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5. The stationary distribution in the

antivoter model: exact sampling

and approximations

Mark Huber1 and Gesine Reinert2

Duke University and University of Oxford

Abstract: The antivoter model is a Markov chain on regular graphs which has
a unique stationary distribution, but is not reversible. This makes the station-
ary distribution difficult to describe. Despite the fact that in general we know
nothing about the stationary distribution other than it exists and is unique,
we present a method for sampling exactly from this distribution. The method
has running time O(n3r/c), where n is the number of nodes in the graph, c is
the size of the minimum cut in the graph, and r is the degree of each node in
the graph. We also show that the original chain has O(n3r/c) mixing time. For
the antivoter model on the complete graph we derive a closed form solution
for the stationary distribution. Moreover we bound the total variation distance
between the stationary distribution for the antivoter model on a multipartite
graph and the stationary distribution on the complete graph, using Stein’s
method. Finally, we present computational experiments comparing the empir-
ical Stein’s method for estimating the stationary distribution to the classical
frequency estimate.

5.1. The antivoter model

The antivoter model is a variant of the well studied voter model (See Liggett [8]).
In the voter model, a graph is given a two coloring. Independently with exponential
waiting times, nodes randomly change their color to match a random neighbor. In
finite graphs, the voter model will eventually result in all nodes having the same
color.

The antivoter model is a variant where again nodes are updated independently
with exponential waiting times between updates. However, in the antivoter model
the color of the node is changed to the opposite of a randomly chosen neighbor.
Matloff [9] first introduced the antivoter model on infinite lattices. The case of finite
graphs was examined by Donnelly and Welsh [5], and by Aldous and Fill [2]. Unlike
the voter model, none of the states of the antivoter model are absorbing, and in
fact most of the states are strongly connected.

We consider a discrete time version of this model, run as follows. At each time
step, a node of the graph is selected uniformly at random among all nodes. A neigh-
bor of the chosen node is then selected uniformly at random from the set of neigh-
boring nodes. The color of our selected node is changed to be the opposite of the
selected neighbor; we use the colors 0 and 1 (another typical convention is to label
the colors by −1 and 1). That this chain is not reversible is easy to see – if a node
colored 0 is entirely surrounded by nodes which are also colored 0, picking that
node always results in its color changing to 1, with no chance of moving back to 0.
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We restrict our attention to graphs G which are regular of degree r. Assume
that G is neither bipartite nor an n-cycle. Donnelly and Welsh [5] were able to show
that under these assumptions, the antivoter model is an ergodic chain over the set
of colorings of the graph in which both colors are used at least once. Moreover the
stationary distribution is unique, and its support is the set of all nonunanimous
configurations.

One statistic of particular interest to us is W , which is the number of nodes
colored 1. By symmetry E[W ] = n/2. Prompted by a question posed by Aldous,
Rinott and Rotar [12] were able to show that the distribution of W for regular
graphs is approximately normal given certain conditions on the graph, as the degree
of the graph goes to infinity.

On the complete graph, this model can be viewed as a special case of the Moran
model [10] in genetics. Assume a population of fixed size n consists of individuals
of two types, 0 and 1, say. As pointed out by Donnelly [4], the Moran model can
be formulated as follows. Individuals die at rate one, independently of all other
events. When an individual dies, then, with probability α1 it is replaced by an
individual of type 1, with probability α2 it is replaced by an individual of type 0,
and with probability 1 − α1 − α2 it is replaced by the offspring of an individual
chosen at random from the members of the population present immediately before
the death occurs. In this case the offspring will always be of the same allelic type
as its parent. To see the relation with the antivoter model, suppose we choose a
vertex v at random. In the antivoter model, a random neighbor is chosen, and the
color is changed to the opposite ȳ of y, the color of the random neighbor. As on
the complete graph all vertices are neighbors, the probability for vertex v to retain
color x is proportional to the number of vertices of color x̄ in the graph. Thus the
antivoter model is a special case of the Moran model, with α1 = α2 = 0.

In this paper we present several results about the antivoter model. First, we
give an efficient algorithm for sampling exactly from the stationary distribution of
the chain, and show that the chain mixes rapidly. Yet estimating the stationary
distribution from exact samples can be rather time consuming, in particular for the
tails of the distribution. In the special case of the antivoter model on the complete
graph, we are able to give a closed form solution for the stationary distribution.
Intuitively, if the class sizes in the multipartite graph are not too large, the mul-
tipartite graph resembles a complete graph, and thus the stationary distributions
should be similar. We make this intuition precise; using Stein’s method, we derive
a bound on the approximation of the stationary distribution of W for multipartite
graphs by the stationary distribution for complete graphs. Finally, we implement
the empirical Stein’s method for this chain, and present evidence that it computes
more accurate estimates of the stationary distribution with fewer samples. This is
illustrated on multipartite graphs, as we have the normal distribution as the known
limiting regime for the distribution of W ; however, the method is easily applicable
to other graphs as well.

