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Maximum likelihood estimation for the

contact process

Marta Fiocco1 and Willem R. van Zwet2

Leiden University Medical Centre and University of Leiden

Abstract: The contact process—and more generally interacting particle sys-
tems—are useful and interesting models for a variety of statistical problems.
This paper is a report on past, present and future of research by the authors
concerning the problem of estimating the parameters of the contact process.
A brief review of published work on an ad-hoc estimator for the case where
the process is observed at a single (large) time t is given in Section 1. In
Section 2 we discuss maximum likelihood estimation for the case where the
process is observed during a long time interval [0, t]. We construct the esti-
mator and state its asymptotic properties as t → ∞, but spare the reader
the long and tedious proof. In Section 3 we return to the case where the
process is observed at a single time t and obtain the likelihood equation for
the estimator. Much work remains to be done to find a workable approxi-
mation to the estimator and study its properties. Our prime interest is to
find out whether it is significantly better than the ad-hoc estimator in Sec-
tion 1.

It was a joy to write this paper for Herman Rubin’s festschrift. To this
is added the bonus that Herman will doubtless solve our remaining problems
immediately.

1. Introduction

The contact process was introduced and first studied by Harris (1974). It is de-
scribed as follows. At every time t ≥ 0, every point (or site) x in the d-dimensional
integer lattice Zd is in one of two possible states that we shall call infected and
healthy. The process starts at time t = 0 with a non-empty set A ⊂ Zd of infected
sites. At time t ≥ 0, the state of the site x ∈ Zd will be indicated by a random
variable ξA

t (x), given by

ξA
t (x) =

{
1, if site x is infected at time t
0, if site x is healthy at time t .

(1.1)

The function ξA
t : Zd → {0, 1} describes the state of the process at time t and

ξA
0 = 1A, the indicator function of the set A.

The evolution of this {0, 1}-valued random field is described by the following
dynamics. A healthy site is infected independently and at rate λ > 0 by each
of its 2d immediate neighbors that is itself infected. An infected site recovers at
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Figure 1: The process ξ
{0}
t for λ = 3 and µ = 1 after 30, 000 steps. Infected sites are

represented by gray 1 × 1 squares. A darker gray level indicates a longer duration
of the present infection.

rate µ > 0. Given the configuration ξA
t at time t, the processes involved are in-

dependent until a change occurs. For d = 2 the contact process is a simplified
model for the spread of an infection or, more generally, of a biological species in
the plane. The growth of a forest is an example if diseased and healthy are in-
terpreted as presence and absence of a tree in a square centered at the lattice
site.

In Figure 1 we show the process that started with a single infected site at
the origin with λ = 3 and µ = 1 after 30,000 steps, i.e. 30,000 infections and
recoveries. Infected sites are indicated by gray 1×1 squares. An additional feature
of this figure is that for each infected site we have kept track of the number of
steps since it was last infected and have indicated this by the gray level at that site:
the darker the gray level, the older the present infection at a site. If we view the
process as a model for the growth of a forest, then the gray level indicates the age
of the tree. Obviously, the older trees are in the center of the picture away from the
boundary.

It is sometimes convenient to represent the state of the contact process at time
t by the set of infected sites rather than by the function ξA

t : Zd → {0, 1}. Usually,
this set is also denoted by ξA

t . Thus, by an abuse of notation, we write

ξA
t =

{
x ∈ Zd : ξA

t (x) = 1
}
. (1.2)

Let

τA = inf
{
t : ξA

t = ∅
}

(1.3)

denote the time the infection dies out with the convention that τA = ∞ if the
infection survives forever. For a set C ⊂ Rd and a > 0, we write aC = {ax : x ∈ C}.
For sets C and D in Rd, C⊕D = {x+y : x ∈ C, y ∈ D} will denote their Minkowski
sum and we define

HA
t =

⋃
0≤s≤t

ξA
s ⊕ Q[−1/2, 1/2]d . (1.4)
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Thus HA
t is obtained from the set of sites that have been infected up to and including

time t by replacing each site by a hypercube with sides of length 1 centered at this
site.

The contact process has been the subject of extensive studies during the past
decades. We list a few of its basic properties.

