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Modeling inequality and spread in

multiple regression∗

Rolf Aaberge1, Steinar Bjerve2 and Kjell Doksum3

Statistics Norway, University of Oslo and University of Wisconsin, Madison

Abstract: We consider concepts and models for measuring inequality in the
distribution of resources with a focus on how inequality varies as a function of
covariates. Lorenz introduced a device for measuring inequality in the distrib-
ution of income that indicates how much the incomes below the uth quantile
fall short of the egalitarian situation where everyone has the same income.
Gini introduced a summary measure of inequality that is the average over u of
the difference between the Lorenz curve and its values in the egalitarian case.
More generally, measures of inequality are useful for other response variables
in addition to income, e.g. wealth, sales, dividends, taxes, market share and
test scores. In this paper we show that a generalized van Zwet type dispersion
ordering for distributions of positive random variables induces an ordering on
the Lorenz curve, the Gini coefficient and other measures of inequality. We
use this result and distributional orderings based on transformations of distri-
butions to motivate parametric and semiparametric models whose regression
coefficients measure effects of covariates on inequality. In particular, we extend
a parametric Pareto regression model to a flexible semiparametric regression
model and give partial likelihood estimates of the regression coefficients and
a baseline distribution that can be used to construct estimates of the various
conditional measures of inequality.

1. Introduction

Measures of inequality provide quantifications of how much the distribution of a
resource Y deviates from the egalitarian situation where everyone has the same
amount of the resource. The coefficients in location or location-scale regression
models are not particularly informative when attention is turned to the influence
of covariates on inequality. In this paper we consider regression models that are
not location-scale regression models and whose coefficients are associated with the
effect of covariates on inequality in the distribution of the response Y .

We start in Section 2.1 by discussing some familiar and some new measures of
inequality. Then in Section 2.2 we relate the properties of these measures to a sta-
tistical ordering of distributions based on transformations of random variables that
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is equivalent to defining the distribution H of the response Z to have more resource
inequality than the distribution F of Y if Z has the same distribution as q(Y )Y
for some positive nondecreasing function q(·). Then we show that this ordering im-
plies the corresponding ordering of each measure of inequality. We also consider
orderings of distributions based on transformations of distribution functions and
relate them to inequality. These notions and results assist in the construction of
regression models with coefficients that relate to the concept of inequality.

Section 3 shows that scaled power transformation models with the power pa-
rameter depending on covariates provide regression models where the coefficients
relate to the concept of resource inequality. Two interesting particular cases are
the Pareto and the log normal transformation regression models. For these models
the Lorenz curve for the conditional distribution of Y given covariate values takes
a particularly simple and intuitive form. We discuss likelihood methods for the
statistical analysis of these models.

Finally, in Section 4 we consider semiparametric Lehmann and Cox type models
that are based on power transformations of a baseline distribution F0, or of 1−F0,
where the power parameter is a function of the covariates. In particular, we consider
a power transformation model of the form

(1.1) F (y) = 1 − (1 − F0(y))α(x),

where α(x ) is a parametric function depending on a vector β of regression coeffi-
cients and an observed vector of covariates x . This is an extension of the Pareto
regression model to a flexible semiparametric model. For this model we present
theoretical and empirical formulas for inequality measures and point out that com-
putations can be based on available software.

2. Measures of inequality and spread

2.1. Defining curves and measures of inequality

The Lorenz curve (LC) is defined (Lorenz [19]) to be the proportion of the total
amount of wealth that is owned by the “poorest” 100 × u percent of the population.
More precisely, let the random income Y > 0 have the distribution function F (y),
let F−1(y) = inf{y : F (y) ≥ u} denote the left inverse, and assume that 0 < µ < ∞,
where µ = E(Y ). Then the LC (see e.g. Gastwirth [14]) is defined by

(2.1) L(u) = LF (u) = µ−1

∫ u

0

F−1(s)ds, 0 ≤ u ≤ 1.

Let I{A} denote the indicator of the event A. For F continuous we can write

(2.2) L(u) = µ−1E{Y I{Y ≤F−1(u)}}.

When the population consists of incomes of people, the LC measures deviation
from the egalitarian case L(u) = u corresponding to where everyone has the same
income a > 0 and the distribution of Y is degenerate at a. The other extreme occurs
when one person has all the income which corresponds to L(u) = 0, 0 ≤ u ≤ 1. The
intermediate case where Y is uniform on [0, b], b > 0, corresponds to L(u) = u2. In
general L(u) is non-decreasing, convex, below the line L(u) = u, 0 ≤ u ≤ 1, and
the greater the “distance” from u, the greater is the inequality in the population. If
the population consists of companies providing a certain service or product, the LC
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measures to what extent a few companies dominate the market with the extreme
case corresponding to monopoly.

