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Abstract: False discovery rate (FDR) has been widely used as an error mea-
sure in large scale multiple testing problems, but most research in the area has
been focused on procedures for controlling the FDR based on independent test
statistics or the properties of such procedures for test statistics with certain
types of stochastic dependence. Based on an approach proposed in Tang and
Zhang (2005), we further develop in this paper empirical Bayes methods for
controlling the FDR with dependent data. We implement our methodology in
a time series model and report the results of a simulation study to demonstrate
the advantages of the empirical Bayes approach.

1. Introduction

The false discovery rate (FDR), proposed by Benjamini and Hochberg ([1], BH
hereafter), has been widely used as an error measure in multiple testing problems.
Let R be the number of rejected hypotheses (discovered items) and V be the number
of falsely rejected hypotheses, the FDR is defined as

FDR ≡ E
(
V/R

)
I{R>0}.(1.1)

Since most discovered items truly contain signals when the ratio V/R is small, FDR
controlling methods allow a scientific inquiry to move ahead from a screening ex-
periment to more focused systematic investigations of discovered items. Moreover,
since FDR controlling methods do allow a small number of items without signal to
slip through, they often provide sufficiently many discovered items in such screening
experiments. Thus, the FDR seems to strike a suitable balance between the needs
of multiple error control and sufficient discovery power in many applications (e.g.
microarray, imaging, and astrophysics studies), compared with the more conserv-
ative family-wise error rate (FWER) P (V > 0) and more liberal per-comparison
error rate (PCER) EV/m, where m is the total number of hypotheses being tested.
Mathematically, we notice that

PCER≤ FDR ≤FWER.

The FDR is closely related to the positive predictive value (PPV) for diagnostic
tests, since

PPV = 1 − V/R(1.2)
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based on ground truth.
Most papers in the FDR literature have focused on procedures for controlling

the FDR based on independent test statistics or properties of such procedures
with dependent test statistics. For example, in BH [1], the p-values for individual
hypotheses are assumed to be independent and uniformly distributed under the
null. Benjamini and Yekutieli [3] proved that the BH [1] procedure still controls the
FDR under a “positive regression dependence” condition on test statistics under
the null hypotheses. Storey, Taylor and Sigmund [? ] proposed certain modification
of the BH [1] procedure and proved its FDR controlling properties under conditions
on the convergence of the empirical processes of the p-values. For related work in
controlling decision errors in multiple testing, see Cohen and Sackrowitz [4, 5],
Finner and Roters [9], Sarkar [11] and Simes [12], in addition to references cited
elsewhere in this paper.

In Tang and Zhang [15], we showed that the optimal solution of the problem of

maximizing ER subject to E
(
V/R

)
I{R>0} ≤ α(1.3)

may produce undesirable multiple testing procedures, and proposed Bayes and em-
pirical Bayes (EB) approaches under a conditional version of (1.3) given certain
test statistics which determine R. This means to maximize the total discovery R
(i.e. power) of multiple testing procedures subject to a preassigned level of the
conditional FDR:

CFDR(X) ≡ E
[
V/(R ∨ 1)

∣∣X]
,(1.4)

for certain statistics X satisfying E[R|X] = R, where (x ∨ y) = max(x, y). These
approaches, which provide a general framework for controlling the FDR with de-
pendent data, are discussed in Section 2.

We note that the concept of conditional FDR (1.4) allows conditioning on a
mixture of observations, parameters, and variables generated by statisticians to
implement randomized rules. The CFDR (1.4) becomes posterior FDR when X is
the vector of all observations of concern. If we observe X0 and generate variables ε0

to execute a randomized multiple testing rule, the constraint E[R|X] = R demands
X = (X0, ε0) in our optimization problem, cf. (2.1) below, but the posterior FDR
is computed given X0 alone for such randomized tests.

In Section 3, we develop EB methods for controlling the (conditional) FDR in
a time series model based on our approach. In Section 4, we present simulation
results which demonstrate the advantages our method compared with the BH [1]
rule based on marginal p-values and the additional knowledge of the proportion of
true hypotheses.

2. Bayes and empirical Bayes approaches

Let H1, . . . , Hm, be the null hypotheses to be tested and

θi = I{Hi is not true }, δi = I{Hi is rejected }.

