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6. Stein’s method for the bootstrap

Susan Holmes1 and Gesine Reinert2

Stanford University, INRA-Montpellier, and University of Oxford

Abstract: This paper gives new proofs for many known results about the con-
vergence in law of the bootstrap distribution to the true distribution of smooth
statistics, whether the samples studied come from independent realizations of
a random variable or dependent realizations with weak dependence. Moreover
it suggests a novel bootstrap procedure and provides a proof that this new
bootstrap works under uniform local dependence. The techniques employed
are based on Stein’s method for empirical processes as developed by Reinert
[19]. The last section provides some simulations and applications for which the
relevant matlab functions are available from the first author.

6.1. Overview

Stein’s method proves weak-convergence results through approximations to expec-
tations without direct use of characteristic functions, allowing it to be used in
complex problems with dependence. In this work we show how consistency can be
proved and even some error terms provided for any bootstrap with exchangeable
weights using Stein’s method. We say that the bootstrap works if the distance be-
tween the bootstrap empirical measure and a Gaussian measure centred around
the true empirical measure, or the true mean measure, tends to zero as sample size
tends to infinity. Our results also provide an explicit error bound for the difference
to Gaussianity of the bootstrap for any finite sample size.

Many of the results themselves are known, see for instance Bickel and Freedman
(1981), Singh (1981) for the consistency results in the multinomial case or Praest-
gaard and Wellner (1993) for the case of exchangeable weights. However this paper
proposes a new way of bounding error terms for the bootstrap that does not rely
on Edgeworth expansions as does the other theoretical work on convergence rates
to date. In the independent case see [10, 12, 11, 14, 13]. Examples of proofs for
dependent variables using Edgeworth expansions can be found in Lahiri [15] and
the book by Politis et al. [17].

Instead of comparing two distributions directly, in this approach we compare
their Stein operators on certain test functions and the expectation of their difference
is used to bound the actual distance between distributions.

After defining the operators and notations, we start with the simple case of the
consistency of the bootstrap distribution for the mean following Stein’s proof of
the central limit theorem closely. We then pass to the use of empirical processes
to prove the general case of consistency for exchangeable weights in Section 6.3.
This approach does not depend strongly on the hypothesis of independence, and
we show in Section 6.4 that a weak neighborhood dependency structure does not
invalidate the bootstrap procedure as long as a block-type bootstrap similar to
Carlstein et al. [3] is used. Section 6.5 presents some examples; we give various
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dependency structures and the results that the neighborhood bootstrap provides in
these cases.

6.2. Notation

Suppose we have a probability space (Ω,B, P ). We will call E : X → R the expec-
tation associated to P on X , the space of real-valued random variables defined on
Ω that have finite expectation.

Our first theorem is a simple application of Stein’s normal approximation the-
orems as developed in Stein (1986). We can show that smooth functions of means
have bootstrap distributions that are approximately normal. Later a generalization
of this result will be provided through the empirical process approach.

6.2.1. Exchangeable variables

Stein has introduced exchangeable variables in a randomization scheme that en-
ables a characterization of the null space ker E of the expectation operator E. By
definition, (X, X ′) is a pair of exchangeable variables if and only if the joint dis-
tribution of the pair (X, X ′) is identical to the distribution of (X ′, X), written
sometimes (X, X ′) d= (X ′, X). In what follows (X, X ′) is always used to denote
an exchangeable pair.

6.2.2. Operators of antisymmetric functions

Call F the set of bounded measurable antisymmetric functions defined on Ω2.
We will denote by T the operator T : F −→ X which associates to every

antisymmetric F in F the function:

TF such that TF (x) = E
(
F

(
X, X ′)|x)

where E(A|x) is the conditional expectation given X = x.

6.2.3. Bootstrap of the mean

To illustrate the method and for first results, let X = (x1, x2, . . . , xn) be a sample
of independent identically distributed observations from a distribution P . Denote
by Pn = 1

n

∑n
1 δxi the empirical distribution.

The bootstrap replaces the unknown distribution P by the empirical distribu-
tion Pn in the computation of statistical functionals of P . A bootstrap sample is
characterized by a n-vector k = (k1, k2, . . . , kn) of the simplex

Cn =
{
k = (k1, . . . , kn), k1 + · · · + kn = n, ki ≥ 0, ki ∈ N

}
The original multinomial bootstrap uses ξn = 1

n

∑n
1 kiδxi , where the k is distributed

as a multinomial, in particular Eki = 1. Later we will also consider more generally
weighted bootstraps where the ki’s are simply exchangeable as in Praestgaard and
Wellner (1993) for instance.

Firstly, here we study the original bootstrap with multinomial weights k =
(k1, . . . , kn). As a first step, Stein’s method provides a straightforward way of show-
ing that the bootstrap sum W =

∑
kiXi is asymptotically normal.

To this purpose, we employ the classical result from Stein (1986, Chapter 2).
Assume that W is mean zero, variance 1, and that (W, W ′) is an exchangeable pair
such that there is a 0 < λ < 1 with

E
(
W ′|W

)
= (1 − λ)W. (6.1)
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Stein (1986) proved the following theorem, with an improvement on the bounds
by Baldi, Rinott and Stein (1989).

Theorem 6.1. Let (W, W ′) be an exchangeable pair satisfying (6.1) and assume
EW = 0, Var(W ) = 1. For any continuous, bounded function h : R → R with
bounded, piecewise continuous derivatives, we have∣∣Eh(W ) − Φh

∣∣
≤ (sup h − inf h)

√
E

(
1 − 1

2λ
E((W − W ′)2|W )

)2

+
1
4λ

∥∥h′∥∥E
∣∣W − W ′∣∣3.

Following the classical Stein procedure we build the exchangeable pair (k,k′),
using the auxiliary random variables (I, J), independent of X , as follows:

• Choose I according to the weight kI , that is : P (I = i) = kI/n, if I = i,
decrease ki by 1, k′

i = ki − 1.

• Choose J uniformly between 1 and n,P (J = j) = 1
n , if J = j, increase the

component kj by 1, and k′
j = kj + 1.

Thinking of k representing the count vector when n balls are thrown into n urns,
this exchangeable pair corresponds to choosing one of the balls at random, taking
it out of the urn where it landed, and throwing it again; k′ gives the new count
vector.

Put W =
∑

i

(ki − 1)Xi√∑
i(Xi − X̄i)2

,

the recentered bootstrap sum of X, and its exchangeable counterpart

W ′ =
∑

i

(k′
i − 1)Xi√∑
i(Xi − X̄i)2

.

To apply Stein’s method, various conditional moments are needed. Throughout
all calculations are conditional on the sample X, so we will write E(W ) to mean
EX(W ) throughout this section, and replace the Xi’s by the observed values xi. To
simplify the calculations we can rescale X so that

∑
i xi = 0 and we use s2

2 :=
∑

i x2
i

and s4 :=
∑

i x4
i . Observe first

Ek
(
W ′ − W

)
=

1
s2

E
(
W ′ − W |k

)
= E

(∑
k′

ixi −
∑

kixi|k
)

=
∑

E
(
k′

i − ki|k
)xi

s2

=
1
n2

∑
E

(
n − ki − ki(n − 1)|k

)xi

s2

=
1
n

∑
(1 − ki)

xi

s2

= − 1
n

W.

This gives a version of Stein’s contraction property E(W ′ − W |W ) = −λW with
λ = 1

n .
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For the computation of the variance we use Stein’s clever trick:

E
(
W ′2 − W 2

)
= E

(
W ′ − W

)(
W ′ + W

)
= 0 by antisymmetry

E
((

W ′ − W
)2|W

)
= E

(
W ′2 − W 2|W

)
+ 2WE

(
W − W ′|W

)
= E

(
W ′2 − W 2|W

)
+ 2λW 2.

This implies that E
(
W 2

)
=

1
2λ

E
(
W ′ − W

)2
.

Moreover,

Ek
(
W ′ − W

)2 =
1
n2

∑
i

ki

∑
j

(xi − xj)2
1
s2
2

=
1
n2

( ∑
i

kin
x2

i + s2
2

s2
2

)
=

1
n

( ∑
i

kix
2
i + s2

)
=

1
n

( ∑
i

(ki − 1)x2
i + 2s2

)
.

Thus E
(
W 2

)
=

1
2λ

E
(
W ′ − W

)2 = s2.

Next, an auxiliary computation gives

E
( ∑

(ki − 1)x2
i

)2

=
∑
i,j

E(ki − 1)(kj − 1)x2
i x

2
j

=
∑

i,j,i�=j

Ex2
i x

2
jE(ki − 1)(kj − 1) +

∑
x4

i E(ki − 1)2

=
(
− 1

n

)( ∑
i,j,i�=j

x2
i y

2
j

)
+

∑
x4

i

(
1 − 1

n

)

=
(
− 1

n

)
(s2

2 − s4) + s4

(
1 − 1

n

)
= s4 −

1
n

s2
2.

This yields

E

{
1 − Ek

(
n

2
(
W ′ − W

))}2

= E

{
1 − 1

2

∑
i

(ki − 1)x2
i − s2

}2

= (1 − s2)2 +
1
4
E

( ∑
i

(ki − 1)x2
i

)
= (1 − s2)2 +

1
4

(
s4 −

1
n

s2
2

)
.

and finally

Ek
∣∣W ′ − W

∣∣3 =
∑

i

∑
j

(
ki

n2

)
|xj − xi|3
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thus
E

∣∣W ′ − W
∣∣3 =

1
n2

∑
i

∑
j

|xj − xi|3

The sums will typically be small because of the weak law of large numbers.
Stein’s theorem (Theorem 6.1) implies that if h is a piecewise continuously

differentiable function whose derivative is bounded we will have the following result.

Proposition 6.1. Let xi, 1 ≤ i ≤ n be fixed real numbers. let W have the bootstrap
distribution of the centered mean. For all functions h that are piecewise continuously
differentiable with bounded derivative, E0 is the expectation with regards to the
standard normal distribution.

|Eh(W ) − E0h|

≤ (sup h − inf h)

√
(1 − s2)2 +

1
4

(
s4 −

1
n

s2
2

)
+

1
4n

sup
∣∣h′∣∣ ∑

i

∑
j

|xj − xi|3.

Remarks. Had we rescaled xi so that s2 = 1, this would have looked simpler with
the right hand side being

(sup h − inf h)
1
2

√
s4 −

1
n

+
1
4n

sup
∣∣h′∣∣ ∑

i

∑
j

|xj − xi|3.

Stein (1986, Chapter 3) gives a variety of bounds on the normal approximation to
W in the presence of a bound on moments of W ′ − W . It is possible to include
the dependent case by using neighborhoods of dependence as in Stein (1972) and
Rinott and Rotar (1997).

We now expand this approach using the empirical processes. Stein’s method
for empirical measures was used by Reinert (1995) to prove a weak law of large
numbers in a general setting.