A closely related curve is the Bonferroni curve (BC ) B(u) which is defined
(Aaberge [1], [2]), Giorgi and Mondani [15], Csörgö, Gastwirth and Zitikis [11])
as

(2.3) B(u) = BF (u) = u−1L(u), 0 ≤ u ≤ 1.

When F is continuous the BC is the LC except that truncation is replaced by
conditioning

(2.4) B(u) = µ−1E{Y |Y ≤ F−1(u)}.

The BC possesses several attractive properties. First, it provides a convenient
alternative interpretation of the information content of the Lorenz curve. For a
fixed u, B(u) is the ratio of the mean income of the poorest 100× u percent of the
population to the overall mean. Thus, the BC may also yield essential information
on poverty provided that we know the poverty rate. Second, the BC of a uniform
(0,a) distribution proves to be the diagonal line joining the points (0,0) and (1,1)
and thus represents a useful reference line, in addition to the two well-known stan-
dard reference lines. The egalitarian reference line coincides with the horizontal line
joining the points (0,1) and (1,1). At the other extreme, when one person holds all
income, the BC coincides with the horizontal axis except for u = 1.

In the next subsection we will consider ordering concepts from the statistics
literature. Those concepts motivate the introduction of the following measures of
concentration

(2.5) C(u) = CF (u) =
∫ u

0

[ F−1(s)
F−1(u)

]
ds = µF

LF (u)
F−1(u)

, 0 < u < 1

and

(2.6) D(u) = DF (u) =
1
u

∫ u

0

[ F−1(s)
F−1(u)

]
ds = µF

BF (u)
F−1(u)

, 0 < u < 1.

Accordingly, D(u) emerges by replacing the overall mean µ in the dominator of
B(u) by the uth quantile yu = F−1(u) and is equal to the ratio between the mean
income of those with lower income than the uth quantile and the u-quantile income.
Thus, C(u) and D(u) measure inequality in income below the uth quantile. They
satisfy C(u) ≤ u, D(u) ≤ 1, 0 < u < 1, and C(u) equals u and 0 while D(u) equals
1 and 0 in the egalitarian and extreme non-egalitarian cases, respectively, and they
equal u/2 and 1/2 in the uniform case.

To summarize the information content of the inequality curves we recall the
following inequality indices

(2.7) G = 2
∫ 1

0

{u − L(u)}du (Gini), B =
∫ 1

0

{1 − B(u)}du (Bonferroni),

(2.8) C = 2
∫ 1

0

{u − C(u)}du, D =
∫ 1

0

{1 − D(u)}du.

These indices measure distances from the curves to their values in the egalitarian
case, take values between 0 and 1 and are increasing with increasing inequality. If
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all units have the same income then G = B = C = D = 0, and in the extreme
non-egalitarian case where one unit has all the income and the others zero, G =
B = C = D = 1. When F is uniform on [0, b], B = C = D = 1/2 and G = 1/3. The
inequality curves L(u), B(u), C(u), D(u), and the inequality measures G, B, C and
D are scale invariant; that is, they remain the same if Y is replaced by aY, a > 0.

2.2. Ordering inequality by transforming variables

When we are interested in how covariates influence inequality we may ask whether
larger values of a covariate lead to more or less inequality. For instance, is there
less inequality among the higher educated? To answer such questions we consider
orderings of distributions on the basis of inequality, see e.g. Atkinson [5], Shorrocks
and Foster [26], Dardanoni and Lambert [12], Muliere and Scarsini [20], Yitzhaki
and Olkin [29], Zoli [30], and Aaberge [3]. In statistics and reliability engineer-
ing, orderings are plentiful, e.g. Lehmann [18], van Zwet [27], Barlow and Prochan
[6], Birnbaum, Esary and Marshall [9], Doksum [13], Yanagimoto and Sibuya [28],
Bickel and Lehmann [7], [8], Rojo and He [21], Rojo [22] and Shaked and Shan-
thikumar [25]. In statistics, similar orderings are often discussed in terms of spread
or dispersion. Thus, for non-negative random variables, we could define Y to have
a distribution which is more spread out to the right than that of Y 0 if Y can
be written as Y = h(Y0) for some non-negative, nondecreasing convex function h
(using van Zwet [27]). It turns out to be more general and more convenient to re-
place “convex” with “starshaped” (convex functions h are starshaped and concave
functions g are anti-starshaped provided g(0) = h(0) = 0).

