper.

5. CONCLUSIONS AND SUMMARY

Optimality in multiple testing has been considered under a variety of criteria and

conditions. Results for this problem have been obtained using different generalizations

of the Neyman-Pearson single-hypothesis concepts of Type I error and power, from the

point of view of multiple decision theory, from Bayesian positions, and from mixtures

of these.

This paper restricts attention to testing hypotheses related to the values of k

parameters, k > 1, k finite, and relates current practice to some early literature.

There are three principal conditions that affect the types of procedures that have

been shown to be optimal for this class of hypotheses.

1. Type of error control

The paper has restricted attention primarily to two types of error control: PFER

control and FWER control. The recent introduction of another criterion, FDR con-

trol, has led to a series of new papers, some of which deal with optimality under that

criterion. That area is developing rapidly now. The definition and some references are

given, but otherwise FDR control is not covered in the present paper.

Under the additive criterion of PFER control, single-stage procedures have been

found to be optimal under a variety of optimality criteria for both one-sided and two-

sided tests, and in the two-sided case, for procedures controlling both directional (Type

III) and nondirectional (Type I) errors. The results appear to hold for arbitrary k and

many hold under conditions of dependence as well as independence.

Control of FWER, a non-additive criterion, is more difficult to treat statistically.

Under FWER control, stepwise procedures dominate single-step procedures. There are

fewer results under this criterion, and they depend on other considerations, as noted

below.

2. FWER-coτύxol: One-sided versus two-sided procedures.

Symmetry and monotonicity (upper convexity) in various forms are common assump-

tions in seeking optimal procedures. For one-sided procedures, Lehmann (1952) proved

that under relatively general conditions, for k = 2, a step-down procedure is optimal



32 Shaffer

in minimizing the maximum probabilities of errors of various kinds, given various pri-

orities on decision regions. Some work is now being pursued that suggests that if the

priorities are changed, a step-up procedure is optimal. It appears from currently on-

going research that these results can be extended to k > 2, and they do not require

independence.

3. FV^i?i?-control: Two-sided hypotheses, nondirectional and directional errors.

Some approaches to the two-sided test assume no null values, or at least no

additional losses under null values. Then directional errors only are considered. This

makes the error criterion continuous as θi —> 0 for all i. Under this assumption, step-

up test procedures have been found to be optimal in locally maximizing the expected

number of correct sign classifications for independent random variables, k = 2. In

contrast to the one-sided case, the results for k > 2 and for dependent random variables

are more problematic, since local control of the FWER at a does not imply global

control at that value in these generalized situations.

Thus, optimality results for FWER control of Type III errors in testing two-sided

hypotheses are very limited, and many open questions remain. Optimality results for

control of Type I (nondirectional) errors, and for joint control of Type I and Type III

(directional) errors, appear to be open problems.
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