6.2.4. Bootstrap of the empirical process

In this section, we use empirical processes to prove that the bootstrap works in the
sense of having weak convergence of the bootstrap empirical process to the true
underlying process. Instead of taking W to be a function of the bootstrap mean,
we can use the same exchangeable pair (k, k′) to create a pair of exchangeable
processes. Of course a pair of processes (ξ, ξ′) is said to be exchangeable when
(ξ, ξ) d= (ξ′, ξ).

The bootstrap is founded on an extension of von Mises plug-in principle. Let

Pn =
1
n

n∑
1

δxi

be the empirical measure of the i.i.d. sample X drawn from the original measure P .
We would like to have the distribution of a plug-in estimate of a statistical

functional h(P ). The estimator will be h(Pn, n) = hn(Pn), a function of both the
empirical distribution and the sample size. This approach to the bootstrap is clearly
laid out in Efron [8] and more recently in Lehmann (1998).

Ideally, if we knew what the process Gn =
√

n(Pn − P ) is, we would be able to
establish measures of performance of the estimator.
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This being unavailable, Efron [7] proposed the bootstrap plug-in principle, re-
placing Gn by its non parametric estimate: ξn = Ĝn =

√
n(P̂n−Pn) where P̂n is the

bootstrap empirical distribution given that the sample was X = {x1, x2, . . . , xn},
thus P̂n = 1

n

∑n
1 kiδxi , and we call

ξn = Ĝn =
1√
n

n∑
1

(kiδxi − δxi) the bootstrap empirical measure.

In the case of a sample X consisting of i.i.d. observations from P , take GP to be
the P Brownian bridge. This is the Gaussian process with mean zero and covariance
functions:

Cov
(
〈GP , f〉, 〈GP , g〉

)
= Ef(X)g(X)− Ef(X)Eg(X) = Pfg − PfPg

Then the distribution of GP is the limiting distribution of Gn and should be the
limiting distribution of ξn. We will prove this later. When the sample X consists of
i.i.d. observations, this result is well-known; however, we will give explicit bounds
in a metric we will specify in the next section. It will follow as a corollary from the
case of general exchangeable weights. We turn to this now.

Præstgaard and Wellner [18] generalize the weighting scheme from multinomial
weights to sequences wi such that

1. (w1, w2, . . . , wn) exchangeable for each n.

2. All the weights are positive, and each vector sums to n.

Examples for the exchangeable weight bootstrap include the case that Y1, Y2, . . . , Yn

are i.i.d. positive random variables, and we define the bootstrap weights by wn,i =
Yi

Ȳn
. If, for instance, the weights are exponentially distributed with mean 1, then we

recover the Bayesian bootstrap of Rubin and Lo, see Præstgaard and Wellner [18].
We will derive bounds that involve the quantity

λn =

{
E

(
1
n

∑
i

(wi − 1)2 − c2

)2
} 1

2

.

This corresponds to a weakening of the third assumption in Præstgaard and Wellner
[18], that 1

n

∑n
j=1(wj − 1)2 −→ c2 in probability.

We then generalize the bootstrap empirical measure to

ξn =
1√
n

( ∑
wjδxj −

∑
j

δxj

)
=

1√
n

∑
(wj − 1)δxj ,

and let ζ = cGP , where GP is the P-Brownian bridge. Then we will prove the
convergence of ξn to ζ. Moreover we will also be able to treat the case where the
observations exhibit weak dependence. These results will follow from a more general
result, assessing the distance to a Gaussian random measure with covariance matrix

Cov
(
〈Gw, f〉, 〈Gw, g〉

)
=

1
n

n∑
i=1

n∑
j=1

E(wi − 1)(wj − 1)Ef(Xi)g(Xj)

=
c2

n

n∑
i=1

Ef(Xi)g(Xi)

+
1
n

n∑
i=1

∑
j �=i

E(wi − 1)(wj − 1)Ef(Xi)g(Xj).
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Stein’s method for the bootstrap 99

Due to exchangeability, we have, for i �= j, that E(wi−1)(wj −1) = E(w1−1)(w2−
1) := c1,1, and

0 = E

(
n∑

i=1

(wi − 1)

)2

= nc2 + n(n − 1)c1,1,

hence

c1,1 = − 1
n − 1

c2,

and

Cov
(
〈Gw, f〉, 〈Gw, g〉

)
=

c2

n

n∑
i=1

Ef(Xi)g(Xi) (6.2)

− c2

n(n − 1)

n∑
i=1

∑
j �=i

Ef(Xi)g(Xj). (6.3)

We will condition on the sample; this corresponds to Xi having point mass dis-
tribution δxi , if Xi is observed as xi. In this case, the covariance given by (6.2)
becomes

Cov
(
〈Gsamp , f〉, 〈Gsamp, g〉

)
=

c2

n

n∑
i=1

f(xi)g(xi) −
c2

n(n − 1)

n∑
i=1

∑
j �=i

f(xi)g(xj)

=
c2

n

n∑
i=1

f(xi)g(xi) −
c2

n(n − 1)

n∑
i=1

n∑
j=1

f(xi)g(xj) +
c2

n(n − 1)

n∑
i=1

f(xi)g(xi)

=
c2

n − 1

n∑
i=1

f(xi)g(xi) −
c2

n(n − 1)

n∑
i=1

n∑
j=1

f(xi)g(xj). (6.4)

6.3. Gaussian approximations for empirical measures using Stein’s
method

We equip the space Mf (R) of real-valued bounded Radon measures on R with the
topology of vague convergence. Let Cc(R) be the space of real-valued continuous
functions on R with support contained in a compact set. Let (νn)n be a family of
measures in Mf (R), and let ν be a measure in Mf (R). We say that νn converges
vaguely to ν, in short, νn

v⇒ ν, if and only if for all functions f ∈ Cc(R) we have

〈νn, f〉 → 〈ν, f〉 (n → ∞).

In words, if the projection of νn on any continuous function converges in R to the
projection on ν. Here we use the notation

〈ν, f〉 =
∫

f dν.

We will mainly consider cylinder-type functions F ∈ Cb(Mf (R)) of the form

F (µ) = f
(
〈µ, φ1〉, . . . , 〈µ, φm〉

)
(6.5)

for an m ∈ N, f ∈ C∞
b

(
R

m
)
, φi ∈ C∞

b (R), i = 1, . . . , m. (6.6)
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For φ ∈ C∞
b (R), let ‖φ‖ = supx |φ(x)| and ∆φ =

∑
x.y |φ(x)−φ(y)|. Define the sets

C =

{
φ ∈ C∞

b (R) with ‖φ‖ ≤ 1,
m∑

j=1

‖ φ(j) ‖≤ 1, ∆φ ≤ 1

}
(6.7)

and

F :=

{
F ∈ Cb

(
Mf(R)

)
: F has the form (6.5) for an m and f

with
m∑

i=1

‖ f(i) ‖≤ 1,
m∑

i,j=1

‖ f(i.j) ‖≤ 1,
m∑

i,j,k=1

‖ f(i,j,k) ‖≤ 1,

and φi ∈ C, i = 1, . . . , m

 (6.8)

Here f(j) is the partial derivative of f in direction xj , and similarly f(i,j), f(i,j,k)

denote higher partial derivatives.
This construction is similar to the algebra of polynomials used by Dawson [4].

It is shown in Reinert [20] that this class of functions is convergence-determining
for vague convergence.

It might be easier to understand this set by thinking of φi to be the indicator
function of a convex set Ai. Then the class of functions reduces to functions of the
type

F (µ) = f(µ(A1), . . . , µ(Am)) for an m ∈ N, where
A1, . . . , Am are convex sets in R.

From this it is easy to see that the convergence corresponds to convergence of
finite-dimensional distributions, but now on the measure-valued level. However,
for technical reasons we require the functions φi to be continuous and infinitely
often differentiable (continuity is needed for the proof of Lemma 11 in Reinert [20];
differentiability is an assumption for convenience).

The following is based on Reinert [20]. We assume that b : C∞
b (R)×C∞

b (R) → R

is a quadratic form such that, for any m ∈ N and for all φ1, . . . , φm ∈ C∞
b (R),

B = B(φ1, . . . , φm) =
(
b(φi, φj)

)
i,j=1,...,m

is a symmetric, positive definite matrix. Similarly to the real-valued case, for F ∈ F
with representation (6.5), we define the generator

AF (ν) = −
m∑

j=1

f(j)

(
〈ν, φ1〉, . . . , 〈ν, φm〉

)
〈ν, φj〉

+
m∑

j,k=1

f(j,k)

(
〈ν, φ1〉, . . . , 〈ν, φm〉

)
b(φj , φk).

We say that A is the generator associated with the operator b, or, the generator
associated with the matrix B. (Note that A can be seen as a second order differential
operator in terms of Gateaux derivatives.) Often we will abbreviate

〈ν, φ〉 =
(
〈ν, φ1〉, . . . , 〈ν, φm〉

)
.
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Then the generator A reads

AF (ν) = −
m∑

j=1

f(j)

(
〈ν, φ〉

)
〈ν, φj〉 +

m∑
j,k=1

f(j,k)

(
〈ν, φ〉

)
b(φj , φk).

Let ζ be a random measure taking values in Mf(R) almost surely such that, for
all m ∈ N, and for all φ1, . . . , φm ∈ C∞

b (R),

L
(
〈ζ, φ1〉, . . . , 〈ζ, φm〉

)
= MVNm(0, B),

where MVNm(0, B) denotes the multivariate normal law with mean vector 0 and
covariance matrix B. Let A be the generator associated with B. Then L(ζ) is
stationary for A. Thus, for H ∈ F , we know we can write it

H(ν) = h
(
〈ν, ψ1〉, . . . , 〈ν, ψm〉

)
, (6.9)

the Stein equation corresponding to the Gaussian random measure ζ is

h
(
〈ν, φ〉

)
− Eh

(
〈ζ, φ〉

)
= −

m∑
j=1

f(j)

(
〈ν, φ〉

)
〈ν, φj〉

+
m∑

j,k=1

f(j,k)

(
〈ν, φ〉

)
b(φj , φk). (6.10)

This equation can be solved using the semigroup technique as in Barbour [1].

Lemma 6.1. For each H ∈ F has the form (6.9), there is a function F ∈ F ,
and there is a function f ∈ C∞

b (Rm) such that F (ν) = f(〈ν, ψ1〉, . . . , 〈ν, ψm〉), and
‖f (k)‖ ≤ ‖h(k)‖, k ∈ N.

To prove a Gaussian approximation, we may employ the following result.

Proposition 6.2. Let (ηn)n∈N be a family of random measures taking values in
Mf (R) almost surely. Let ζ be a random measure taking values in Mf(R) almost
surely such that, for all m ∈ N, φ1, . . . , φm ∈ C∞

b (R),

L
(
〈ζ, φ1〉, . . . , 〈ζ, φm〉

)
= MVNm(0, B).