In a Bayes approach, we treat θ = (θ1, . . . , θm) as a random vector and assume that
for certain observations X (not necessarily all observations), the joint distribution
of {θ,X} is known given the knowledge of the joint prior distribution of θ and all
nuisance parameters (if any). Consider the problem of

maximizing R subject to E
[
V/(R ∨ 1)

∣∣X]
≤ α and E[R|X] = R,(2.1)
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where R =
∑m

i=1 δi and V =
∑m

i=1 δi(1−θi). Let πi = P{θi = 0|X} be the posterior
probability of Hi given X. The Bayes rule, which solves (2.1), is given by

δ(i) = I{i ≤ k∗}, k∗ ≡ k∗(α) ≡ max
{

k ≤ m :
1
k

k∑
i=1

π(i) ≤ α
}

,(2.2)

with the convention max ∅ ≡ 0, where {(1), . . . , (m)} is the ordering of {1, . . . , m}
determined by π(1) ≤ · · · ≤ π(m). The above Bayes solution is optimal for any type
of data as long as the joint distribution of (X, θ) is available.

The Bayes rule (2.2) provides the most powerful solution for controlling the (con-
ditional) FDR in the sense of (2.1) with general dependent test statistics for general
null hypothesis, provided the knowledge of the joint prior distribution of unknown
parameters and the computational feasibility for the conditional probabilities of
the hypotheses Hi given X. The Bayes rule yields R = k∗, since it rejects Hi iff
πi ≤ π(k∗). It clearly controls the FDR at level α, since the constraint in (2.1) is
stronger than FDR = E[V/(R ∨ 1)] ≤ α.

In applications where the full knowledge of the joint prior distribution is not
available or the computation of the posterior probability of the null hypotheses
given data is not feasible, the Bayes rule (2.2) motivates empirical Bayes rules of
the form

δ[i] = I{i ≤ k̂}, k̂ = max
{

k :
1
k

k∑
i=1

π̂[i] ≤ α
}

,(2.3)

where π̂i are estimates of the posterior probability πi = P{Hi|X} and {[1], . . . , [m]}
is an estimate of the ordering {(1), . . . , (m)} in (2.2). The performance of the Bayes
rule serves as a benchmark, as the goal of the EB (2.3) here is to approximately
achieve optimality in the sense of (2.1). This EB approach is applicable for depen-
dent data as long as suitable estimates π̂i can be obtained. The ordering [i] can be
derived from π̂i if the ordering (i) is not a known functional of the data.

Tang and Zhang [15] proposed the above Bayes and empirical Bayes approaches
and proved the asymptotic optimality of the BH [1] procedure as EB in the sense
of (2.1). In the rest of the section, we discuss implementation of the EB method
and some related work on Bayes and EB aspects of FDR problems.

Suppose that the expectation in (2.1) depends on an unknown parameter ξ, so
that the main constraint in (2.1) becomes CFDR(X, ξ) ≤ α. Let

πi(X, ξ) = P
{
θi = 0

∣∣X, ξ
}

(2.4)

denote the conditional probabilities of the null hypotheses Hi given statistics X
and parameters ξ. If f(X|ξ) belongs to a regular parametric family, we may use
an EB rule with an estimate ξ̂ (e.g. the MLE) of ξ and π̂i = π(X, ξ̂ ) in (2.3),
or a hierarchical Bayes rule with a prior on ξ and πi =

∫
πi(X, ξ)f(ξ|X)ν(dξ) in

(2.2). If (θ1, X1), . . . , (θm, Xm) are independent vectors for certain test statistics
Xi, the conditional probabilities πi(X, ξ) = πi(Xi, ξ) or the average k−1

∑n
i=1 π(i)

of their ordered values in (2.2) may still be estimated sufficiently accurately even
for high-dimensional ξ, e.g. the asymptotic optimality BH [1] rule as EB. How do
we implement (2.3) when (2.4) depends on many components of X and ξ is high-
dimensional? We propose EB rules (2.3) with

π̂i = πm,i(Tm,i(X), ξ̂ ), πm,i(Tm,i(X), ξ) = P
{
θi = 0

∣∣Tm,i(X), ξ
}
,(2.5)
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with certain lower-dimensional statistics Tm,i(X) which are informative about θi.
This can be also viewed as the EB version of the approximate Bayes rule