Property 1. If ρ = λ/µ exceeds a certain critical value ρd , then the infection will
continue forever (i.e. τA = ∞) with positive probability depending on the dimension
d and the initial set A. This is called the supercritical case. On the other hand, if
ρ ≤ ρd, then the infection will eventually die out (i.e. τA < ∞) with probability 1.
We shall restrict attention to the supercritical case.

Property 2. In the supercritical case, there exist positive constants C and γ such
that for every t > 0 and A ⊂ Zd with cardinality |A|,

P
(
t < τA < ∞

)
≤ Ce−γt, P

(
τA < ∞

)
≤ e−γ|A|. (1.5)

In particular, if A is infinite, then in the supercritical case the infection will survive
forever.

Property 3. The distribution of the set ξA
t converges weakly to a limit distribution

P
(
τA < ∞

)
δ∅ + P

(
τA = ∞

)
ν, (1.6)

where δ∅ denotes the measure that assigns probability 1 to the empty set and ν
is the equilibrium measure depending only on ρ and the dimension d. Thus, given
that the process survives forever—which is possible only in the supercritical case—
it tends in distribution to ν. Here weak convergence coincides with convergence in
distribution of the finite dimensional projections ξA

t ∩ F , (i.e. {ξA
t (x) : x ∈ F}) for

finite F ⊂ Zd.

Property 4. There exists a bounded convex set U ⊂ Rd with the origin as an
interior point such that for every bounded A ⊂ Zd, ε > 0 and t → ∞,

(1 − ε)tU ⊂ HA
t ⊂ (1 + ε)tU, (1.7)

eventually almost surely on the set {τA = ∞} where ξA
t survives forever. Thus if

the infection persists, then for large t, HA
t will grow linearly in t in every direction

and t−1 HA
t will assume the shape of U. Moreover, on the set {τA = ∞} and for

large t, the distribution of ξA
t ∪ (1 − ε)tU will approach its asymptotic distribu-

tion under the equilibrium measure ν in a sense that we shall not make precise
here.

For these facts and other related matters the reader may consult Liggett (1985
& 1999).

The contact process and its many possible generalizations provide an interesting
class of models for problems in spatial statistics and image analysis. In Fiocco &
van Zwet (2003a & b) we began a statistical study of the supercritical contact
process ξ

{0}
t that starts with a single infected site at the origin and is conditioned

on survival, i.e. on {τ{0} = ∞}. For this process we considered the simplest possible
statistical problem, that is, to estimate the parameters of the contact process based
on observing the set of infected sites at a single (large but unknown) time t. This
corresponds to the realistic situation when one observes a large forest that has
obviously been there for a long time without any knowledge when it began. On the
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basis of such an observation it is clear that one can only estimate ρ = λ/µ but not λ
and µ individually, as without knowing t, one cannot distinguish between observing
the processes with parameters cλ and cµ at time t/c for different values of c > 0.
Equivalently, one may set µ = 1 arbitrarily and estimate λ.

For any x, y ∈ Zd and C ⊂ Rd, let |x − y| =
∑

1≤i≤d |xi − yi| denote the
L1-distance of x and y, and define

k
{0}
t (x) =

(
1 − ξt(x)

) ∑
|x−y|=1

ξ
{0}
t (y), (1.8)

n
{0}
t (C) =

∑
x∈C∩Zd

ξ
{0}
t (x), k

{0}
t (C) =

∑
x∈C∩Zd

k{0}(x). (1.9)

Notice that n
{0}
t (C) is simply the number of infected sites in C and k

{0}
t (C) equals

the number of neighboring pairs of infected and healthy sites, with the healthy
site in C. For x ∈ Zd, the flip rates at time t equal λk

{0}
t (x) and µξ

{0}
t (x) for the

transitions 0 → 1 and 1 → 0 respectively and hence the number n
{0}
t (C) of infected

sites increases by 1 at time t with rate k
{0}
t (C) and decreases by 1 with rate n

{0}
t (C).