Let A be the generator associated with B. Let H be of the form (6.9) and let F be
the solution of the Stein equation (6.10) from Lemma 6.1. Then∣∣EH(ηn) − EH(ζ)

∣∣ =
∣∣EAF (ηn)

∣∣.
In particular, if for all F ∈ F , we have that EAF (ηn) → 0 (n → ∞), where

F is given in (6.8), then Proposition 6.2 gives that L(ηn) w⇒ L(ζ) (n → ∞).
Proposition 6.2 assumes the existence of a Gaussian random measure ζ that is

finite almost surely. In general, the almost sure finiteness is not guaranteed. Note
also that Proposition 6.2 describes the distributional distance in terms of finite-
dimemsional projections.

Let

Bn =
(
bn(φj , φk)

)
j,k=1,...,m

=

(
1
n

n∑
i=1

∑
j �=i

Cov(φj(Xi), φk(Xl))

)
j,k=1,...,m

(6.11)

In particular, Taylor expansion around
∑

j∈Γn(i) δXj easily yields the following re-
sult.
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Proposition 6.3. For all i, n ∈ N let Γn(i) ⊂ {1, . . . , n} be a set such that for
each l /∈ Γn(i), Xl is independent of Xi. Let γn = maxi=1....,n |Γn(i)|. Let ζn be
a random measure taking values in Mf (E) almost surely such that, for all m ∈
N, φ1, . . . , φm ∈ C,

L
(
〈ζn, φ1〉, . . . , 〈ζn, φm〉

)
= MV Nm(0, Bn).

Then, for each G ∈ CC(Mf (E)) of the form (6.9) we have

∣∣EG(ξn) − EG(ζn)
∣∣ ≤ 20√

n
γ2

n.

In the independent case this gives γ = 1, and

Bn =

(
1
n

n∑
i=1

Cov
(
φj(Xi), φk(Xi)

))
j,k=1,...,m

. (6.12)

Often we are interested in estimating the variance, in which case φj(x) = x, for
j = 1, . . . , m, giving 1

n

∑n
i=1 Var(Xi) as variance in the Gaussian distribution. Note,

though, that these test functions are not members of the family F .

6.3.1. Application to the bootstrap: A general theorem

Let us consider the case of general weights, and not necessarily i.i.d. observations.
Assume that (w1, . . . , wn) is a vector of weights such that

1. w = (w1, w2, . . . , wn) is exchangeable.

2. All the weights are positive, and they sum to n.

Put

c2 = c2
n = E(w1 − 1)2. (6.13)

Define

λn =
{

E

(
1
n

∑
i

(wi − 1)2 − c2

)2} 1
2

. (6.14)

Let
ξn =

1√
n

( ∑
wjδxj −

∑
j

δxj

)
=

1√
n

∑
(wj − 1)δxj .

Note that, due to exchangeability,

λ2
n = Var

(
1
n

n∑
i=1

(wi − 1)2
)

=
1
n

Var
(
(w1 − 1)2

)
+ 2

n(n− 1)
n2

Cov
(
(w1 − 1)2, (w2 − 1)2

)
.

Hence

Cov
(
(w1 − 1)2, (w2 − 1)2

)
=

n − 1
2n

{
λ2

n +
1
n

Var
(
(w1 − 1)2

)}
. (6.15)
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In this case the exchangeable pair is naturally provided by the weights so that
I and J are both picked uniformly at random from {1, 2, 3, . . . , n}, and given that
the current weights are wI and wJ the new weights are wI

′ = wJ and wJ
′ = wI ,

with w′
k = wk for k �= I, J ; call

ξn
′ =

1√
n

∑
i

(
wi

′ − 1
)
δxi .

Then (ξn
′, ξn) is also an exchangeable pair and

ξn
′ − ξn =

1√
n

(wIδxJ − wJδxJ + wJδxI − wIδxI )

=
1√
n

(wI − wJ )(δxJ − δxI ),

and for all φ ∈ C∞
n (R),

EX ,w〈ξn
′ − ξn, φ〉) = E

(〈
ξn

′ − ξn, φ
〉
|X ,w

)
=

1√
n

1
n

∑
i

1
n

∑
j

(wi − wj)
(
φ(xJ ) − φ(xI)

)
= 2

(
1√
n

1
n

∑
i

1
n

∑
j

wiφ(xj) −
1
n

∑
j

wjφ(xj)
)

=
2
n

(
1√
n

∑
j

φ(xj) −
1√
n

∑
j

wjφ(xj)
)

= − 2
n
〈ξn, φ〉.

Thus we have, for all functions f and φ,

Ef(ξn)〈ξn, φ〉 =
n

4
E

(
f
(
ξn

′) − f(ξn)
)〈

ξn
′ − ξn, φ

〉
. (6.16)

In particular,

E
〈
ξn

′ − ξn, φ
〉〈

ξn
′ − ξn, ψ

〉
=

n

4
E〈ξn, φ〉〈ξn, ψ〉. (6.17)

First we show a general result.

Proposition 6.4. Let cGsamp be a Gaussian random measure given by (6.4) that
is finite almost surely. We have that, for all H ∈ F of the form (6.9),∣∣EH(ξn) − EH(cGsamp)

∣∣ ≤ Rsamp

:=
1√
n

{
E

(
w3

1 + 3w2
1

)
+ 2

(
E

(
(w1 − 1)4

)) 1
2
}

+ 3λn,

where c is given in (6.13).

Remark. It follows that, with Xn = {x1, x2, . . . , xn},

E
∣∣EX nH(ξn) − EH(cGsamp)

∣∣ ≤ Rsamp .
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So, using Markov’s inequality:

P

(∣∣EX nH(ξn) − EH(cGsamp)
∣∣ >

log n√
n

)
≤

√
n

log n
Rsamp.

Thus we get finite n results that are related to

L(ξn) D=⇒ L(Gsamp) for almost all Xn,

provided that M is sufficiently large.

Proof. We abbreviate G = Gsamp . To apply Proposition 6.2, all we need to bound
is:

−
m∑

j=1

Ef(j)

(
〈ξn, φ〉

)
〈ξn, φj〉 + c2

m∑
j,k=1

Ef(j,k)

(
〈ξn, φ〉

)
E

(
〈G, φj〉〈G, φk〉

)
,

where F of the form (6.5) is the solution of the Stein equation for H from Lemma 6.1.
From exchangeability (6.16) and Taylor expansion we have

m∑
j=1

Ef(j)

(
〈ξn, φ〉

)
〈ξn, φj〉

=
n

4

m∑
j,k=1

Ef(j,k)

(
〈ξn, φ〉

)
〈ξn

′ − ξn, φj〉〈ξn
′ − ξn, φk〉 + R1,

where the remainder term R1 can be bounded as

|R1| ≤ n

4

m∑
j,k,l=1

‖f(j,k,l)‖
(

1√
n

)3

E
∣∣(wI − wJ )3

∣∣
≤ 1

2
√

n

m∑
j,k,l=1

‖f(j,k,l)‖
1
n2

n∑
i=1

∑
j �=i

E
∣∣(wi − wj)3

∣∣
=

1√
n

m∑
j,k,l=1

‖f(j,k,l)‖
1
n2

n∑
i=1

∑
j �=i

E
∣∣w3

i − 3w2
i wj

∣∣
=

1√
n

m∑
j,k,l=1

‖f(j,k,l)‖
1
n2

n∑
i=1

∑
j �=i

E
(
w3

i + 3w2
i wj

)
,

as the weights are nonnegative. Using that
∑

j �=i wj = n − wi we obtain

|R1| ≤ 1√
n

m∑
j,k,l=1

‖f(j,k,l)‖
1
n2

n∑
i=1

E
(
(n − 1)w3

i + 3w2
i n − 3w3

i

)
≤ 1√

n

m∑
j,k,l=1

‖f(j,k,l)‖E
(
w3

1 + 3w2
1

)
,

where we used exchangeability of the weights for the last step. Hence, due to the
assumptions on the function f ,

|R1| ≤ 1√
n

E
(
w3

1 + 3w2
1

)
.
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Furthermore
n

4

m∑
j,k=1

Ef(j,k)

(
〈ξn, φ〉

)〈
ξn

′ − ξn, φj

〉〈
ξn

′ − ξn, φk

〉
=

n

4

m∑
j,k=1

Ef(j,k)

(
〈ξn, φ〉

)
EX ,w

〈
ξn

′ − ξn, φj

〉〈
ξn

′ − ξn, φk

〉
=

1
4

m∑
j,k=1

Ef(j,k)

(
〈ξn, φ〉

)
EX ,w(wI − wJ )2

(
φj(xJ ) − φj(xI)

)(
φk(xJ ) − φk(xI)

)
=

1
4n2

m∑
j,k=1

Ef(j,k)

(
〈ξn, φ〉

)
×

n∑
i=1

∑
l �=i

(wi − wl)2
(
φj(xl) − φj(xi)

)(
φk(xl) − φk(xi)

)
.

It is an easy manipulation to write
(wi − wl)2 = (wi − 1)2 − 2(wi − 1)(wl − 1) + (wl − 1)2.

Using symmetry, and that
∑

l �=i(wl − 1) = −(wi − 1), a straightfroward calculation
shows that

1
4n2

n∑
i=1

∑
l �=i

(wi − wl)2
(
φj(xl) − φj(xi))(φk(xl) − φk(xi)

)
=

1
2n2

n∑
l=1

φj(xl)φk(xl)
∑

i

(wi − 1)2 +
1
2n

n∑
i=1

φj(xi)φk(xi)(wi − 1)2

− 1
2n2

n∑
i=1

∑
l �=i

φj(xi)φk(xl)(wi − 1)2 − 1
2n2

n∑
i=1

∑
l �=i

φj(xl)φk(xi)(wi − 1)2

+
1
n2

n∑
i=1

∑
l �=i

φk(xl)φj(xi)(wi − 1)(wl − 1).

This gives
m∑

j,k=1

Ef(j,k)

(
〈ξn, φ〉

)
Ec2〈G, φj〉〈G, φk〉

− n

4

m∑
j,k=1

Ef(j,k)

(
〈ξn, φ〉

)〈
ξn

′ − ξn, φj

〉〈
ξn

′ − ξn, φk

〉
= c2

m∑
j,k=1

Ef(j,k)

(
〈ξn, φ〉

)
Ew

×
{
〈G, φj〉〈G, φk

− 1
n

n∑
i=1

φj(xi)φk(xi) +
1

n(n − 1)

∑
i

∑
l �=i

φj(xi)φk(xl)
}

+ R2 + R3 + R4

= R2 + R3 + R4,

where

R2 =
m∑

j,k=1

Ef(j,k)

(
〈ξn, φ〉

) 1
n

n∑
i=1

φj(xi)φk(xi)
{

c2 − 1
2
(wi − 1)2 − 1

2n

∑
l

(wl − 1)2
}
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and

R3 =
m∑

j,k=1

Ef(j,k)

(
〈ξn, φ〉

) 1
n(n − 1)

n∑
i=1

∑
l �=i

φj(xi)φk(xl)
n − 1

n

{
(wi − 1)2 − c2

}
and

R4 = −
m∑

j,k=1

Ef(j,k)

(
〈ξn, φ〉

)
× 1

n(n − 1)

n∑
i=1

∑
l �=i

φj(xi)φk(xl)
{

1
n

c2 + (wi − 1)(wl − 1)
}

.