δ(i)′ = I{i ≤ k̃∗}, k̃∗ ≡ max
{

k ≤ m :
1
k

k∑
i=1

πm,(i)′ ≤ α
}

,(2.6)

where πm,(i)′ are the ordered values of πm,i(Tm,i(X), ξ). In applications with time
series, image, or networks data, Tm,i(X) are typically composed of observations
“near” the location of the i-th hypotheses Hi. The idea is to reduce the dimen-
sionality of the function πi to be estimated. In the time series example in Section
3 and certain models of Markov random fields, πm,i(Tm,i(X), ξ) depend on ξ only
through a lower-dimensional functional of ξ, so that the complexity of the esti-
mation problem is further reduced. The cost of such dimension reduction is the
bias

bm,i = πm,i(Tm,i(X), ξ) − πi(X, ξ).

We note that Ebm,i = 0 and Var(bm,i) decreases when we add more variables to
the vector Tm,i(X).

Efron et al. [6] proposed a different EB approach based on the conditional prob-
ability fdr(x) = P{θi = 0|Xi = x} given a univariate statistic Xi, called local
fdr, and developed multiple-testing methodologies based on certain estimate of it
in mixture models. Efron and Tibshirani [7] and Efron [8] further developed this
EB approach using an integrated version of local fdr. These notions of FDR and
related quantities have been studied in Storey [13] and Genovese and Wasserman
[10]. Sarkar and Zhou (personal communication) recently considered the posterior
FDR (i.e. the conditional FDR given all observed data) for a number of multiple
testing procedures, including a randomized version of (2.2).

3. EB methods in a time series model

In this section, we develop EB methods for controlling the (conditional) FDR in
the time series model

Xi = µi + εi,(3.1)

where {εi} is a stationary Gaussian process (e.g. moving average) with

Eεi = 0, Cov(εi, εi+k) = γ(k).(3.2)

Our problem is to test Hi : µi = 0 versus Ki : µi �= 0, i = 1, . . . , m, based on
observations X = (X1, . . . , Xm). We assume that the null distribution of Xi ∼
N(0, γ(0)) is known. We set γ(0) = 1 without loss of generality.

We derive an EB procedure (2.3) of the form (2.5) under a nominal mixture
model in which (θi, µi) are iid vectors with

µi

∣∣(θi = 0) = 0, µi

∣∣(θi = 1) ∼ N(η, τ2)(3.3)

for certain unknown (η, τ2). We assume
∑

k γ2(k) < ∞, which allows us to take
advantage of the diminishing correlation. This leads to

Tm,i(X) = (Xj , |j − i| ≤ k), ξ =
(
η, τ2, w0, γ(1), . . . , γ(k)

)
,(3.4)
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in (2.5), where w0 = P{θi = 0}.
As we have mentioned in Section 2, conditioning on the lower-dimensional statis-

tics Tm,i(X) is helpful in two important ways: computational feasibility and reduc-
tion of the set of nuisance parameters involved. Since the components of X are all
correlated, the posterior probability πi(X, ξ) in (2.4) and thus the Bayes rule k∗ in
(2.2) demand the inversion of m-dimensional conditional covariance matrices and
summation over 2m possible values of θ. Thus, the Bayes rule is computationally
intractable. Exact computation of πm,i(Tm,i(X), ξ) in (2.5) is much more manage-
able since it involves the inversion of (2k + 1)-dimensional covariance matrices and
summation over 22k+1 possible values of Tm,i(θ) = (θj , |j − i| ≤ k). Also, the con-
ditional probability πm,i(Tm,i(X), ξ) of Hi given Tm,i(X) does not depend on γ(j)
for j > k, so that the dimensionality of ξ is much smaller than the sample size if
we choose k = o(m).