In Property 4 above, we explained that on {τ{0} = ∞} and at a large time t, the
process will have progressed past the set (1− ε)tU and will be close to equilibrium
there. This implies that the rate of increase of n

{0}
t ((1−ε)tU) should approximately

equal its rate of decrease, so that λk
{0}
t ((1 − ε)tU) ≈ µn

{0}
t ((1 − ε)tU). Hence on

{τ{0} = ∞}, n
{0}
t ((1 − ε)tU)/k

{0}
t ((1 − ε)tU) should be a plausible estimator of

ρ = λ/µ, or of λ if one assumes µ = 1, where it not for the fact that U is unknown.
However, one can show that for every ε > 0, the convex hull C(ξ{0}t ) of the set of
infected sites ξ

{0}
t satisfies

(1 − ε)tU ⊂ C
(
ξ
{0}
t

)
⊂ (1 + ε)tU, (1.10)

eventually almost surely on {τ{0} = ∞}, so that C(ξ{0}t ) apparently approximates
tU . If, for any δ > 0, we define

Ct = (1 − δ)C
(
ξ
{0}
t

)
, (1.11)

then for some ε > 0, (1.10) ensures that Ct ⊂ (1 − ε)tU eventually a.s. on {τ{0} =
∞}. Hence

ρ̃t =
n
{0}
t (Ct)

k
{0}
t (Ct)

, (1.12)

would seem to be a sensible estimator of ρ, given that the process ξ
{0}
t will survive

forever. Indeed we prove in Fiocco & van Zwet (2003b) that conditional on {τ{0} =
∞}, ρ̃t is a strongly consistent and asymptotically normal estimator of ρ, that is,
as t → ∞,

ρ̃t → ρ a.s. |Ct|1/2
d

(
ρ̃t − ρ

) D→N
(
0, τ2

)
(1.13)

Here |Ct|d denotes the cardinality of Ct∩Zd, or alternatively, the Lebesgue measure
of Ct , and an explicit expression for τ2 is available. For our purposes we merely note
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that this implies that (ρ̃t − ρ) = OP (t−d/2) on {τ{0} = ∞}. Simulation confirms
that the estimator behaves as predicted by the asymptotics (Fiocco (1997)).

For the estimator ρ̃t to perform well asymptotically as well as in simulations,
it is essential that δ should indeed be positive in (1.11). At time t the process
has spread approximately to tU , but beyond (1 − ε)tU it is not yet in equilibrium
and our argument fails. This is also intuitively obvious: having just reached the
boundary of tU , the infected sites beyond (1− ε)tU should be less dense than they
are closer to the origin where the infection arrived earlier and had time to achieve
equilibrium. Beyond (1− ε)tU the fraction of infected sites should be too small, but
among the infected sites the fraction with healthy neighbors should be too large.
As a result ρ̃t should systematically underestimate ρ if δ is taken to be zero and
simulation not only confirms this, but shows that in this case the estimator is bad.
This effect also shows up asymptotically as t → ∞. If δ = 0, we can still prove
consistency but no longer asymptotic normality. Shrinking the convex hull C(ξ{0}t )
to obtain the mask Ct for the estimator is essential for obtaining a satisfactory
estimator.

Two minor problems are left. First, shrinking C(ξ{0}t ) towards the origin to ob-
tain Ct is possible only if one knows where the origin is, i.e. where the infection
has started. Generally this is not known: one sees the forest today, but not when or
where it began. Of course one can estimate the origin in many different ways, for
instance by averaging the locations of the infected sites. Shrinking towards this es-
timated origin will not influence the asymptotic behavior of the estimator. A more
elegant solution is to replace the shrinking of C(ξ{0}t ) by another operation that
removes the sites near the boundary of this set. Such operation is called peeling,
where one removes layer after layer of sites on the boundary of the convex hull.
In general, almost any reasonable type of shrinking will leave the asymptotic be-
havior of the estimator unchanged as long as the same fraction of sites is removed.
Simulation suggests that this fraction should be around 20-30%, decreasing with
increasing t.

Second, our analysis refers only to the behavior of the process - and hence of
the estimator - on the set where τ{0} = ∞. Obviously, if τ{0} < ∞, there is not
much to observe for sufficiently large t, since the infection will have died out. On
the other hand, we can not know with certainty at any finite time t that we are
indeed in the case where τ{0} = ∞, so one may wonder whether asymptotic results
for t → ∞ that are valid only on the set τ{0} = ∞ have any statistical significance.
However, (1.5) ensures that having survived until a large time t, the infection will
survive forever with overwhelming probability. Asymptotic results conditional on
τ{0} = ∞ are therefore the same as those conditioned on τ{0} ≥ t, that is, on the
infection being present when observed.