5.2. Exact sampling

Our method for exactly sampling from the stationary distribution of this chain uses
the coupling from the past (CFTP) methodology. CFTP rests on having a complete
coupling chain. Recall that a chain is a coupling chain if whenever two particles on
the chain enter the same state at time t, they remain in that state for all T ≥ t.
That is, if X and Y are two particles on the chain, Xt = Yt ⇒ XT = YT for all
T ≥ t.
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The stationary distribution in the antivoter model 77

Suppose that we start a particle on every state of the chain. If all of these
particles have coupled by time t, we say that the chain has completely coupled.
CFTP uses a complete coupling chain as a subroutine to obtain an exact sample
from the stationary distribution of the chain. The running time is of the same order
as the expected time for the chain to completely couple.

Complete coupling also provides a bound on the mixing time of the chain, as
measured by the total variation distance. The total variation between two distribu-
tions p and π is ‖p−π‖TV = supA |p(A)−π(A)| (where the supremum is taken over
all measurable sets A). Let pt

x0
denote the distribution of Xt given that X0 = x0.

Then for ε > 0, the mixing time of the chain is the smallest value of t such that
‖p − π‖TV ≤ ε. A well known theorem of Doeblin’s [3, 1] tells us that the total
variation distance between pt

x0
and π is bounded about by the probability that

complete coupling has not occurred. Therefore, if we show that complete coupling
has occcurred by time t with high probability, then the chain will mix well by that
time.

Given that complete coupling gives us an exactly stationary sample, one might
inquire as to why we are also interested in bounding the mixing time, which only
gives approximate samples. Often, simulators will not be interested in obtaining a
single sample, but many samples. One way to get these samples is to take an entire
set of values from a sample path X0, . . . , Xt. These value will be correlated, but
knowledge of the mixing time of the chain allows us to bound this correlation. Of
course, we should always start such a sample path with X0 stationary, and so our
perfect sampling techniques are also useful here.

In the antivoter model on a graph with n nodes, the state space is of size 2n.
It is impractical to keep track of 2n different particles, and so we employ an idea
to keep track of all states that reduces finding a stationary state in the antivoter
chain to detecting absorbtion in the voter chain.

To keep track of the nodes, we keep track of variables xi,t, where xi,t is the
color of node i at time t. Now suppose that at the tth time step, we choose node i
to have color the opposite of node j. Then xi,t+1 = 1 − xj,t. Suppose that we are
running the chain forward from some starting time T It is easy to see via induction
that at some time step T0, each xi,T0 will either be xj,T or 1−xj,T for some j. This
is a version of the coalescent coupling; node j could be viewed as the most recent
ancestor of all the nodes.

At this point, the state of the entire chain depends only on what the value
of xj,T is, 0 or 1. Once that is known, then the entire state of the chain is known.
To determine this, we first note another move that preserves the stationary distri-
bution of this Markov chain, namely, at each step we swap the color classes with
probability 1/2. That is, we flip a fair coin at each step, and if it comes up heads,
each node colored 1 becomes color 0 and vice versa. This update step actually only
needs to be done once, since we only need keep track of the parity of the num-
ber of times that the coin came up heads, and adjust the state accordingly at the
end.

This allows us to do the following. Suppose at time t, all of the nodes have
value xj,T or 1 − xj,T . Then at time t − 1, we must have flipped a coin. With
probability 1/2, xj,T = 0 and with probability 1/2, xj,T = 1. Either way, we can
now write down the state of the chain at time t.

This is a complete coupling–no matter what the state of the chain was at time
T − 1, at time t it has moved to the same state. Together with coupling from the
past (CFTP), this gives us an algorithm for exact sampling from the chain with
running time of the same order as the expected time the chain takes to completely
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couple.
So what is the running time of this procedure? The time needed is the time for

one variable xj,T to “spread” out to hit all of the other nodes. But this is exactly
the time needed for a node in the voter model to influence every other node of
the graph. The running time of this procedure will be exactly the same as the
absorbtion time of the voter model with n colors. We bound this time below.