Given w0, we estimate ξ as follows:

η̂ =
1
m

m∑
i=1

Xi/(1 − w0),(3.5)

τ̂2 =
1
m

m∑
i=1

X2
i − 1

1 − w0
−

∑
1≤i≤j≤m,j−i>ρm

XiXj/(1 − w0)2

(1 − ρ)2m2/2
,(3.6)

γ̂(j) =
m−j∑
i=1

XiXi+j

m − j
−

∑
1≤i≤j≤m,j−i>ρm

XiXj

(1 − ρ)2m2/2
,(3.7)

where 0 < ρ < 1. Estimates (3.5), (3.6) and (3.7) are based on the method of
moments, since (3.1), (3.2) and (3.3) imply EXi = Eµi = (1 − w0)η, EX2

i =
1 + Eµ2

i = 1 + (1−w0)(τ2 + η2), EXiXi+j = γ(j) + (Eµ1)2, and EXiXj ≈ (Eµ1)2

for large |j − i|. In order to reduce the bias [composed of terms involving γ(j − i)],
we use the average of XiXj with |i − j| > ρm in (3.6) and (3.7) to estimate
(EXi)2 = (Eµi)2, instead of (

∑m
i=1 Xi/m)2. In the simulation study discussed in

Section 4, we take ρ = 0.1.
For the estimation of the proportion w0 of null hypotheses, we use a Fourier

method (Tang and Zhang [15] and Zhang [16]) and its parametric bootstrap version.
The Fourier method estimates w0 by

ŵ
(F )
0 ≡ 1

m

m∑
i=1

ψ(Xi; hm), ψ(z; h) ≡
∫

hψ0(ht)et2/2 cos(zt)dt,(3.8)

where ψ0 is a density function with support [−1, 1] and hm = {κ(log m)}−1/2 is the
bandwidth, κ ≤ 1. This estimator is derived from

E
[
ψ(Xi; h)

∣∣∣µi

]
=

∫
hψ0(ht)et2/2 cos(µit)Eeitεidt

=
∫

ψ0(t) cos((µi/h)t)dt

{
= 1, µi = 0, h > 0,

→ 0, µi �= 0, h → 0+

by Riemann-Lebesgue. For the bootstrap version of (3.8), we generate bootstrap
samples of X under the parameter value of ξ̂ in (3.5)-(3.8) and then estimate w0

by

ŵ
(B)
0 = 2ŵ

(F )
0 − ŵ∗

0 ,(3.9)
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where ŵ∗
0 is the average of the estimator (3.8) based on the bootstrap samples. In

the simulation study, we use uniform [−1, 1] as ψ0 and κ = 1/2 for (3.8), and we
bootstrap 100 times for (3.9).

The Empirical Bayes procedure rejects the null hypotheses associated with the
first k̂ smallest estimated conditional probabilities πm,i(Tm,i(X), ξ̂ ), with

k̂ = max
{

k :
1
k

k∑
i=1

π̂[i] ≤ α
}

,(3.10)

where π̂[1] ≤ · · · ≤ π̂[m] are ordered values of πm,i(Tm,i(X), ξ̂ ), and ξ̂ is defined
through (3.5)-(3.8) with the alternative of using the bootstrap estimate (3.9) for
w0. The conditional probability

πm,i(Tm,i(X), ξ) = P
{
θi = 0

∣∣Tm,i(X), ξ
}
,

with ξ replaced by ξ̂, is computed by conditioning on Tm,i(θ) = (θj , |j − i| ≤ k).
To save notation, we may drop the subscript m in the rest of the paragraph, e.g.
Tm,i = Ti. Under the nominal mixture model (3.3), the conditional joint distribution
of Ti(X) is multivariate normal

Ti(X)
∣∣∣Ti(θ) ∼ N

(
ηTi(θ), Σi(θ)

)
,

where the covariance matrix Σi(θ) = Cov
(
Ti(ε)

)
+ τ2diag

(
Ti(θ)

)
depends on un-

known parameters Ti(θ), {γ(j) : 1 < j ≤ k} and τ2. The joint density of this
conditional distribution is

fi

(
vi

∣∣∣Ti(θ)
)

=
exp

[
− (vi − ηTi(θ)){Σi(θ)}−1(vi − ηTi(θ))′/2]

(2π)di/2{det
(
Σi(θ)

)
}1/2

where di = #{j : |j − i| ≤ k} is the dimensionality of Ti(X), ranging from 1 + k
to 2k + 1 depending on if i is close to the endpoints i = 1 and i = m, and vi are
di-dimensional row vectors. This gives

πm,i(Tm,i(X), ξ)
(3.11)

=

∑
Ti(θ)∈Ω

(0)
i

fi

(
Ti(X)

∣∣Ti(θ)
)
w

di−si(θ)
0 (1 − w0)si(θ)∑

Ti(θ)∈Ωi
fi

(
Ti(X)

∣∣Ti(θ)
)
w

di−si(θ)
0 (1 − w0)si(θ)

,

where si(θ) =
∑

|j−i|≤k θj , Ωi = {0, 1}di , and Ω(0)
i = {Ti(θ) ∈ Ωi : θi = 0}.