2. Maximum likelihood for the fully observed process

Having briefly described the statistical results obtained for the contact process
observed at a single time t, we now turn to the case where this process is ob-
served continuously on the interval [0, t] for a known (large) t > 0. In this case
it should be possible to estimate λ and µ separately, rather than just their ra-
tio ρ = λ/µ. In fact we shall derive the maximum likelihood estimators of these
parameters.

Let 0 < T1 < . . . < TN denote the times when the contact process undergoes
a change in the time interval [0, t] and, for i = 1, 2, . . . , N , let xi denote the site
at which the change occurs at time Ti. It will be convenient to write T0 = 0 and
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TN+1 = t and ξi = ξ
{0}
Ti

for the configuration of the process at time Ti. Given the
configuration ξi−1 at time Ti−1, the rate of change at site x equals

ri(x) =
{

λ
∑

|x−y| ξi−1(y) if ξi−1(x) = 0
µ if ξi−1(x) = 1,

(2.1)

and the total rate of change at any site is given by

Ri =
∑

x∈Zd

ri(x) = λk
{0}
Ti−1

(
Zd

)
+ µn

{0}
Ti−1

(
Zd

)
(2.2)

It follows that the likelihood of the observed process on [0, t] is given by

L(λ, µ) =
∏

1≤i≤N

Ri exp
{
−Ri[Ti − Ti−1]

}
[ri(xi)/Ri] exp

{
−RN+1[t − TN ]

}
.

Hence

log L(λ, µ) = −
∑

1≤i≤N+1

Ri[Ti − Ti−1] + Ut log λ + Dt log µ + h
(
ξ{0}

)

where Ut and Dt are the number of upward and downward jumps of the process on
[0, t], i.e.

Ut = #
{
0 ≤ i ≤ N − 1 : ξi−1(xi) = 0

}
= #

{
1 ≤ i ≤ N : ξi(xi) = 1

}
, (2.3)

Dt = #
{
0 ≤ i ≤ N − 1 : ξi−1(xi) = 1

}
= #

{
1 ≤ i ≤ N : ξi(xi) = 0

}
, (2.4)

and h(ξ{0}) depends on the process {ξ{0}s : 0 ≤ s ≤ t}, but not on the parameters λ
and µ.

Define

At =
∫ t

0

k{0}
s

(
Zd

)
ds, Bt =

∫ t

0

n{0}
s

(
Zd

)
ds. (2.5)

As n
{0}
s (Zd) and k

{0}
s (Zd) are constant for s ∈ [Ti−1, Ti) and TN+1 = t, (2.2)

implies that ∑
1≤i≤N+1

Ri[Ti − Ti−1] = λAt + λBt

and hence

log L(λ, µ) = −λAt − µBt + Ut log λ + Dt log µ + h
(
ξ{0}

)
. (2.6)

Differentiating with respect to λ, and µ we find that the maximum likelihood esti-
mators λ̂t and µ̂t of λ, and µ are given by

λ̂t =
Ut

At
, µ̂t =

Dt

Bt
. (2.7)

The maximum likelihood estimator of ρ = λ/µ therefore equals

ρ̂t =
UtBt

DtAt
. (2.8)
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As in the previous section we can prove that conditional on {τ{0} = ∞}, these
estimators are strongly consistent and asymptotically normal, but converge to the
parameter to be estimated at the faster rate O(t−(d+1)/2). Thus conditional on
{τ{0} = ∞} and as t → ∞,

λ̂t → λ a.s., µ̂t → µ a.s. ρ̂t → ρ a.s., (2.9)

t(d+1)/2(λ̂t − λ) → N(0, σ2
λ),

t(d+1)/2(µ̂t − µ) → N(0, σ2
µ), (2.10)

t(d+1)/2(ρ̂t − ρ) → N(0, σ2
ρ),

again with explicit expressions for the variances being available. The proof is long
and involved and will be given elsewhere.

There are two different ways of looking at these maximum likelihood estimators
heuristically. First we may observe that the counting process Ut has compensator
λAt and since At → ∞ if τ{0} = ∞, λ̂t = Ut/At should approximate λ. Similarly,
µBt is the compensator of Dt and µ̂t = Dt/Bt should approximate µ on {τ{0} =
∞}. Hence λ̂t, µ̂t and ρ̂t are plausible estimators of λ, µ and ρ.