Recall that a nondecreasing function g defined on the interval I ⊂ [0,∞), is
starshaped on I if g(λx) ≤ λg(x) whenever x ∈ I, λx ∈ I and 0 ≤ λ ≤ 1. Thus if
I = (0,∞), for any straight line through the origin, then the graph of g initially lies
on or below it, and then lies on or above it. If g(λx) ≥ λg(x), g is anti-starshaped.
On the class F of continuous and strictly increasing distributions F with F (0) = 0,
Doksum [13] introduced the following partial ordering F <∗ H (F is starshaped
with respect to H ) if H−1F is starshaped on {x : 0 < F (x) < 1}. This ordering was
also considered by Yanagimoto and Sibuya [28] and Bickel and Lehmann [7,8]. Note
that if F <∗ H and X has distribution F, then Z = H−1[F (X)] has distribution H
and is a starshaped transformation of X. Moreover,

Proposition 2.1. Suppose that X and Z have distributions F and H, where F, H ∈
F . Then F <∗ H if and only if there exists a positive nondecreasing function q(·)
on {x : 0 < F (x) < 1} such that Z has the same distribution as q(X )X.

Proof. Suppose that F <∗ H; then q(x) = H−1(F (x))/x will do because the star-
shaped condition g(λx) ≤ λx is equivalent to [g(λx)/λx] ≤ g(x)/x. That is,

(2.9) F <∗ H ⇔ H−1(F (x))/x is nondecreasing.

Next, suppose that q(·) is positive and nondecreasing and that Z = q(X)X. Set
h(x) = q(x)x. Then h(x) is increasing and P (X ≤ x) = P (h(X) ≤ h(x)). It follows
that F (x) = H(q(x)x). That is, q(x) = H−1(F (x))/x.

Because of this proposition we say that if F <∗ H then F is a more egalitarian
distribution of resources than H.

We next show that the preceding definition of inequality leads to the correspond-
ing ordering of the inequality curves CF (·) and DF (·) as well as of the indices C
and D.
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Proposition 2.2. Suppose that F, H ∈ F and F <∗ H. Then CF (u) ≥ CH(u) and
DF (u) ≥ DH(u), 0 < u < 1. Therefore CF ≤ CH and DF ≤ DH .

Proof. It follows from (2.9), setting u = F (x), v = F (x′), x < x′, that H−1(u)/
H−1(v) ≤ F−1(u)/F−1(v), for 0 < u < v < 1. If we integrate this inequality over
u ∈ (0, v), we obtain CF (v) ≥ CH(v), 0 < v < 1. The other inequalities follow from
this.

The same order preservation as stated in Proposition 2.2 holds for L(u) and
B(u).

Theorem 2.1. Suppose that F, H ∈ F and F <∗ H. Then LF (u) ≥ LH(u) and
BF (u) ≥ BH(u), 0 < u < 1. Moreover, BF ≤ BH and GF ≤ GH .

Proof. Let

(2.10) a =
∫ 1

0

H−1(v)dv
/ ∫ 1

0

F−1(v)dv,

and consider the line y = ax through the origin. Then H−1(F (x)) initially lies on
or below this line, say up to the point x = b. Thus

∫ u

0

H−1(v)dv =
∫ F−1(u)

0

H−1(F (x))dF (x)≤
∫ F−1(u)

0

axdF (x)
(2.11)

= a

∫ u

0

F−1(v)dv

for all u ≤ F−1(b) which establishes LF (u) ≥ LH(u) for u ≤ F (b). On the other
hand, for x ≥ b, y = H−1(F (x)) is above y = ax. Thus, for u > F (b)

s(u) =
∫ F−1(u)

b

[
ax − H−1(F (x))

]
dF (x)

is a negative, decreasing function of u. We can write, for u > F (b),

a

∫ u

0

F−1(v)dv−
∫ u

0

H−1(v)dv = a

∫ F (b)

0

F−1(v)dv−
∫ F (b)

0

H−1(v)dv+s(u)

≡ c + s(u)

where c is nonnegative by (2.11). It follows that c+s(u) is a decreasing function that
equals 0 when u = 1 by the definition of a. Thus, c + s(u) ≥ 0 which establishes
LF (u) ≥ LH(u) again by the definition of a. The other inequalities follow from
this.