Theorem 5.1. The expected time the above chain takes to completely couple is
bounded above by n3r/c, where r is the degree of the graph and c is the minimum
cut.

(Note that c ≥ r always, so that the expression makes sense.) Our proof tech-
nique will be to show that the number of known nodes at each time step is a
submartingale. Therefore it will be useful to have some facts about submartingales
available.

In particular, the Upcrossing Inequality (see Port [11]) will be useful in deter-
mining the expected time until complete coupling.

Lemma 5.1 (Upcrossing Inequality). Suppose X1, . . . is a submartingale (so
E[Xt+1 − Xt|Xt] ≥ 0). Let τ be a stopping time, and U(α, β) be the number of
times that Xi ≤ α ≤ β ≤ Xi+1. Then

EU(α, β) ≤ 1
β − α

[E(Xτ − α)+ − E(X1 − α)+].

The following corollary will be needed.

Corollary 5.1. Suppose X0, . . . is a submartingale taking values in {0, . . . , n} with
X0 = 0, τ = inft Xt = n, |Xt+1 − Xt| ≤ 1, and P (Xt+1 �= Xt) ≥ εXt > 0. Then

E[τ ] ≤
n−1∑
i=0

2(n − i) + 1
εi

.

Proof. Since X0 has positive probability of moving (and hence positive probability
of getting larger) at each step, τ is finite with probability 1. Put

Yt = Xt1t≤τ + n1t>τ .

Let ni be the number of times Yt = i, where 0 < t ≤ τ . Then τ =
∑n−1

i=0 ni, and
E[τ ] =

∑n−1
i=0 E[ni]. For i < n, ni =

∑∞
t=0 1Yt=i so

E[ni] =
∞∑

t=0

P (Yt = i)

≤ 1 +
∞∑

t=1

P (Yt−1 = i − 1, Yt = i) + P (Yt−1 = i, Yt = i)

+ P (Yt−1 = i + 1, Yt = i)

= 1 +
∞∑

t=1

E[1Yt−1=i−1,Yt=i] + P (Yt−1 = i)P (Yt = i|Yt−1 = i)

+ E[1Yt−1=i+1,Yt=i]
= 1 + E

[
U(i − 1, i)

]
+ E

[
D(i + 1, i)

]
+

∞∑
t=1

P (Yt−1 = i)P (Yt = i|Yt−1 = i)
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The stationary distribution in the antivoter model 79

where D(i + 1, i) is the number of downcrossing of Xts from i + 1 to i from time 0
to τ . Note that since we started at 0 and ended up at n, D(i, i−1) = U(i−1, i)−1,
and so

E[ni] ≤ 1 + E[U(i − 1, i)] + E[U(i, i + 1)] − 1

+
∞∑

t=1

P (Yt−1 = i)P (Xt = i|Xt−1 = i)

≤ n − (i − 1) + n − i +
∞∑

t=1

P (Xt−1 = i)(1 − εi)

= 2n− 2i + 1 + (1 − εi)
∞∑

t=1

P (Yt−1 = i)

≤ 2n− 2i + 1 + (1 − εi)E[ni],

so that

E[ni] =
2n − 2i + 1

εi
.

Summing over all i completes the proof of the corollary.

We are now ready to prove Theorem 5.1.

Proof. At any time t, there will be a variable j for which the largest number of xi,t

can be written in terms of xj,T . Let At be the set of nodes with value either xj,T

or 1 − xj,T . Clearly |At| ≥ 1 for all time.
If |At| = n, we are done, so our goal will be to show that on average |At| is

growing. This can happen in two ways. First, a new node i might at time t+1 have
value based on xj,T , or a new node j′ might arise such that more nodes are written
in terms of xj′,T than xj,T . We only use this second effect to ensure that |At| never
falls below 1, otherwise we concentrate on the first means of growth (actually, at
the first step it will move to 2 and always be at least 2 thereafter). Let I denote the
random variable that picks a node uniformly from V ; this node will then change
color to the opposite of one of its (uniformly at random) chosen neighbors. Thus
we have, for any node v,

P
(
|At+1| = |At| + 1|Ft, I = v

)
= 1 − P

(
|At+1| = |At| − 1|Ft, I = v

)
.

Let Dt = V \AT , and set d(v) to be the number of neighbors of v which are in Dt.
Then

P
(
|At+1| = |At| − 1|Ft, I = v

)
≥ d(v)/r.