However, one may also be interested in a comparison of the maximum likeli-
hood estimator ρ̂t based on the fully observed process {ξ{0}s : 0 ≤ s ≤ t}, and the
ad-hoc estimator ρ̃t of Section 1, which is based on observing ξ

{0}
t at the sin-

gle time t. We assume throughout that τ{0} = ∞. First of all, (Bt/At) in (2.8)
estimates the same quantity ρ as ρ̃t = n

{0}
t (Ct)/k

{0}
t (Ct) in (1.12). On the one

hand, Bt/At averages information over the interval [0, t] and should therefore have
a variance of a smaller order than n

{0}
t (Ct)/k

{0}
t (Ct). On the other hand Bt/At

uses the entire set of infected points and its healthy neighbors, and we have ar-
gued in Section 1, that without shrinking this set, this will lead to underestimating
ρ. The factor Ut/Dt in (2.8) now serves to correct this negative bias. In equilib-
rium, the number of upward and downward jumps should approximately cancel
out, but near the boundary of the set of infected points, equilibrium has not yet
set in. In fact, the number of infected sites Ut − Dt + 1 grows roughly as a con-
stant factor times the Lebesgue measure of tU , that is, at the rate of td. Individ-
ually, both Ut and Dt are counting processes and easily seen to be of order td+1.
Hence (Ut/Dt) − 1 is positive and decreases at the rate t−1, so that the factor
Ut/Dt in (2.8) does serve to correct the negative bias which does indeed decrease
like t−1.

The asymptotic results (1.13) and (2.10) imply that the estimators ρ̃t and ρ̂t

of ρ have random errors of orders O(t−d/2) and O(t−(d+1)/2) respectively. Hence the
maximum likelihood estimator ρ̂t based on observing the entire process {ρ{0}s : 0 ≤
s ≤ t}, is asymptotically an order of magnitude better than the ad-hoc estimator ρ̃t

based on a single observation of ξ
{0}
t . In Figure 2 we show a single run of simulated

values of both estimators after 500, 1, 000, 1, 500, . . . , 20, 000 jumps of the process
for λ = 0.8 µ = 1, and hence ρ = 0.8. For the ad-hoc estimator, the shrinking of
the convex hull of infected sites C(ξ{0}t ) to obtain the mask Ct has been achieved by
peeling rather than multiplication by (1 − δ) as is done in (1.11). Peeling fractions
of 30%, 50% and 70% were used. It appears that the maximum likelihood estimator
is indeed superior.
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Figure 2: Maximum likelihood estimator ρ̂t and the ad-hoc estimator ρ̃t.

3. Maximum likelihood for the singly observed process

As we pointed out in Section 1, one will rarely have the opportunity to observe
the process throughout a time interval [0, t]. In most cases one will have to be
content with a single observation of the process at a (large but unknown) time t.
For the latter situation we reported on the study of an ad-hoc estimator ρ̃t =
n
{0}
t (Ct)/k

{0}
t (Ct) of ρ, and noted that it is essential to choose the mask Ct well

inside the convex hull C(ξ{0}t ) of the set of infected points in order to avoid underes-
timating ρ. Of course, we are still interested in finding and studying the maximum
likelihood estimator for this case, if only to see whether or not it will improve
substantially on the ad-hoc estimator.

Obviously this is going to be a difficult assignment. In Section 2 we studied the
maximum likelihood estimator for the fully observed process and discovered two
things. First of all this estimator uses the ratio of (the integrals of) n

{0}
s (Zd) and

k
{0}
s (Zd) and we conclude that the use n

{0}
t /k

{0}
t in the ad-hoc estimator was a good

idea. Second, the bias correction was achieved by the correction factor Ut/Dt, which
is a rather more subtle way to achieve this than by discarding a sizeable fraction
of the data, as is done for the ad-hoc estimator. It therefore seems plausible that
the maximum likelihood estimator for the singly observed process will also depend
on n

{0}
t /k

{0}
t , and that conditional expectations of the numbers of upward and

downward jumps in [0, t] given ξ
{0}
t will also play a part.