For R2, we have

|R2| ≤ 1
2
λn +

1
2
τn,

where

τn = sup
φ:‖φ‖≤1

E

∣∣∣∣∣ 1
n

n∑
i=1

φ(xi)
(
(wi − 1)2 − c2

)∣∣∣∣∣. (6.18)

Similarly, with φ(xi) = 1
n−1

∑
l �=i φj(xi)φk(xl), we obtain

|R3| ≤ τn.

To bound τn, from the Cauchy-Schwarz inequality,

τ2
n ≤ sup

φ:‖φ‖≤1

E

(
1
n

n∑
i=1

φ(xi)
(
(wi − 1)2 − c2

))2

,

and, due to the exchangeability,

E

(
1
n

n∑
i=1

φ(xi)
(
(wi − 1)2 − c2

))2

=
1
n2

n∑
i=1

φ2(xi)E
(
(wi − 1)2 − c2

)2

+
1
n2

n∑
i=1

∑
j �=i

φ(xi)φ(xj)E
(
(wi − 1)2 − c2

)(
(wj − 1)2 − c2

)
= Var

(
(w1 − 1)2

) 1
n2

n∑
i=1

φ2(xi)

+ Cov
(
(w1 − 1)2, (w2 − 1)2

) 1
n2

n∑
i=1

∑
j �=i

φ(xi)φ(xj).
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Using (6.15),

τ2
n ≤ 1

n
Var

(
(w1 − 1)2

)
+ Cov

(
(w1 − 1)2, (w2 − 1)2

)
=

1
n

Var
(
(w1 − 1)2

)
+

n − 1
2n

{
λ2

n +
1
n

Var
(
(w1 − 1)2

)}
≤ 1

2
λ2

n +
3
2n

Var
(
(w1 − 1)2

)
≤ 1

2
λ2

n +
3
2n

E
(
(w1 − 1)4

)
.

Finally we need to bound R4. From the Cauchy–Schwarz inequality,

|R4|2 ≤ E

(
1
n2

n∑
i=1

∑
l �=i

φj(xi)φk(xl)
{

1
n − 1

c2 + (wi − 1)(wl − 1)
})2

=
1
n4

n∑
i=1

∑
l �=i

n∑
s=1

∑
t�=s

φj(xi)φk(xl)φj(xs)φk(xt)

× E

{
1

n − 1
c2 + (wi − 1)(wl − 1)

}{
1

n − 1
c2 + (ws − 1)(wt − 1)

}
.

Distinguishing concerning the overlap between i, l and s, t, we obtain

|R4|2 ≤ n(n − 1)
n4

{
E

(
(w1 − 1)(w2 − 1) +

c2

n − 1

)2
}

+
4n(n − 1)(n − 2)

n4

× E

(
(w1 − 1)(w2 − 1) +

c2

n − 1

)(
(w1 − 1)(w3 − 1) +

c2

n − 1

)
+

3n(n − 1)(n − 2)(n − 3)
n4

E

(
(w1 − 1)(w2 − 1) +

c2

n − 1

)
×

(
(w3 − 1)(w4 − 1) +

c2

n − 1

)
=

1
n4

Var
( ∑

i

∑
� �=i

(wi − 1)(w� − 1)
)

=
1
n4

Var
( ∑

i

(wi − 1)2
)

=
λ2

n

n2
;

for the second to last step, we used that
∑

� �=i(w� − 1) = −(wi − 1). Hence

|R4| ≤ λn

n
,

and

|R2| + |R3| + |R4| ≤
(

1
2

+
1√
2

)
λn +

(
3
2n

E
(
(w1 − 1)4

)) 1
2

+
λn

n

≤ 2√
n

(
E

(
(w1 − 1)4

)) 1
2 + 3λn.

Collecting the bounds yields the assertion.
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Note that, in Proposition 6.4, the sample does not occur in the bound on the
approximation. This is due to having uniformly bounded test functions – even if
the sample is rather skewed, the test function will smoothen it, as, for φ ∈ C∗,
φ(X) ≤ 1.

Now let us consider special cases in Proposition 6.4.

The independent case. The classical case is that the observations in the
sample are independent, in which case γn = 1. From Proposition 6.3 thus gives∣∣EG

(√
nPn

)
− EG(ζn)

∣∣ ≤ 20√
n

,

where ζn is a random measure taking values in Mf (E) almost surely such that, for
all m ∈ N, φ1, . . . , φm ∈ C,

L
(
〈ζn, φ1〉, . . . , 〈ζn, φm〉

)
= MV Nm(0, Bn)

with

Bn =
(

1
n

n∑
i=1

Cov
(
φj(Xi), φk(Xi)

))
j,k=1,...,m

,

see (6.12). From Proposition 6.4 we obtain also a limiting Gaussian measure, but
now with covariance structure (6.4),

Cov
(
〈Gsamp , f〉, 〈Gsamp , g〉

)
=

c2

n

n∑
i=1

f(xi)g(xi) −
c2

n(n − 1)

n∑
i=1

∑
j �=i

f(xi)g(xj).

A law of large numbers argument shows that, when taking many bootstrap samples,
this covariance approaches

Cov
(
〈G, f〉, 〈G, g〉

)
=

c2

n

n∑
i=1

Ef(Xi)g(Xi) −
c2

n(n − 1)

n∑
i=1

∑
j �=i

Ef(Xi)g(Xj)

= c2

{
1
n

n∑
i=1

Cov
(
f(Xi), g(Xi)

)
− 1

n

n∑
i=1

Ef(Xi)
(

1
n − 1

∑
j �=i

Eg(Xj) − Eg(Xi)
)}

.

With Bn given in (6.12), we hence obtain that the limiting Gaussian measures,
suitably scaled by c2, differ by at most

sup
g∈C

c2 1
n

n∑
i=1

∣∣∣∣∣Eg(Xi) −
1

n − 1

∑
j �=i

Eg(Xj)

∣∣∣∣∣. (6.19)

Thus the independent bootstrap works provided that (6.19) is small – the Gaussian
approximation for the bootstrap empirical measure, suitably scaled, is close to
the Gaussian approximation for the empirical measure. In particular, in the i.i.d.
case (6.19) vanishes.

Multinomial weights. Another classical case is that the weights are multino-
mial k = (k1, . . . , kn), as in the introduction, the probability of cell i being 1

n , for

imsart-lnms ver. 2004/06/30 file: lnms4606.tex date: August 6, 2004



Stein’s method for the bootstrap 109

i = 1, . . . , n. More generally, we consider the M -out-of-n bootstrap. where M sam-
ples are drawn with replacement. Then each ki is Bin(M, 1/n) distributed, so that
Eki = M

n . Assigning the weights

wi =
n

M
ki

thus gives exchangeable weights satisfying
∑

wi = 1. In this case we have

c2 =
n2

M2
E

(
k1 −

M

n

)2

=
n2

M

M(n − 1)
n2

=
n − 1
M

.

Proposition 6.4 yields the following proposition.

Proposition 6.5. With the notation from Proposition 6.4, for all H ∈ F , with
covariance operator (6.4), conditioned on the sample we have∣∣∣∣∣EH(ξn) − EH

(√
n − 1
M

Gsamp

)∣∣∣∣∣ ≤ Rmult ,

where

|Rmult | =
1√
n

{
4 + 8

n

M
+

n2

M2
+ 2

n3/2

M3/2
+ 9

n3

M3
+ 3

n7/2

M7/2
+

6
√

n

M

}
.(6.20)

Proof. In view of Proposition 6.4 we need to bound Ew2
1 , Ew3

1 , Var((w1 − 1)2),
and λn. Note that M

n w1 is Bin(M, 1/n)-distributed. Hence

Ew2
1 =

(
n

M

)2{
M(n − 1)

n2
+

M2

n2
<

n

M
+ 1.

Following Stuart and Ord [24], p. 76, we have

Ew3
1 =

(
n

M

)3{
M(M − 1)(M − 2)

n3
+ 3

M(M − 1)
n2

+
M

n

}
< 1 + 3

n

M
+

n2

M2
.

Moreover,

Var
(
(w1 − 1)2

)
≤ E(w1 − 1)4

=
(

n

M

)4{
3
M2(n − 1)2

n4
+

M(n − 1)
n2

(
1 − 6

n − 1
n2

)}
< 3

n2

M2
+

n3

M3
, (6.21)

where we used Stuart and Ord [24], p. 76, (3.13).
Now we bound λn. Due to exchangeability

λ2
n = Var

(
1
n

n∑
i=1

(wi − 1)2
)

=
1
n2

n∑
i=1

Var
(
(wi − 1)2

)
+

1
n2

n∑
i=1

∑
j �=i

Cov
(
(wi − 1)2, (wi − 1)2

)
=

1
n

Var
(
(w1 − 1)2

)
+

n − 1
n

Cov
(
(w1 − 1)2, (w2 − 1)2

)
≤ 3

n5

M6
+

n6

M7
+

n − 1
n

Cov
(
(w1 − 1)2, (w2 − 1)2

)
,
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where we used (6.21) for the first term. To calculate the covariance, note that(
M

n
w1,

M

n
w2,

M

n
(n − w1 − w2)

)
∼ M

(
M ;

1
n

,
1
n

,
n − 2

n

)
is multinomial. We use Stuart and Ord [24], p. 196, (5.126) to obtain

n − 1
n

Cov
(
(w1 − 1)2, (w2 − 1)2

)
=

n − 1
n

(
n

M

)4{
−M

n2

(
(n − 2)2

n2
+

2
n2

)
+

M2

n4
+ 2

M2

n4

}
≤ 3

M2
.

Using that, for a, b ≥ 0, we have (a + b)1/2 ≤ a1/2 + b1/2 , we obtain

λn ≤ 3
n5/2

M3
+

n3

M7/2
+

2
M

. (6.22)

Adding the bounds yields the assertion.

We have

ξn =
1√
n

n∑
i=1

wiδxi −
1√
n

n∑
i=1

δxi

as our bootstrap measure. This can be rewritten as

ξn =
√

n

M

n∑
i=1

kiδxi −
1√
n

n∑
i=1

δxi .

Sometimes one might instead want to consider

ζn =
1√
M

n∑
i=1

kiδxi −
1√
n

n∑
i=1

δxi .

We have

ζn = ξn +
(

1√
M

−
√

n

M

) n∑
i=1

kiδxi .

Thus, for all H ∈ F , ∣∣EH(ξn) − EH(ζn)
∣∣ ≤ |√n −

√
M |

M
. (6.23)

Note that the difference between two independent Gaussian random measures η
and ρ with same mean and different covariance operators b and c can be bounded
by

ζF
(
L(η),L(ρ)

)
≤ sup

φ,ψ bounded as in (6.8)

∣∣b(φ, ψ) − c(φ, ψ)
∣∣.

Hence we could also approximate by
√

n
M G instead of

√
n−1
M G, with an additional

error of the order 1
M .