The estimation of the proportion of null hypotheses is an important aspect of the
FDR problem. Benjamini and Hochberg [1] simply used the conservative ŵ0 = 1 to
control the FDR at level α, while Benjamini and Hochberg [2] suggested the possi-
bility of power enhancement with estimated w0 in the BH [1] procedure. Different
estimators of w0 were proposed by Storey [13] and Storey, Taylor and Siegmund
[14] based on the tail proportion of p-values, and by Efron et al. [6] based on
minx{f(x)/f0(x)}, in the context of controlling the FDR. Tang and Zhang proved
the consistency of (3.8) for normal mixtures.

4. Simulation results

In this section, we describe the results of our simulation study. We compare five
procedures: the BH [1] rule using the true w0, the approximate Bayes rule (2.6), and
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Fig 1. A realization of the time series data.

three EB rules (3.10) using Tm,i(X) = (Xj , |j − i| ≤ 2), estimators (3.5), (3.6) and
(3.7), and the following three values for (estimated) w0: the true w0, the Fourier
estimator (3.8), and the bootstrap estimator (3.9). We denote the BH procedure by
BH-w0, and the three EB rules by EB-w0, EB-Fourier and EB-bootstrap respec-
tively. The target (conditional) FDR level is α = 0.1 throughout the simulation
study.

Simulation data are generated as follows: m = 1000,

#{i : µi = 0} = 900, #{i : µi = 2} = 100,

i.e. w0 = 0.9, and γ = (1, 0.6, 0.4, 0.2, 0.1, 0, 0, . . .), e.g. γ(1) = 0.6. We note that
this is a singular point in the nominal mixture model (3.3) for the derivation of EB
procedures. A realization of the simulated X is plotted in Figure 1.

We plot the simulated pairs of (V/R, R), i.e. the proportion of false rejections in
the x-axis and the total number of rejections in the y-axis, for the BH-w0 and the
three EB procedures in Figure 2, with dashed lines at the means of the simulated
data. The mean and standard deviation of V/R, R, and V for all five procedures
are given in Table 1. It is clear that the EB procedures are much more powerful
than BH as they have much higher number R of rejections, while the false discovery
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Fig 2. The proportion of false rejections (x-axis) and the total number of rejections (y-axis) for
BH-w0, EB-w0, EB-Fourier, and EB-bootstrap, clockwise from top-left; solid vertical lines for the
target FDR of α = 10% and dashed lines for the means of simulated points in the plots.

ratio V/R are similar among EB and BH procedures.

5. Conclusion

For multiple testing problems, we describe the Bayes and empirical Bayes ap-
proaches for controlling the (conditional) FDR proposed in Tang and Zhang [15].
While these approaches are completely general for dependent data, its implemen-
tation is subject to computational feasibility and the availability of sufficient infor-
mation for the estimation of certain conditional probabilities of the individual null
hypotheses. We propose in this paper to use the conditional probabilities of the
null hypotheses given certain low-dimensional statistics to ease the computational
burden and possibly to reduce the number of nuisance parameters involved. We im-
plement this EB approach in a time series model with general stationary Gaussian
errors. Simulation results demonstrate that the EB procedures have much high
number of correct rejections and similar false rejection ratio compared with an
application of the procedure of Benjamini and Hochberg [1] based on individual p-
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Table 1

Mean (µ) and Standard Deviation (σ) of V/R, R, and V

V/R R V
Procedure mean SD mean SD mean SD

BH-w0 0.11 0.10 13.52 7.57 1.66 1.82
Approximate Bayes 0.12 0.03 76.86 6.62 9.12 3.16

EB-w0 0.10 0.09 34.42 7.95 3.27 3.05
EB-Foureir 0.13 0.11 34.49 13.44 5.06 4.95

EB-bootstrap 0.13 0.12 35.59 15.05 5.89 6.56

values. This clearly demonstrates the feasibility and superior power of the proposed
EB approach for controlling the false rejection with dependent data.
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