Since we observe ξ
{0}
t at an unknown time t and have no information about

the times of any of the jumps, we may discard the time element entirely and
view the process as a sequence of configurations ξ

{0}
1 , ξ

{0}
2 , . . . , ξ

{0}
n−1+2k after the

first, second,. . . , (n − 1 + 2k)th jumps that take place consecutively at sites x1, x2,

. . . , xn−1+2k during the time interval [0, t]. The final configuration ξ
{0}
n−1+2k equals
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the observed configuration ξ
{0}
t . For some k, (n − 1 + k) of the jumps are upward

(i.e. n
{0}
t increases by 1 at this jump) and k are downward. Hence the total increase

n
{0}
t (Zd) − n

{0}
0 (Zd) = n

{0}
t (Zd) − 1 of the number of infected points must equal

(n − 1 + k) − k = n − 1, so that we must have n = n
{0}
t (Zd). Finally, we write

n
{0}
i−1(xi) and k

{0}
i−1(xi) for the values of n

{0}
t and k

{0}
t after the time of the (i− 1)st

jump at the site xi where the next jump will occur, and n
{0}
i (Zd) and k

{0}
i (Zd)

for the values of n
{0}
t (Zd) and k

{0}
t (Zd) immediately after the i − th jump. The

probability of (n − 1 + k) upward and k downward jumps consecutively at sites
x1, x2, . . . , xn−1+2k equals

∏
1≤i≤n−1+2k

λk
{0}
i−1(xi) + µn

{0}
i−1(xi)

λk
{0}
i−1(Zd) + µn

{0}
i−1(Zd)

= λn−1−kµk
∏

1≤i≤n−1+2k

k
{0}
i−1(xi) + n

{0}
i−1(xi)

λk
{0}
i−1(Zd) + µn

{0}
i−1(Zd)

because either k
{0}
i−1(xi) or n

{0}
i−1(xi) vanishes. It follows that the likelihood is given

by

L∗(λ, µ) =
∑

0≤k<∞

∑∗
λn−1+kµk

∏
1≤i≤n−1+2k

k
{0}
i−1(xi) + n

{0}
i−1(xi)

λk
{0}
i−1(Zd) + µn

{0}
i−1(Zd)

, (3.1)

where
∑∗ denotes summation over all possible sequences ξ

{0}
1 , ξ

{0}
2 , . . . , ξ

{0}
n−1+2k for

which ξ
{0}
n−1+2k is the first configuration equaling ξ

{0}
t , and n = n

{0}
t (Zd). As we

noted in Section 1 we can only estimate ρ = λ/µ, but not λ and µ separately as t is
unknown. However, we can still maximize the likelihood L∗ as a function of λ and µ,
but we shall find that both likelihood equations are identical. If U and D denote
the number of upward and downward jumps until the configuration equals ξ

{0}
t for

the first time, then differentiation with respect to λ and µ yields the likelihood
equations

E(U |ξ{0}t ) = E


 ∑

1≤i<U+D

[
λk

{0}
i−1(Z

d)

λk
{0}
i−1(Zd) + µn

{0}
i−1(Zd)

]
|ξ{0}t


 , (3.2)

E(D|ξ{0}t ) = E


 ∑

1≤i<U+D

[
µn

{0}
i−1(Z

d)

λk
{0}
i−1(Zd) + µn

{0}
i−1(Zd)

]
|ξ{0}t


 . (3.3)

Adding these two equations yields the identity E(U + D|ξ{0}t ) = E(U + D|ξ{0}t ), so
(3.2) and (3.3) are equivalent to the difference

E(U − D|ξ{0}t ) = E


 ∑

1≤i<U+D

[
λk

{0}
i−1(Z

d) − µn
{0}
i−1(Z

d)

λk
{0}
i−1(Zd) + µn

{0}
i−1(Zd)

]
|ξ{0}t


 ,

and since U − D = n
{0}
t (Zd) − 1, this reduces to
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E


 ∑

1≤i<U+D

[
λk

{0}
i−1(Z

d) − µn
{0}
i−1(Z

d)

λk
{0}
i−1(Zd) + µn

{0}
i−1(Zd)

]
|ξ{0}t


 = n

{0}
t (Zd) − 1. (3.4)

Even though this last step removes the dependence on the conditional expectation
of U − D, this is no great help since the conditional behavior of U + D still enters
through the range of the summation.

Thus, as expected the maximum likelihood estimator of ρ = λ/µ presumably
depends on both n

{0}
t (Zd)/k

{0}
t (Zd) and the conditional behavior of U given ξ

{0}
t .

Obviously there are two different possibilities to study the maximum likelihood
estimator, namely asymptotic approximation of the estimator and simulation. Work
in the former direction is in progress.
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