Note that, in the multinomial case, another straightforward way of constructing
an exchangeable pair is given in Section 2 from auxiliary random variables (I, J). I
is chosen proportionally to the kI ’s and J chosen uniformly between 1 and n. Then
subtract one from that kI and add one to the kJ .
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• Pick I such that P (I = i) = ki

n , k′
I = kI − 1.

• Pick J such that P (J = j) = 1
n , k′

J = kJ + 1.

Let ξ′ = 1√
n

∑n
1 (k′

iδxi − δxi). Note that we have a contraction property: For any φ,

E
(〈

ξ′n − ξn, φ
〉
|ξn

)
= Eξn

(〈
ξ′n − ξn, φ

〉)
= =

1
n

∑
i

∑
j

ki

n

1
n

(
φ(xj) − φ(xi)

)
= − 1

n
〈ξn, φ〉.

Thus we could apply the exchangeable pair method directly with this construction,
yielding slightly different bounds. For simplicity’s sake, we omit this approach here;
however, it will reappear later.

6.4. Dependency graphs

Here we will consider situations where there is some dependency between the vari-
ables, thus showing that this method has advantages over methods that use in-
dependence of the random variables. Let the vertex set V be of cardinal N , and
{Xi, i ∈ V } be the random variables of interest, say for simplicity’s sake, with
mean 0.

The dependency graph has edges (i, j) when Xi and Xj are dependent, we will
denote this by i ∼ j. We define Si = {j : i ∼ j, j �= i} the neighborhood of
dependence for the random variable Xi. Put

γi = |Si|, i ∈ V. (6.24)

Let n ≤ N , sample X1, X2, . . .Xn, obtaining X = {x1, x2, . . . , xn} The de-
pendency graph given this sample is deterministic. When sampling according to
exchangeable weights as before, we again obtain the covariance structure (6.4).
From Proposition (6.4) we immediately obtain the following proposition.

Proposition 6.6. For the dependency graph bootstrap, with ξn = 1√
n

∑
i(wi −

1)δXi , let Gsamp be a Gaussian random measure with covariance structure given
in (6.4). Suppose that the sample is fixed. Then we have that, for all H ∈ F ,

∣∣EH(ξn) − EH(Gsamp)
∣∣ ≤ 1√

n

{
E

(
w3

1 + 3w2
1

)
+ 2

(
E

(
(w1 − 1)4

)) 1
2
}

+ 3λn,

where c is given in (6.13).

Conditioning on the sample, we have, from (6.4),

Cov
(
〈Gsamp , f〉, 〈Gsamp , g〉

)
=

c2

n

n∑
i=1

f(xi)g(xi)

− c2

n(n − 1)

n∑
i=1

∑
j �=i,j �∼i

f(xi)g(xj)

where Cov(〈Gsamp , f〉, 〈Gsamp , g〉) is given in (6.4). Using a law of large numbers
argument again, if we draw many bootstrap samples then this will approach
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Cov(〈Gdep,boot , f〉, 〈Gdep,boot , g〉)

=
c2

n

n∑
i=1

Ef(Xi)g(Xi) −
c2

n(n − 1)

n∑
i=1

∑
j �=i,j∼i

Ef(Xi)g(Xj)

− c2

n(n − 1)

n∑
i=1

∑
j �=i,j �∼i

Ef(Xi)Eg(Xj)

= c2

{
1
n

n∑
i=1

Cov
(
f(Xi)g(Xi)

)
+

1
n

n∑
i=1

Ef(Xi)

×
(

Eg(Xi) −
1

n − 1

∑
j �=i,j∼i

g(Xj) −
1

n − 1

∑
j �∼i

Eg(Xj)
)}

. (6.25)

In the case that all observations are identically distributed like X , and that all
neighorhoods are of the same size γ, this reduces to

c2

{
Cov

(
f(X), g(X)

)
+ Ef(X)

(
γ − 1
n − 1

− 1
n − 1

∑
j �=i,j∼i

g(Xj)
)}

= c2

{
Cov

(
f(X), g(X)

)
+

γ − 1
n − 1

Ef(X)Eg(X)

− 1
n(n − 1)

n∑
i=1

∑
j �=i,j∼i

Ef(Xi)g(Xj)

}

= c2

{
Cov

(
f(X), g(X)

)
− 1

n(n − 1)

n∑
i=1

∑
j �=i,j∼i

Cov
(
f(Xi), g(Xj)

)}
.

If, for all i ∼ j, we had that

Cov
(
f(Xi), g(Xj)

)
= c(f, g)

was independent of i, j, then we obtain

c2

{
Cov

(
f(X), g(X)

)
− c(f, g)

γ − 1
n − 1

}
.

The last summand goes to zero as n → ∞.
From Proposition (6.3), however, the limiting covariance in the Gaussian ap-

proximation for
√

nPn is given by

bn(f, g) =
1
n

n∑
i=1

Cov
(
f(Xi), g(Xi)

)
+

1
n

n∑
i=1

∑
j �=i,j∼i

Cov
(
f(Xi), g(Xl)

)
. (6.26)

In the very homogeneous case this reduces to

1
n

n∑
i=1

Cov
(
f(Xi), g(Xi)

)
+ (γ − 1)c(f, g).

Thus we do not recover the Gaussian distribution that reflects how
√

nPn relates
to the true distribution. In this sense, this ordinary bootstrap does not work in
presence of dependence, unless the neighbourhood size γ goes to zero as n tends
to ∞. This is no surprise, as the dependence should bias the bootstrap.
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6.4.1. Special procedure for bootstrapping dependent data

It is intuitively obvious that multinomial weights might not be the best choice;
instead, the bootstrap should perform better if the neighbourhood dependence is
taken into account. We now introduce a novel bootstrap procedure, based on boot-
strapping whole neighborhoods of dependence (an idea related to the blockwise
bootstrap). For simplicity, from now on we assume that

Assumption A. The neighborhood size is constant, that is, γi = γ for all i ∈ V ,
where γi is given in (6.24). Put

κ =
M

γ
(6.27)

and assume that κ is integer.

Let us define the empirical measure

Qn =
1
κ

κ∑
i=1

ki
1
γ

∑
j∈Si

δxj

and

Pn =
1
n

n∑
j=1

δxj .

Then Qn is the bootstrap measure from the following procedure: Choose indices
according to the multinomial distribution M(κ; 1

n , . . . , 1
n ). If index i is chosen, then

we sample the whole dependency neighborhood of Xi. Similarly to the blockwise
bootstrap, if the neighborhoods of dependence are small, then the bootstrap should
work. To prove a Gaussian approximation, put

ξn =
√

n(Qn − Pn) =
√

n

M

n∑
j=1

δxj

( ∑
i∈Sj

ki −
M

n

)
.

Put weights

wi =
n

M

∑
j∼i

kj . (6.28)

Then we can treat this similarly to the section of multinomial weights. Note that
the weights are generally not exchangeable any more, and that now the observations
may be dependent. Yet, the ki’s are still independent of X , and that Ewi = 1.

Recall that the multinomial vector k can be viewed as resulting from κ indepen-
dent ball tosses into n urns, where each urn has probability 1

n of being hit. Thus,
writing

1(i → j) = 1( ball i lands in urn j),

we have that ((1(i → j))i=1,...,κ) are independent Bernoulli 1
n -variables, and

kj =
κ∑

i=1

1(i → j).
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To determine the approximating Gaussian measure here, we write

wi =
n

M

∑
j∼i

κ∑
s=1

1(s → j)

=
n

M
Ni,

where Ni =
∑κ

s=1 1(s → Si) is the number of balls that hit the neighborhood Si.
Thus Ni is a Bin(κ, γi

n )-random variable. We have

c2
i = E(wi − 1)2

=
n2

M2
Var(Ni)

=
n2

M2

M

γ

γ(n − γ)
n2

=
n − γ

M
.

To obtain Cov(wi, wj) we use the following decomposition. Define, for any subset
A ⊂ {1, . . . , n}, that

NA =
κ∑

s=1

1(s → A).

Then NA ∼ Bin(κ, |A|
n ). Moreover, for two sets A, B, the covariance Cov(NA, NB)

can be calculated using a decomposition according to the dependence structure.
Denote by CA = NA − ENA the centered counts. Then

Cov(NA, NB) = Cov(CA∩B + CA\B, CA∩B + CB\A)
= Var(CA∩B) + Cov(CA∩B , CB\A)

+ Cov(CA\B , CA∩B) + Cov(CA\B , CB\A).

From the binomial distribution, we obtain that

Var(CA∩B) =
M

γ

|A ∩ B|(n − |A ∩ B|)
n2

.

Moreover, for C, D mutually disjoint, the triple (NC , ND, N{1,...n}\(C∪D)) is trino-
mially distributed with parameters (M

γ ; |C|
n , |D|

n , n−|C∪D|
n ). From Stuart and Ord

[24], p. 105 and p. 196, we obtain that

Cov(NC , ND) = −M

γ

|C||D|
n2

.

This gives that

Cov(NA, NB)

=
M

γ

|A ∩ B|(n − |A ∩ B|)
n2

− M

γ

|A ∩ B||B \ A|)
n2

− M

γ

|A ∩ B||A \ B|)
n2

− M

γ

|B \ A||A \ B|)
n2
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=
M

γn2

{
|A ∩ B|(n − |A ∩ B|) − |A ∩ B||B \ A| − |A ∩ B||A \ B|

− |B \ A||A \ B|
}

=
M

γn2

{
n|A ∩ B| − (|A ∩ B| + |B \ A|)(|A ∩ B| + |A \ B|)

}
=

M

γn2

{
n|A ∩ B| − |A||B|

}
. (6.29)

Now we decompose the weights wi and wj according to their dependence struc-
ture,

wi =
n

M
(NS(i)∩S(j) + NS(i)\S(j))

(6.30)
wj =

n

M
(NS(i)∩S(j) + NS(j)\S(i)).

Hence

Cov(wi, wj) =
n|S(i) ∩ S(j)|

γM
− γ

M
. (6.31)

As we do not have exchangeable weights, we cannot apply Proposition 6.4 di-
rectly. However, note that in this case an exchangeable pair is again provided by
the weights so that we choose a ball I at random and take it out of its bin and
throw it again. Formally, choose an index I ∈ {1, . . . , n} according to

P (I = i) =
ki

κ
, i = 1, . . . , n

and choose an index J ∈ {1, . . . , n} according to the discrete uniform distribution,

P (J = j) =
1
n

, j = 1, . . . , n.

If I = i and J = j, put

k′
i = ki − 1

k′
j = kj + 1

k′
� = k�,  �= i, j.

Define weights

w′
j =

n

M

∑
i

1(i ∈ Sj)k′
i (6.32)

and

ξn
′ =

√
n

M

n∑
i=1

( ∑
i∈Sj

k′
i

γ
− M

n

)
δxj .