We now show that |At| is a submartingale with respect to the canonical filtration
(Ft)t≥0, where Ft = σ(As, s ≤ t).

E
[
|At+1| − |At|||At|

]
≥ 1

n − 1

∑
v∈Dt

P
(
|At+1| = |At| + 1|Ft, I = v

)
−

∑
v∈At

P
(
|At+1| = |At| − 1|Ft, I = v

)
=

|Dt|
n − 1

− 1
n − 1

∑
v

d(v)/r

=
|Dt|
n − 1

− 1
n − 1

|Dt|r
r

= 0.
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Hence {|At|, t = 1, 2, . . .} is a submartingale, and we may apply our corollary to
the Upcrossing Inequality. We need to bound below P (|At+1| �= |At|) which is at
least P (|At+1| > |At|).

The minimum cut in the graph is c, and so at least c edges lie between nodes in
At and Dt. Picking a node and neighbor at random is the same as picking an edge
at random, followed by a random direction for that edge. Combining this with the
fact that there are nr/2 edges gives us

P (|At+1| �= |At|) ≥
1
2

c

nr/2
.

Summing (note that we do not need the i = 0 term) gives E[T ] ≤ n3r/c.

Note that, if the graph is such that any vertex can be mapped to any other
vertex by an isomorphism, we have P (|At+1| �= |At|) ≥ c

nr/2 , and E[T ] ≤ n3 r
2c .

Aside from the fact of complete coupling, this shows that our modified chain
also mixes in time O(n3r/c). For the original chain where we do not flip colors, the
mixing time is the same as our modified chain, but more work is needed to show it.
We will not show how to create a complete coupling for the original chain (although
it can be done), but simply a coupling.

Theorem 5.2. The expected coupling time of the antivoter model chain is bounded
above by n3r/c+nr(2n+1), where r is the degree of the graph and c is the minimum
cut.

Proof. Suppose that we have two particles, X and Y on the chain. Let At be the
set of nodes where they are colored the same way, and Dt be the set of nodes where
they are colored differently. Then if |At| ≥ 1, everything we proved in Theorem 5.1
is still true. That is, |At| is still a submartingale and so our submartingale theorems
still apply. The only change is in P (|At+1| �= |At|). In the case that |At| = 0, this
probability may be lower.

Often, when constructing a coupling chain, we desire to update the same sites of
the graph for all particles. When |At| = 0, however, this strategy is unproductive.
The fact that |At| = 0 means that X and Y are colored the opposite of one another
at every site. If X and Y are updated at the same site with the same neighbor,
then they will continue to be colored the opposite of one another everywhere for all
time. Hence when |At| = 0, we choose nodes and neighbors for X and Y to color
independently of each other.

Suppose we look at the cut defined in X (or Y ) by the two coloring. The number
of edges which are colored the same way at both endpoints is just the total number
of edges minus the size of this cut. If C is the size of the maximum unweighted cut
in the graph, then nr/2 −C edges are colored the same way. This value is positive
because the graph is not bipartite, and hence the maximum cut does not include
all of the edges of the graph.

Instead of picking first a node then a neighbor, we envision the antivoter model
as picking a random edge, then a random direction for that edge.

The head of the edge gets changed to the opposite color of the tail. Now if any
of the nr/2−C edges which are colored the same way at tail and head are picked,
the color of a node will be changed in X . Since we are in a nonbipartite graph,
C < nr/2, and this probability is at least 1/(nr/2). When X picks this edge, Y
does not, and vice versa so that the probability that the two share at least one node
after one step is 4/(nr).
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The stationary distribution in the antivoter model 81

Therefore by our corollary, the expected time spent at |At| = 0 is at most
(nr/4)(2n + 1). All of the expected values of ni for i > 0 remain the same, and so
we find that

E[τ ] ≤ nr(2n + 1)
2

+
n−1∑
i=1

nr(2n − 2i + 1)
2c

=
nr(2n + 1)

2
+

n3r

2c
.

Because c < n, this last expression is O(n3r/c).

5.3. The complete graph

As before, if x ∈ {0, 1}V is a coloring, we let W (x) =
∑

v∈V x(v). The complete
graph has the unique property that the statistic W determines the coloring up to a
permutation of the nodes. This enables us to compute the stationary distribution
of the complete graph directly. The recipe for computing is also given in Aldous [2].

Theorem 5.3. Consider the antivoter model on the complete graph. Then

π(x) =

(
n−2

W (x)−1

)(
2n−2
n−1

) ,

and

π({x : W (x) = i}) =

(
n
i

)(
n−2
i−1

)(
2n−2
n−1

) .

