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A question of geometry and probability

Richard A. Vitale1

University of Connecticut

Abstract: We introduce the Aleksandrov–Fenchel inequality, apply it to a tail
bound for Gaussian processes, and speculate on a further connection.

1. Introduction

Some time ago I brought a question involving geometry and probability to Herman
and that led us in an interesting direction [12]. To celebrate this occasion, I am
happy to bring another such question.

Recall the planar isoperimetric inequality, which says that for a convex body K
of area A(K) and perimeter L(K)

4π · A(K) ≤ L2(K) . (1)

Consider now a 2 × 2 matrix M of independent N(0, 1) variables and the image
body MK. Inserting into (1) and taking expectations gives

4π · E [A(MK)] ≤ E
[
L2(MK)

]
. (2)

However, it is the case that the following stronger inequality holds:

4π · E [A(MK)] ≤ [EL(MK)]2 . (3)

It is possible to verify (3) as a simple exercise in Gaussian determinants, but one
cannot say that this approach gives a satisfying explanation of what is really going
on, for example, why (2) and (3) differ precisely by VarL(MK).

In fact, a deep theory is in the background, and the question of the title is to
ask how it can be systematically exploited in this and other stochastic contexts. In
the next sections, we briefly outline the theory and then turn to a specific question
connected with Gaussian processes.

2. The Aleksandrov–Fenchel inequality

The bound (3) can be regarded as the first in an infinite sequence of inequalities,
each of which is a stochastic formulation of the Aleksandrov–Fenchel (A–F) in-
equality in convex geometry. The A–F inequality is well–known to specialists as
a powerful tool, having as implications the isoperimetric inequality (in all dimen-
sions) and the Brunn–Minkowski inequality [8]. It has been successfully applied to
problems in combinatorics as well as to the resolution of the van der Waerden per-
manent conjecture [6, 7, 14, 15, 16]. Interestingly, the original plan for the classic
compilation [4] was to have a sequel based entirely on the A–F inequality. A closely
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related inequality on mixed discriminants [1, 2, 3] has found applications in stochas-
tic settings. In view of this background, it is surprising that the A–F inequality itself
has not found more applications in stochastic settings. One exception is questions
in the theory of Gaussian processes, to which we turn in the next section.

A quick introduction to the A–F inequality goes as follows. It is part of Brunn–
Minkowski Theory [13], which deals with the interaction between volume evaluation
and vector addition of convex bodies (i.e., compact, convex subsets). For convex
bodies K1, K2, . . . , Kn in R

d and positive coefficients λ1, λ2, . . . , λn,

vol (λ1K1 + λ2K2 + · · · + λnKn) =
n∑

i1,i2,···,id=1

λi1λi2 · · ·λid
V (Ki1 , Ki2 , . . . , Kid

),

(4)
where, without loss of generality, the coefficients V (·) are taken to be symmetric in
their arguments. The A–F inequality then asserts the following:

Theorem 1. For convex bodies K1, K2, . . . , Kd in R
d,

V 2(K1, K2, K3, . . . , Kd) ≥ V (K1, K1, K3, . . . , Kd) V (K2, K2, K3, . . . , Kd). (5)

For the special case of a parallel body K + λB (B, the unit ball in R
d), (4)

simplifies to the Steiner formula [17]

vol(K + λB) =
d∑

i=0

λiωiVd−i(K), (6)

where ωi is the volume of the unit ball in R
i and the Vi(K) are the intrinsic volumes

of K (V0 ≡ 1). Then (5) translates to the sequence {i! Vi(K)}∞i=0 being log–concave:

(i! Vi(K))2 ≥ (i − 1)!Vi−1(K) · (i + 1)!Vi+1(K) i = 1, 2, . . . , d − 1 (7)

(elsewhere this property has been called ultra–logconcavity of order ∞ [10, 11]).

3. Intrinsic volumes and Gaussian processes

The theory of Gaussian processes has been heavily influenced by convex geometry
[5, 9, 18, 22, 23]. Here we draw especially on [19, 20, 21, 22].

A popular approach to Gaussian processes is canonical indexing: suppose that
A ⊆ R

d and that Z = (Z1, Z2, . . . , Zd) are iid N(0, 1) variables. A canonically
indexed Gaussian process XA = {Xt, t ∈ A} has the form Xt =

∑d
1 tiZi = <t, Z>

(this process evidently has “rank” no greater than d, but similar definitions can
be made in Hilbert space for more general processes). If A = K, a convex body,
then intrinsic volumes come into play. For j = 1, 2, . . . , d define the vector process
Xj∗

t =
(
X

(1)
t , X

(2)
t , . . . , X

(j)
t

)
, where the components are independent copies of Xt.

Further, define the (random) convex body Xj∗
K = conv{Xj∗

t , t ∈ K} ⊆ R
j . Then

Vj(K) =
(2π)j/2

j! ωj
Evolj

(
Xj∗

K

)
. j = 1, 2, . . . , d (8)

The Wills functional is given by
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W (K) = E

[
exp sup

t∈K

(
Xt −

1
2
EX2

t

)]
(9)

and has the generating function expansion

W (rK) =
d∑

j=0

(
r√
2π

)j

Vj(K). (10)

An important consideration for Gaussian processes is “size,” which is tradi-
tionally interpreted as supt Xt. Tail probability bounds are of various types, and
we illustrate the application of the preceding ideas to a sharpening of a bound
in [22]. Fix K, and recall that the A–F inequality implies that aj = j! Vj(K) is a
log-concave sequence:

log aj ≤ log ai + (log ai+1 − log ai)(j − i),

which implies

Vj(K) ≤ i! Vi(K)
j!

(
(i + 1)Vi+1(K)

Vi(K)

)j−i

.

Substituting into (10) and summing j = 0, . . . ,∞ yields

W (rK) ≤ i! Vi(K)
(

Vi(K)
(i + 1)Vi+1(K)

)i

exp
[
(i + 1)Vi+1(K)r√

2πVi(K)

]

≤ i! Vi(K)
(2π)i/2mi

i(K)
exp [mi(K)r] ,

where

mi(K) =
i Vi(K)√

2πVi−1(K)
. (11)

A straightforward application of Markov’s inequality then provides the bound

P (sup
t

Xt ≥ a) ≤ inf
i

{
i! Vi(K)

(2π)i/2mi
i(K)

exp
[
− (mi(K) − a)2

2σ2

]}
,

where a > 0 and σ2 = supt∈K EX2
t = supt∈K ‖t‖2.

This brings us to the issue mentioned in the introduction: the way in which
the values mi(K) have arisen suggests that they may be natural parameters of
the process for other questions as well. It is easy to verify that m1(K) is at once
E supt∈K Xt and proportional to the mean width of K and, as such, has linear
dimension. The succeeding mi also have linear units, and evidently provide alternate
size measures for both K and {Xt, t ∈ K}. Their asymptotic behavior reflects the
regularity of the process (see [24] for details), but it seems clear that their specific
values must also calibrate successive i-th order properties of some type for the
process. What these are remains for investigation.
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