Then (ξn
′, ξn) is an exchangeable pair and

ξn
′ − ξn =

√
n

M

n∑
i=1

∑
j∼i

(
k′

j − kj

)
δxi

=
√

n

M

n∑
�=1

{
1(J ∼ ) − 1(I ∼ )

}
δx�

, (6.33)
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and for all φ ∈ C∞
n (R),

EX ,w
〈
ξn

′ − ξn, φ
〉)

=
√

n

M

n∑
�=1

φ(x�)EX ,w
{
1(J ∼ ) − 1(I ∼ )

}
=

√
n

M

n∑
�=1

φ(x�)
n∑

i,j=1

ki

κn

{
1(j ∼ ) − 1(i ∼ )

}
=

√
n

M2n

n∑
�=1

φ(x�)
{
γM − nγ

∑
i∼�

ki

}
=

√
nγ

M
√

n

n∑
�=1

φ(x�)
{

n

M
− n

M

∑
i∼�

ki

}

=
γ

M
√

n

n∑
�=1

φ(x�)(1 − w�)

= − γ

M
〈ξn, φ〉.

Thus we have, for all functions f and φ,

Ef(ξn)〈ξn, φ〉 =
κ

2
E

(
f
(
ξn

′) − f(ξn)
)〈

ξn
′ − ξn, φ

〉
.

In particular,
κ

2
E

〈
ξn

′ − ξn, φ
〉〈

ξn
′ − ξn, ψ

〉
= E〈ξn, φ〉〈ξn, ψ〉.

We are in a similar situation as with exchangeable weights, hence we mimick the
proof of Proposition 6.4. Let

Cov
(
〈Gmult,dep,samp , f〉, 〈Gmult,dep,samp, g〉

)
=

1
nM

n∑
i=1

(n − γ)f(xi)g(xi)

+
γ

nM

n∑
i=1

∑
j �=i

{
n|S(i) ∩ S(j)|

γ2
− 1

}
f(xi)g(xj). (6.34)

Proposition 6.7. In the dependency graph bootstrap, suppose that (k1, . . . , kn) are
multinomial M(M, 1/n, . . . , 1/n)-distributed, with M ≤ n. Let

wi =
n

M

∑
j∼i

kj .

Let Gmult,dep,samp be the centered Gaussian random measure given by (6.34), that
is, we condition on the sample. Then, for all H ∈ F ,∣∣EH(ξn) − EH(Gmult,dep,samp)

∣∣ ≤ n

M3/2

{
7γ2

√
n√

M
+

1
2

+ 11
√

γ + 4γ

}
.

Remark. The above bound seems to improve with M , but not with n, which
appears to be odd at first sight. However, note that

n

M3/2
=

{
n

M

} 3
2 1√

n
,

so that with M of the order of n, the bound improves with n.
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Proof. Similarly to the proof of Proposition 6.4, we obtain
m∑

j=1

Ef(j)

(
〈ξn, φ〉

)
〈ξn, φj〉

=
M

2γ

m∑
j,k=1

Ef(j,k)

(
〈ξn, φ〉

)〈
ξn

′ − ξn, φj

〉〈
ξn

′ − ξn, φk

〉
+ R1,

where

|R1| ≤ κ

2

(√
n

M

)3 ∑
r,s,t

E
∣∣{1(J ∼ r) − 1(I ∼ r)}{1(J ∼ s) − 1(I ∼ s)}

× {1(J ∼ t) − 1(I ∼ t)}
∣∣

≤ κ

2

(√
n

M

)3 ∑
r,s,t

E{1(J ∼ r) + 1(I ∼ r)}{1(J ∼ s) + 1(I ∼ s)}

× {1(J ∼ t) + 1(I ∼ t)}

=
κ

2

(√
n

M

)3 ∑
r,s,t

n∑
i=1

n∑
j=1

Eki

κn
{1(j ∼ r) + 1(i ∼ r)}{1(j ∼ s) + 1(i ∼ s)}

× {1(j ∼ t) + 1(i ∼ t)}

=
κ

2

(√
n

M

)3 1
n4

∑
r,s,t

n∑
i=1

n∑
j=1

{1(j ∼ r) + 1(i ∼ r)}{1(j ∼ s) + 1(i ∼ s)}

× {1(j ∼ t) + 1(i ∼ t)}

= κ

(√
n

M

)3 1
n4

∑
r,s,t

n∑
i=1

n∑
j=1

{
1(j ∼ r)1(j ∼ s)1(j ∼ t)

+ 1(j ∼ r)1(j ∼ s)1(i ∼ t)
+ 1(j ∼ r)1(i ∼ s)1(j ∼ t)
+ 1(j ∼ r)1(i ∼ s)1(i ∼ t)

}
,

where the last step followed by symmetry. Evaluating the sums gives

|R1| ≤ κ

(√
n

M

)3 1
n2

n
∑
r,s,t

∣∣S(r) ∩ S(s) ∩ S(t)
∣∣ + 3nγ

∑
r,s

∣∣S(r) ∩ S(s)
∣∣

= κ

(√
n

M

)3 1
n

∑
r �=s

∑
t�=r,s

∣∣S(r) ∩ S(s) ∩ S(t)
∣∣

+ 6nγ
∑
r �=s

∣∣S(r) ∩ S(s)
∣∣ + n2γ + 3n2γ2.

As ∑
r �=s

∣∣S(r) ∩ S(s)
∣∣ =

∑
u

∑
r �=s

1(u ∼ r)1(u ∼ s)

= nγ(γ − 1),

and ∑
r �=s

∑
t�=r,s

∣∣S(r) ∩ S(s) ∩ S(t)
∣∣ =

∑
u

∑
r �=s

∑
t�=r,s

1(u ∼ r)1(u ∼ s)1(u ∼ t)

= nγ(γ − 1)(γ − 2),
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we obtain

|R1| ≤ κ

(√
n

M

)3 1
n2

{
n2γ(γ − 1)(γ − 2) + 6n2γ2(γ − 1) + n2γ + 3n2γ2

}
= M

(√
n

M

)3 {
(γ − 1)(γ − 2) + 6γ(γ − 1) + 1 + 3γ

}
≤ 7γ2 n3/2

M2
. (6.35)

Furthermore, from (6.33),

M

2γ

m∑
j,k=1

Ef(j,k)

(
〈ξn, φ〉

)〈
ξn

′ − ξn, φj

〉〈
ξn

′ − ξn, φk

〉

=
M

2γ

n

M2

m∑
j,k=1

Ef(j,k)

(
〈ξn, φ〉

)

×
n∑

s=1

n∑
t=1

φj(xs)φk(xt)
{
1(J ∼ s) − 1(I ∼ s)

}{
1(J ∼ t) − 1(I ∼ t)

}

=
n

2Mγ

m∑
j,k=1

Ef(j,k)

(
〈ξn, φ〉

)

×
n∑

s=1

n∑
t=1

φj(xs)φk(xt)
∑
i,j

γki

Mn

{
1(j ∼ s)− 1(i∼ s)

}{
1(j ∼ t)−1(i∼ t)

}

=
1

2M2

m∑
j,k=1

Ef(j,k)

(
〈ξn, φ〉

) n∑
s=1

∑
t�=s

φj(xs)φk(xt)

×
∑
i,j

ki

{
1(j ∼ s) − 1(i ∼ s)

}{
1(j ∼ t) − 1(i ∼ t)

}

+
1

2M2

m∑
j,k=1

Ef(j,k)

(
〈ξn, φ〉

) n∑
s=1

φj(xs)φk(xs)

×
∑
i,j

ki

{
1(j ∼ s) − 1(i ∼ s)

}2
.

Thus,

m∑
j,k=1

Ef(j,k)

(
〈ξn, φ〉

)
E〈Gmult,dep,samp , φj〉〈Gmult,dep,samp , φk〉

− M

2γ

m∑
j,k=1

Ef(j,k)

(
〈ξn, φ〉

)〈
ξn

′ − ξn, φj

〉〈
ξn

′ − ξn, φk

〉
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=
m∑

j,k=1

Ef(j,k)

(
〈ξn, φ〉

)
Ew

{
〈Gmult,dep,samp, φj〉〈Gmult,dep,samp , φk〉

− 1
n

n∑
i=1

(n − γ)φj(xi)φk(xi)

− γ

n

∑
i

∑
l �=i

{
n|S(i) ∩ S(j)|

γ2
− 1

}
φj(xi)φk(xl)

}
+ R2 + R3

= R2 + R3,

where

R2 =
m∑

j,k=1

Ef(j,k)(〈ξn, φ〉)

× 1
n

n∑
s=1

φj(xs)φk(xs)
{

n − γ

M
− n

2M2

∑
i,j

ki{1(j ∼ s) − 1(i ∼ s)}2

}
(6.36)

and

R3 =
m∑

j,k=1

Ef(j,k)

(
〈ξn, φ〉

) 1
n2

n∑
s=1

∑
t�=s

φj(xs)φk(xt)

×
{

nCov(ws, wt) −
n2

2M2

∑
i,j

ki

{
1(j ∼ s) − 1(i ∼ s)

}
×

{
1(j ∼ t) − 1(i ∼ t)

}}
. (6.37)

We first bound R2. We have that, for all φ, ψ ∈ C,

|R2| ≤ E

∣∣∣∣∣ 1
n

n∑
s=1

φ(xs)ψ(xs)
{

n − γ − n

2M2

∑
i,j

ki{1(j ∼ s) − 1(i ∼ s)}2

}∣∣∣∣∣
= E

∣∣∣∣∣ 1
n

n∑
s=1

φ(xs)ψ(xs)
{

n − γ − n

2M2

∑
i,j

ki{1(j ∼ s)

− 21(j ∼ s)1(i ∼ s) + 1(i ∼ s)}
}∣∣∣∣∣

= E

∣∣∣∣∣ 1
n

n∑
s=1

φ(xs)ψ(xs)
(

n − 2γ

2M
− n(n − 2γ)

2M2

∑
i∼s

ki

)∣∣∣∣∣
= E

∣∣∣∣∣ 1
n

n∑
s=1

φ(xs)ψ(xs)
(

n − 2γ

2M
− (n − 2γ)

2M
ws

)∣∣∣∣∣
=

(n − 2γ)
2M

E

∣∣∣∣∣ 1n
n∑

s=1

φj(xs)φk(xs)(1 − ws)

∣∣∣∣∣
≤ (n − 2γ)

2M

{
Var

(
1
n

n∑
s=1

φ(xs)ψ(xs)(1 − ws)

)} 1
2

,
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where we used the Cauchy–Schwarz inequality. Now,

Var

(
1
n

n∑
s=1

φ(xs)ψ(xs)(1 − ws)

)
≤ 1

n2

n∑
s=1

Var(ws) +
1
n2

n∑
s�=t=1

∣∣Cov(ws, wt)
∣∣

≤ n − γ

Mn
+

γ

Mn2

n∑
s�=t=1

{
1 +

n

γ2

∣∣S(s) ∩ S(t)
∣∣}

=
n − γ

Mn
+

γ

Mn2

{
n(n − 1) +

n

γ2
nγ(γ − 1)

}
≤ n − γ

Mn
+ 2

γ

M
.