2.3. Ordering inequality by transforming distributions

A partial ordering on F based on transforming distributions rather than random
variables is the following: F represents more equality than H (F >e H) if

H(z) = g(F (z))

for some nonnegative increasing concave function g on [0, 1] with g(0) = 0 and
g(1) = 1. In other words, F <e H if F (H−1) is convex. If F is uniform, the
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orderings F >e H implies F <∗ H and in this case the results of Propositions 2.1,
2.2 and Theorem 2.1 hold. Note that when F and H have densities f and h, then
h(z) = g′(F (z))f(z) where g′F is decreasing. That is, F >e H means that F has
relatively more probability mass on the right than H.

A similar ordering involves F̄ (x) = 1 − F (x) and H̄(z) = 1 − H(z). In this case
we say that F represents a more equal distribution of resources than H (F >r H)
if

H̄(x) = g(F̄ (x))

for some nonegative increasing convex transformation g on [0, 1] with g(0) = 0 and
g(1) = 1. In this case, if densities exist, they satisfy h(z) = g′(F̄ (z))f(z), where
g′F̄ is decreasing. That is, relative to F, H has mass shifted to the left.

Remark. Orderings of inequality based on transforming distributions can be re-
stated in terms of orderings based on transforming random variables. Thus F >e H
is equivalent to the distribution function of V = F (Z) being convex when X ∼ F
and Z ∼ H.

3. Regression inequality models

3.1. Notation and introduction

Next consider the case where the distribution of Y depends on covariates such as
education, work experience, status of parents, sex, etc. Let X1, . . . , Xd denote the
covariates. We include an intercept term in the regression models, which makes it
convenient to write X= (1, X1, . . . , Xd)T . Let F (y|x) denote the conditional dis-
tribution of Y given X = x and define the quantile regression function as the left
inverse of this distribution function. The key quantity is

µ(u|x)≡
∫ u

0

F−1(v|x)dv.

With this notation we can write the regression versions of the Lorenz curve, for
0 < u < 1 as

L(u|x)=µ(u|x)/µ(1|x), B(u|x)=L(u|x)/u.

Similarly, C(u|x), D(u|x) and the summary coefficients G(x ), B(x ), C (x ) and
D(x ) are defined by replacing F (y) by F (y|x). Note that estimates of F (y|x) and
µ(y|x) provide estimates of the regression versions of the curves and measures
of inequality. Thus, the rest of the paper discusses regression models for F (y|x)
and µ(y|x). Using the results of Section 2, these models are constructed so that
the regression coefficients reflect relationships between covariates and measures of
inequality.

3.2. Transformation regression models

Let Y0 with distribution F0 denote a baseline variable which corresponds to the
case where the covariate vector x has no effect on the distribution of income. We
assume that Y has a conditional distribution F (y|x) which depends on x through
some real valued function ∆(x)=g(x, β) which is known up to a vector β of un-
known parameters. Let Y ∼ Z denote “Y is distributed as Z”. As we have seen in
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Section 2.2, if large values of ∆(x ) correspond to a more egalitarian distribution of
income than F 0, then it is reasonable to model this as

Y ∼ h(Y0),

for some increasing anti-starshaped function h depending on ∆(x). On the other
hand, an increasing starshaped h would correspond to income being less egalitarian.

A convenient parametric form of h is

(3.1) Y ∼ τY ∆
0 ,

where ∆ = ∆(x)> 0, and τ > 0 does not depend on x . Since h(y) = y∆(x) is
concave for 0 < ∆(x) ≤ 1, while convex for ∆(x) > 1, the model (3.1) with
0 < ∆(x) ≤ 1 corresponds to covariates that lead to a less unequal distribution of
income for Y than for Y0, while ∆(x)≥ 1 is the opposite case. Thus it follows from
the results of Section 2.2 that if we use the parametrization ∆(x)= exp(xT β), then
the coefficient βj in β measures how the covariate x j relates to inequality in the
distribution of resources Y.

Example 3.1. Suppose that Y0 ∼ F0 where F 0 is the Pareto distribution F0(y) =
1 − (c/y)a, with a > 1, c > 0, y ≥ c. Then Y = τY ∆

0 has the Pareto distribution

(3.2) F (y|x ) = F0

(
(
y

τ
)

1
∆

)
= 1 −

(λ

y

)α(x)
, y ≥ λ,

where λ = cτ and α(x)= a/∆(x ). In this case µ(u|x) and the regression summary
measures have simple expressions, in particular

L(u|x) = 1 − (1 − u)1−∆(x).

When ∆(x ) = exp(xT β) then log Y already has a scale parameter and we set
α = 1 without loss of generality. One strategy for estimating β is to temporarily
assume that λ is known and to use the maximum likelihood estimate β̂(λ) based on
the distribution of log Y1, . . . , log Yn. Next, in the case where (Y1, X1), . . . , (Yn, Xn)
are i.i.d., we can use λ̂ = n min{Yi}/(n + 1) to estimate λ. Because λ̂ converges to
λ at a faster than

√
n rate, β̂(λ̂) is consistent and

√
n(β̂(λ̂)−β) is asymptotically

normal with the covariance matrix being the inverse of the λ-known information
matrix.

Example 3.2. Another interesting case is obtained by setting F 0 equal to the
log normal distribution Φ

(
(log(y) − µ0)/σ0

)
, y > 0. For the scaled log normal

transformation model we get by straightforward calculation the following explicit
form for the conditional Lorenz curve:

(3.3) L(u|x ) = Φ
(
Φ−1(u) − σ0∆(x )

)
.

In this case when we choose the parametrization ∆(x ) = exp
(
xT β

)
, the model

already includes the scale parameter exp(−β0) for log Y . Thus we set µ0 = 1. To
estimate β for this model we set Zi = log Yi. Then Zi has a N

(
α+∆(xi), σ2

0∆2(xi)
)

distribution, where α = log τ and xi = (1, xi1, . . . , xid)T . Because σ0 and α are
unknown there are d + 3 parameters. When Y1, . . . , Yn are independent, this gives
the log likelihood function (leaving out the constant term)

l(α, β, σ2
0) = −n log(σ0) −

n∑
i=1

xT
i β − 1

2
σ−2

0

n∑
i=1

exp(−2xT
i β){Zi − α − exp(xT

i β)}2
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Likelihood methods will provide estimates, confidence intervals, tests and their
properties. Software that only require the programming of the likelihood is available,
e.g. Mathematica 5.2 and Stata 9.0.

4. Lehmann–Cox type semiparametric models. Partial likelihood

4.1. The distribution transformation model

Let Y0 ∼ F0 be a baseline income distribution and let Y ∼ F (y|x ) denote the
distribution of income for given covariate vector x . In Section 2.3 it was found that
one way to express that F (y|x ) corresponds to more equality than F0(y) is to use
the model

F (y|x )= h(F0(y))

for some nonnegative increasing concave transformation h depending on x with
h(0) = 0 and h(1) = 1. Similarly, h convex corresponds to a more egalitarian
income. A model of the form F2(y) = h(F1(y)) was considered for the two-sample
case by Lehmann [17] who noted that F2(y) = F∆

1 (y) for ∆ > 0 was a convenient
choice of h. For regression experiments, we consider a regression version of this
Lehmann model which we define as

(4.1) F (y|x ) = F∆
0 (y)

where ∆ = ∆(x ) = g(x ,β) is a real valued parametric function and where ∆ < 1
or ∆ > 1 corresponds to F (y|x ) representing a more or less egalitarian distribution
of resources than F0(y), respectively.

To find estimates of β, note that if we set Ui = 1 − F0(Yi), then U i has the
distribution

H(u) = 1 − (1 − u)∆(x), 0 < u < 1

which is the distribution of F0(Yi) in the next subsection. Since the rank Ri of Y i

equals N + 1−Si, where S i is the rank of 1−F0(Yi), we can use rank methods, or
Cox partial likelihood methods, to estimate β without knowing F 0. In fact, because
the Cox partial likelihood is a rank likelihood and rank[1 − F0(Yi)]=rank(−Yi), we
can apply the likelihood in the next subsection to estimate the parameters in the
current model provided we reverse the ordering of the Y ’s.

4.2. The semiparametric generalized Pareto model

In this section we show how the Pareto parametric regression model for income can
be extended to a semiparametric model where the shape of the income distribution
is completely general. This model coincides with the Cox proportional hazard model
for which a wealth of theory and methods are available.