Hence

|R2| ≤
(n − 2γ)

2M

{
n − γ

Mn
+

2γ

M

} 1
2

≤ n

M3/2

{
1
2

+
√

γ

}
. (6.38)

For R3 we have, for all φ, ψ ∈ C,

|R3| ≤ E

∣∣∣∣∣ 1
n2

n∑
s=1

∑
t�=s

φ(xs)ψ(xt)
{

nCov(ws, wt)

− n2

2M2

∑
i,j

ki{1(j ∼ s) − 1(i ∼ s)}{1(j ∼ t) − 1(i ∼ t)}
}∣∣∣∣∣

= E

∣∣∣∣∣ 1
n2

n∑
s=1

∑
t�=s

φ(xs)ψ(xt)
{

nCov(ws, wt) −
n2

2M2

∑
i,j

ki{1(j ∼ s)1(j ∼ t)

− 1(i∼ s)1(j ∼ t)} − 1(i∼ t)1(j ∼ s) + 1(i∼ s)1(i∼ t)}
}∣∣∣∣∣

= E

∣∣∣∣∣ 1
n2

n∑
s=1

∑
t�=s

φ(xs)ψ(xt)
{

n2|S(s) ∩ S(t)|
γM

− nγ

M
− n2

2M2

{
M

γ

∣∣S(s) ∩ S(t)
∣∣

− γ

{∑
i∼s

ki +
∑
i∼t

ki

}
+ n

∑
i∈S(s)∩S(t)

ki

}}∣∣∣∣∣
≤ E

∣∣∣∣∣ 1
n2

n∑
s=1

∑
t�=s

φ(xs)ψ(xt)
{

n2|S(s) ∩ S(t)|
γM

− n2

2M2γ

{
M |S(s) ∩ S(t)| − n

∑
i∈S(s)∩S(t)

ki

}}∣∣∣∣∣
+ E

∣∣∣∣∣ 1
n2

n∑
s=1

∑
t�=s

φ(xs)ψ(xt)
{
−nγ

M
+

n2γ

2M2

{∑
i∼s

ki +
∑
i∼t

ki

}}∣∣∣∣∣
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so that

|R3| ≤ E

∣∣∣∣∣ 1
n2

n∑
s=1

∑
t�=s

φ(xs)ψ(xt)

× n2|S(s) ∩ S(t)|
2γM

{
1 − n

γ
M |S(s) ∩ S(t)|

∑
i∈S(s)∩S(t)

ki

}∣∣∣∣∣
(6.39)

+ E

∣∣∣∣∣ 1
n2

n∑
s=1

∑
t�=s

φ(xs)ψ(xt)
{
− nγ

M
+

n2γ

M2

∑
i∼s

ki

}∣∣∣∣∣. (6.40)

by symmetry. We consider the two summands separately. Firstly, using the Cauchy-
Schwarz inequality, for (6.39) we have

E

∣∣∣∣∣ 1
n

n∑
s=1

∑
t�=s

φ(xs)ψ(xt)
n|S(s) ∩ S(t)|

2γM

{
1 − nγ

M |S(s) ∩ S(t)|
∑

i∈S(s)∩S(t)

ki

}∣∣∣∣∣
≤ 1

2

{
1
n2

n∑
s=1

∑
t�=s

n∑
u=1

∑
v �=u

n2|S(s) ∩ S(t)||S(u) ∩ S(v)|
γ2M2

×
∣∣∣∣Cov

(
nγ

M |S(s) ∩ S(t)|
∑

i∈S(s)∩S(t)

ki,
nγ

M |S(u) ∩ S(v)|
∑

j∈S(u)∩S(v)

kj

)∣∣∣∣
} 1

2

and

1
n2

n∑
s=1

∑
t�=s

n∑
u=1

∑
v �=u

n2|S(s) ∩ S(t)||S(u) ∩ S(v)|
γ2M2

×
∣∣∣∣Cov

(
nγ

M |S(s) ∩ S(t)|
∑

i∈S(s)∩S(t)

ki,
nγ

M |S(u) ∩ S(v)|
∑

j∈S(u)∩S(v)

kj

)∣∣∣∣
≤ 2

n2

n∑
s=1

∑
t�=s

n2|S(s) ∩ S(t)|2
γ2M2

Var
(

n

γ
M |S(s) ∩ S(t)|

∑
i∈S(s)∩S(t)

ki

)

+ 4
1
n2

n∑
s=1

∑
t�=s

∑
u�=s,t

n2|S(s) ∩ S(t)||S(u) ∩ S(s)|
γ2M2

×
∣∣∣∣Cov

(
nγ

M |S(s) ∩ S(t)|
∑

i∈S(s)∩S(t)

ki,
nγ

M |S(u) ∩ S(s)|
∑

j∈S(u)∩S(s)

kj

)∣∣∣∣
+

1
n2

n∑
s=1

∑
t�=s

∑
u�=s,t

∑
v �=u,s,t

n2|S(s) ∩ S(t)||S(u) ∩ S(v)|
γ2M2

×
∣∣∣∣Cov

(
nγ

M |S(s) ∩ S(t)|
∑

i∈S(s)∩S(t)

ki,
nγ

M |S(u) ∩ S(v)|
∑

j∈S(u)∩S(v)

kj

)∣∣∣∣
≤ 2

n2

n∑
s=1

∑
t�=s

n2|S(s) ∩ S(t)|2
γ2M2

(n − |S(s) ∩ S(t)|)γ
|S(s) ∩ S(t)|M

+ 4
1
n2

n∑
s=1

∑
t�=s

∑
u�=s,t

n2|S(s) ∩ S(t)||S(u) ∩ S(s)|
γ2M2

imsart-lnms ver. 2004/06/30 file: lnms4606.tex date: August 6, 2004



122 Susan Holmes and Gesine Reinert

× (n|S(s) ∩ S(t) ∩ S(u)| − γ|S(s) ∩ S(t)||S(u) ∩ S(s)|)
M |S(s) ∩ S(t)||S(u) ∩ S(s)|

+
1
n2

n∑
s=1

∑
t�=s

∑
u�=s,t

∑
v �=u,s,t

n2|S(s) ∩ S(t)||S(u) ∩ S(v)|
γ2M2

× (n|S(s) ∩ S(t) ∩ S(u) ∩ S(v)| − γ|S(s) ∩ S(t)||S(u) ∩ S(v)|)
M |S(s) ∩ S(t)||S(u) ∩ S(v)|

≤ 2
n2

n3

M3

nγ(γ − 1)
γ

+ 4
1
n2

n∑
s=1

∑
t�=s

∑
u�=s,t

n2

γM2

n|S(s) ∩ S(t) ∩ S(u)| − γ|S(s) ∩ S(t)||S(u) ∩ S(s)|
M

+
1
n2

n∑
s=1

∑
t�=s

∑
u�=s,t

∑
v �=u,s,t

n2

γM2

× n|S(s) ∩ S(t) ∩ S(u) ∩ S(v)| − γ|S(s) ∩ S(t)||S(u) ∩ S(v)|
M

≤ 2
n

n3γ

M3

+ 4
1
n2

n2

γM3

{
nγ(γ − 1)(γ − 2) −

n∑
s=1

∑
t�=s

∑
u�=s,t

∣∣S(s) ∩ S(t)
∣∣∣∣S(u) ∩ S(s)

∣∣}

+
1

γM3

{
nγ(γ − 1)(γ − 2)(γ − 3)

−
n∑

s=1

∑
t�=s

∑
u�=s,t

∑
v �=u,s,t

∣∣S(s) ∩ S(t)
∣∣∣∣S(u) ∩ S(v)

∣∣}

≤ 2
n

n3γ

M3
+ 8

1
n2

n2

γM3
nγ(γ − 1)(γ − 2) + 8

1
n2

n2

γM3
nγ(γ − 1)(γ − 2)(γ − 3)

< 2
n2γ

M3
+ 8

nγ2

M3
+ 8

nγ3

M3

= 2
n2γ

M3

{
1 + 4

γ

n
+ 4

γ2

n

}
.

Thus we obtain for (6.39) as upper bound

1
2

{
2
n2γ

M3

{
1 + 4

γ

n
+ 4

γ2

n

} 1
2

≤ nγ

M3/2

{
3 + 2

γ√
n

}
.

Next, for (6.40),

E

∣∣∣∣∣ 1
n2

n∑
s=1

∑
t�=s

φ(xs)ψ(xt)
{
−nγ

M
+

n2γ

M2

∑
i∼s

ki

}∣∣∣∣∣
= E

∣∣∣∣∣ γ

nM

n∑
s=1

∑
t�=s

φ(xs)ψ(xt)(ws − 1)

∣∣∣∣∣
≤ (n + 1)γ

nM

{
n∑

s=1

n∑
t=1

∣∣Cov(ws, wt)
∣∣} 1

2
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= 2
(n + 1)γ

nM

{
n(n − γ)

M
+

γ

M

n∑
s=1

∑
t�=s

∣∣∣∣n|S(s) ∩ S(t)|
γ2

− 1
∣∣∣∣
} 1

2

≤ (n + 1)γ
nM

{
n(n − γ)

M
+

n2(γ + 2))
M

} 1
2

≤ (n + 1)γ
nM

{
n√
M

+
n
√

γ + 2√
M

}
≤ n

M3/2

{
2γ + 6

√
γ
}
.

Hence

|R3| ≤ n

M3/2

{
4γ + 10

√
γ
}
.

With (6.27), the assertion follows.

Now, again using a law of large numbers argument, if we draw many samples
then, approximately, the Gaussian covariance is given by

Cov
(
〈Gmult,depboot , f〉, 〈Gmult,depboot , g〉

)
=

1
nM

n∑
i=1

(n − γ)Ef(Xi)g(Xi)

+
γ

nM

n∑
i=1

∑
j �=i

{
n|S(i) ∩ S(j)|

γ2
− 1

}
Ef(Xi)g(Xj)

=
n − γ

M

{
1
n

n∑
i=1

Ef(Xi)g(Xi) +
1

γ(n − γ)

n∑
i=1

∑
j �=i

∣∣S(i) ∩ S(j)
∣∣Ef(Xi)g(Xj)

− γ

n(n − γ)

n∑
i=1

∑
j �=i

Ef(Xi)g(Xj)

}

=
n − γ

M

{
1
n

n∑
i=1

Cov
(
f(Xi), g(Xi)

)
+

1
n

n∑
i=1

Ef(Xi)Eg(Xi)

+
1

γ(n − γ)

n∑
i=1

∑
j �=i

∣∣S(i) ∩ S(j)
∣∣Cov

(
f(Xi), g(Xj)

)
+

1
γ(n − γ)

n∑
i=1

∑
j �=i

∣∣S(i) ∩ S(j)
∣∣Ef(Xi)Eg(Xj)

− γ

n(n − γ)

n∑
i=1

∑
j �=i

Cov
(
f(Xi), g(Xj)

)
− γ

n(n − γ)

n∑
i=1

∑
j �=i

Ef(Xi)Eg(Xj)

}

=
n − γ

M

{
1
n

n∑
i=1

Cov
(
f(Xi), g(Xi)

)
+

1
n

n∑
i=1

Ef(Xi)Eg(Xi)

+
1

γ(n − γ)

n∑
i=1

∑
j �=i,j∼i

∣∣S(i) ∩ S(j)
∣∣Cov

(
f(Xi), g(Xj)

)
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+
1

γ(n − γ)

n∑
i=1

∑
j �=i

∣∣S(i) ∩ S(j)
∣∣Ef(Xi)Eg(Xj)

− γ

n(n − γ)

n∑
i=1

∑
j �=i,j∼i

Cov
(
f(Xi), g(Xj)

)
− γ

n(n − γ)

n∑
i=1

∑
j �=i

Ef(Xi)Eg(Xj)

}

=
n − γ

M

{
1
n

n∑
i=1

Cov
(
f(Xi), g(Xi)

)
+

1
n

n∑
i=1

Ef(Xi)Eg(Xi)

+
1
n

n∑
i=1

∑
j �=i,j∼i

Cov
(
f(Xi), g(Xj)

)( n

γ(n − γ)

∣∣S(i) ∩ S(j)
∣∣ − γ

n − γ

)

+
1
n

n∑
i=1

∑
j �=i

Ef(Xi)Eg(Xj)
(

n

γ(n − γ)

∣∣S(i) ∩ S(j)
∣∣ − γ

n − γ

)}
.