We defined a regression version of the Pareto model in Example 3.1 as

F (y|x ) = 1 −
(

c
y

)αi
, y ≥ c; αi > 0,

where αi = ∆−1
i , ∆i = exp{xT

i β}. This model satisfies

(4.2) 1 − F (y|x ) = (1 − F0(y))αi ,
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where F0(y) = 1 − c/y, y ≥ c. When F 0 is an arbitrary continuous distribution on
[0,∞), the model (4.2) for the two sample case was called the Lehmann alternative
by Savage [23], [24] because if V satisfies model (4.1), then Y = −V satisfies model
(4.2). Cox [10] introduced proportional hazard models for regression experiments in
survival analysis which also satisfy (4.2) and introduced partial likelihood methods
that can be used to analyse such models even in the presence of censoring and time
dependent covariates (in our case, wage dependent covariates).

Cox introduced the model equivalent to (4.2) as a generalization of the expo-
nential model where F0(y) = 1 − exp(−y) and F (y|xi)=F0(∆−1

i y). That is, (4.2)
is in the Cox case a semiparametric generalization of a scale model with scale pa-
rameter ∆i. However, in our case we regard (4.2) as a semiparametric shape model
which generalizes the Pareto model, and ∆i represents the degree of inequality for
a given covariate vector x i . The inequality measures correct for this confounding
of shape and scale by being scale invariant.

Note from Section 2.3 that ∆i < 1 corresponds to F (y|x) more egalitarian than
F0(y) while ∆i > 1 corresponds to F 0 more egalitarian.

The Cox [10] partial likelihood to estimate β for (4.2) is (see also Kalbfleisch
and Prentice [16], page 102),

L(β) =
n∏

i=1

{
exp(−xT

(i)β)
∑

k∈R(Y(i))

exp(−xT
(k)β)

}

where Y(i) is the i -th order statistic, x(i) is the covariate vector for the subject with
response Y(i), and R(Y(i)) = {k : Y(k) ≥ Y(i)}. Here β̂=arg maxL(β) can be found
in many statistical packages, such as S-Plus, SAS, and STATA 9.0. These packages
also give the standard errors of the β̂j . Note that L(β) does not involve F 0.

Many estimates are available for F 0 in model (4.2) in the same packages. If we
maximize the likelihood keeping β = β̂ fixed, we find (e.g., Kalbfleisch and Prentice
[16], p. 116, Andersen et al. [4], p. 483) F̂0(Y(i)) = 1 −

∏n
j=1 α̂j , where α̂j is the

Breslow-Nelson-Aalen estimate,

α̂j =

{
1 −

exp(−xT
(i)β̂)∑

k∈R(Y(i))
exp(−xT

(i)β̂)

}exp(xT
(i)β)

Andersen et al. [4] among others give the asymptotic properties of F̂0.
We can now give theoretical and empirical expressions for the conditional in-

equality curves and measures. Using (4.2), we find

(4.3) F−1(u|x i) = F−1
0 (1 − (1 − u)∆i)

and

(4.4) µ(u|x i) =
∫ u

0

F−1(t|x i)dt =
∫ u

0

F−1
0 (1 − (1 − v)∆i)dv.

We set t = F−1
0 (1 − (1 − v)∆i) and obtain

µ(u|x i) = ∆−1
i

∫ δ(u)

0

t(1 − F0(t))∆
−1
i

−1dF0(t),
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where δi(u) = F−1
0 (1 − (1 − u)∆i). To estimate µ(u|xi), we let

bi = F̂0(Y(i)) − F̂0(Y(i−1)) =
i−1∏
j=1

α̂j = (1 − α̂i)
i−1∏
j=1

α̂j

be the jumps of F̂0(·); then

µ̂(u|x i) = ∆̂−1
i

∑
j

bjY(j)(1 − F̂0(Y(j)))∆̂
−1
i

−1

where the sum is over j with F̂0(Y(j)) ≤ 1 − (1 − u)∆̂i . Finally,

L̂(u|x ) = µ̂(u|x )/µ̂(1|x ), B̂(u|x ) = L̂(u|x )/u,

and
Ĉ(u|x ) = µ̂(u|x )/F̂−1(u|x ), D̂(u|x ) = Ĉ(u|x )/u,

where F̂−1(u|x ) is the estimate of the conditional quantile function obtained from
(4.3) by replacing ∆i with ∆̂i and F0 with F̂0.

Remark. The methods outlined here for the Cox proportional hazard model have
been extended to the case of ties among the responses Y i , to censored data, and
to time dependent covariates (see e.g. Cox [10], Andersen et al. [4] and Kalbfleisch
and Prentice [16]). These extensions can be used in the analysis of the semipara-
metric generalized Pareto model with tied wages, censored wages, and dependent
covariates.
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