In the very homogeneous case, where all Xi are identically distributed and all
covariances are identical Ef(Xi)g(Xj) = c(f, g) for i �= j, this reduces to

n − γ

M

{
Cov

(
f(X), g(X)

)
+ Ef(X)Eg(X)

+ c(f, g)
1
n

n∑
i=1

∑
j �=i,j∼i

(
n

γ(n − γ)

∣∣S(i) ∩ S(j)
∣∣ − γ

n − γ

)

+ Ef(X)Eg(X)
(

n

γ(n − γ)
γ(n − γ) − γ(n − 1)

n − γ

)}
=

n − γ

M

{
Cov

(
f(X), g(X)

)
+ c(f, g)

1
n

n∑
i=1

∑
j �=i,j∼i

(
n

γ(n − γ)
|S(i) ∩ S(j)| − γ

n − γ

)}
.

For the last term, note that
∑n

i=1

∑
j �=i,j∼i |S(i) ∩ S(j)| depends on the graph

we consider.

Example 6.4.1. In one extreme very homogeneous case, case, |S(i) ∩ S(j)| = γ
for all i ∼ j,

n∑
i=1

∑
j �=i,j∼i

∣∣S(i) ∩ S(j)
∣∣ =

n∑
i=1

∑
j �=i

∣∣S(i) ∩ S(j)
∣∣ = nγ(γ − 1),

that is, the neighbors capture all the overlap. In this case, we obtain

1
n

n∑
i=1

∑
j �=i,j∼i

(
n

γ(n − γ)

∣∣S(i) ∩ S(j)
∣∣ − γ

n − γ

)
=

n

γ(n − γ)
γ(γ − 1) − γ(γ − 1)

n − γ

= γ − 1,

and the asymptotic covariance approximates
n − γ

M

{
Cov

(
f(X), g(X)

)
+ c(f, g)(γ − 1)

}
,

which is the correct distribution; scaled by n−γ
M ; this bootstrap works.
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Example 6.4.2. In the other extreme case, |S(i) ∩ S(j)| = 0 for all i ∼ j, no
neighbours are shared, and we obtain

1
n

n∑
i=1

∑
j �=i,j∼i

(
n

γ(n − γ)
|S(i) ∩ S(j)| − γ

n − γ

)
= − γ2

n − γ
.

This gives as approximating variance

n − γ

M
Cov

(
f(X), g(X)

)
− γ2

M
c(f, g).

For M = M(n) → ∞, the last term approaches 0.

Example 6.4.3. In the k-nearest neighbour graph, n vertices are placed on a circle,
and each vertex is connected to its k nearest neighbours to the left and to the right,
so that each vertex has degree d = 2k. This is a Cayley graph, and we assume that
n > 2k. If a vertex j has distance  < k from vertex i, then it is easy to see that
|Si) ∩ Sj | = k + (k − ) − 1. Assuming that the Xi are identically distributed, we
obtain as asymptotic covariance

n − 2k

M

{
Cov

(
f(X), g(X)

)
+ Ef(X)Eg(X)

(
1 +

n(3k − 1)
2(n − 2k)

)
+

1
n

n∑
i=1

∑
j �=i,j∼i

Cov
(
f(Xi), g(Xj)

)( n

2k(n − 2k)

∣∣S(i) ∩ S(j)
∣∣ − 2k

n − 2k

)}
.

In the very homogeneous case where the covariance between f(Xi) and g(Xj) de-
pends only on the distance |i − j| as well as on f and g, this simplifies to

n − 2k

M

{
Cov

(
f(X), g(X)

)
+ Ef(X)Eg(X)

(
1 +

n(3k − 1)
2(n − 2k)

)
+

k∑
�=1

Cov
(
f(X1), g(X1+�)

)n(2k −  − 1) − 4k2

2k(n − 2k)

}
.

In the last two cases, the approximating Gaussian measure has to be adjusted
not only by n−γ

M , but also the covariance has to be adjusted separately. In Exam-
ple 6.4.3 the covariance does not vanish for n → ∞; we can still claim that the
bootstrap, with this modification, works. In general, we will need to adjust the
approximating Gaussian measure accordingly.

6.5. Applications of the bootstrap for dependent variables

The original sample is X = {x1, x2, . . . , xn}, a set of n real numbers, and we suppose
that the dependency graph given this sample is known. We remark that there is
a simple relation between the size of the neighborhood Si and the degree of the
dependency graph |Si| = di + 1. Following the theoretical development in section 4
we develop a

Bootstrap algorithm for known dependency graphs

Input arguments:
– B is the number of bootstrap resamples,
– n is the original sample size,
– M is the bootstrap sample size.
Repeat B times:
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• Pick Ij from {1, 2, .., n} uniformly with replacement.

• Suppose Ij =  then take all the observations xi for i ∈ S� = SIj

add these to the current bootstrap sample.

• Continue until the desired sample size M is attained.

Note that the bootstrap sample may be larger than M in general.

6.5.1. Spatial process

Consider data which may be modeled by a marked spatial process, for instance
different trees in a forest. Here it is plausible that close trees interfere with each
other, whereas trees far away do not.

The variables of interest may be measurements of growth or fertility, we will call
them Xi. The radius of interference can depend on the species type. Suppose we
are in the simple instance where this is not the case and that the number of trees
influenced is constant then we will define the dependency graph of each observation
as it’s d nearest neighbors, thus we have a fixed degree for the all the dependency
graphs as a first approximation. This is the case when the dependency graph has
a spatial meaning, and we can ignore second order effects, ie if one tree dwarfs a
neighbor, this is to the advantage of the dwarfs’ neighbors on the other side.

Simulating a particular dependence structure

We start with a simulation study in which the points are the vertices of a regular
graph such as the 60 points of a bucky ball, this has a weak dependency structure
since the degree of this regular graph is 3. Here is the projection of the front of the
bucky ball as provided by a matlab function bucki.

Figure 1: Part of the dependency graph for the Bucky ball
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Figure 2: Values simulated at the vertices of the bucky ball

Here are some practical details on our implementation. We code dependency
graphs as symmetric binary matrices A where a one at A(i, j) means that the
vertices i and j are dependent. Saying that the graph is regular, just means that
we are forcing the row and column sums to be all equal to the same number d.

To simulate the spatial process with this dependence structure, we use a scheme
proposed by Diaconis and Evans [5]. Let (V, E) be the dependency graph with
incidence matrix A. Suppose that for each e ∈ E we are given an iid random
variable Ze. We use these to form variables Xv as follows:

Step 1: Fix an orientation of the edges of the graph, O(E).

Step 2: For each vertex v add the Ze’s for e going into the vertex and substract
Zg for vg going out from the vertex. Call this sum Xv.

Xv =
∑

(e,v)∈O(E)

Ze −
∑

(v,g)∈O(E)

Zg

It is easy to see the random variables Xv have the desired dependency structure.
These random variables have a Normal distribution if the Ze’s are Normal. This
will be useful in checking the bootstrap empirically, but we have also used Poisson
distributions for the Zi’s.

Suppose we have the regular 3-degree, 60 vertices Bucky ball as the dependency
graph. We simulate first according to the scheme above, with the Z’s independent
standard normal. Figure 2 shows one realization of the process

We can check how this simulation scheme works by comparing the variance-
covariances. Figure 3 shows the true covariances (which are known for this example)
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Figure 3: Comparison of simulated and known correlation structures

and the covariances simulated from a simulation of 1,000 realizations. There is a
perfect fit if we ignore any correlation smaller than .05.

Now we have a simulation procedure for generating samples with the correct
dependency structure, we actually know what the variance of a sample of size 60
should be, it should be around 3, the simulation with matlab gives:

simul2=simuldep(10000,buck,’normal’);

mean(var(simul2))

3.0428

var(var(simul2))

0.4054

Figure 4: True sampling distribution of the variance

Here are the bootstrap results, starting with a sample X 1 such that the variance
of the original sample is 3.38, the bootstrap estimate was 3.33
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s1=simuldep(1,buck,’normal’);

btvarres=simboot(s1,60,10000,’var’);

var(s1)

3.3788

mean(btvarres)

3.3299

Figure 5: Bootstrap distribution of the variance

Figure 6: Two types of bootstrap

Figures 6 and 7 show the QQplots comparing the dependent bootstrap and the
ordinary bootstrap and the bootstrap to the true sampling distribution for 1000
bootstrap samples.
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Figure 7: The bootstrap and sampling distributions

Let’s look closer at cases where the graph is denser, thus building a stronger
dependence.

Denser dependency graph

On a suggestion of Persi Diaconis we use the Cayley graph for a group generated
by a small generating set for integers modulo n to generate denser graphs.

Figure 8: Dependency graph for 24 degrees on 60 points

S is the number of simulations from the truth. B is the number of bootstrap
resamples, n is the sample size.

Note that it was unnecessary to do the simulations for the second column, it is
simple to see that the variance is equal to the degree.
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Table 1: Table of results for B = 1000 simulations on 9 different samples:

d σ2 (simul) ŝ2 var (ŝ2 − σ2) ave(var (ŝ∗2 − ŝ2)) ave(var (ŝ∗2 − ŝ2))

dependent ordinary
S = 1000 n = 60 S = 1000 B = 1000, S = 100 B = 1000, S = 100

2 2.0 1.77 0.185 0.18 0.12
3 3.0 2.70 0.431 0.30 0.28
4 4.1 5.37 0.706 0.69 0.54
6 6.2 6.23 1.506 1.11 1.32
8 8.2 9.46 2.321 2.05 2.31

10 10.1 9.00 3.726 2.80 3.23
12 12.3 9.26 5.754 4.01 4.60
14 14.3 9.39 6.883 6.01 6.36
16 16.3 18.98 8.643 6.32 7.82
24 24.6 19.99 22.41 17.87 19.12
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