Proof. Let Xt be a particle run on the antivoter model on the complete graph, and
let Wt = W (Xt). Let At be the set of nodes colored 0 at time t, and Bt be the set
of nodes colored 1 (so Wt = |Bt|). Then P (Wt+1 − Wt = 0) is the probability that
an edge between At and Bt is chosen. There are |At‖Bt| = Wt(n−Wt) such edges.
P (Wt+1 −Wt = 1) is just the probability that an edge with both endpoints in At is
chosen, and Wt+1 −Wt = −1 occurs when both endpoints of the chosen edge lie in
Bt. Hence P (Wt+1 − Wt = 1) =

(
Wt

2

)
/
(
n
2

)
and P (Wt+1 − Wt = −1) =

(
n−Wt

2

)
/
(
n
2

)
.

Therefore P (Wt+1 = a|Wt, Wt−1, . . .) = P (Wt+1 = a|Wt) and Wt is a Markov chain
on {0, . . . , n}. Since it is a birth death chain as well, it is reversible, so

πW (i − 1)P (Wt = i − 1, Wt+1 = i) = πW (i)P (Wt = i, Wt+1 = i − 1).

After canceling the
(
n
2

)
terms that arise in the probabilities, we have

πW (i)
πW (i − 1)

=

(
n−(i−1)

2

)(
i
2

)
=

n − (i − 1)
i

· n − i

i − 1

Note that for all t, 1 ≤ Wt ≤ n − 1. Therefore we have that for n − 1 ≥ i > 1

πW (i)
πW (1)

=
(n − 1)(n − 2) · · · (n − (i − 1))

i!
(n − 2)(n − 3) · · · (n − i)

(i − 1)!

=
(n − 1)!
i!(n − i)!

· (n − 2)!
(i − 1)!(n − (i + 1))!

=
1
n

(
n

i

)(
n − 2
i − 1

)
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Set z(i) =
(

n
n−i

)(
n−2
i−1

)
, so that z(i) = nπW (i)/πW (1). Then

∑n−1
i=0 z(i) = n/πW (1).

Examining this sum closer, we see that it is just the number of ways of choosing
n − 1 objects from an initial set of size 2n − 2. Hence πW (1) = n/

(
2n−2
n−1

)
, and

πW (i) =

(
n
i

)(
n−2
i−1

)(
2n−2
n−1

) .

Finally, consider that each of
(
n
i

)
colorings have W (x) = i. Hence each coloring has

π(x) = πW (W (x))/
(

n
i

)
and

π(x) =

(
n−2

W (x)−1

)(
2n−2
n−1

) .

Intuitively, we might understand this stationary distribution as follows. From the
conditions of the antivoter model, all possible configurations must have at least one
node colored with the first color, and at least one node colored with the second color,
if the system is in stationarity. Secondly observe that by symmetry all configurations
with the same number of vertices colored with the first color are equally likely; W (x)
is a sufficient statistic. Let W (X) be that count for a random configuration X in
stationarity. Then, conditioning on having at least one node of each color yields
that, for each i, P (W (X) = i) must be proportional to

(
n−2
i−1

)
. Suppose we have an

underlying process where the vertices are colored independently, choosing each of
the two colors with probability 1/2.

Then the expected number of configurations from this independent chain that
are hit by W (X) is proportional to

(
n
i

)(
n−2
i−1

)
. From this it is intuitively clear that

π(x) is proportional to
(

n
W (x)

)(
n−2

W (x)−1

)
.

We can also say something more about the mixing time of the antivoter chain
on the complete graph. Since the minimum cut in the complete graph is of size
n − 1, the mixing time for this chain will be O(n3).

5.4. The multipartite graph

Let M(k, l) denote the multipartite graph with k groups of l vertices each. Thus
there are n = kl vertices in total. Each node within a group is connected to all
vertices in all the other groups, but to none of the vertices in the same group. Thus
each node has degree r = (k−1)l = n− l, and there are rn = n(n− l) edges total in
the graph. The complete graph corresponds to the case k = n, l = 1. Intuitively, if l
is not too large, the graph M(k, l) resembles the complete graph M(n, 1), and thus
the stationary distribution on M(k, l) should be close to the one for the complete
graph, described above.

Moreover, using Stein’s method, Rinott and Rotar [12] proved the following
normal approximation for the number W = W (X) of ones in the Markov chain X
when started in stationarity.

Theorem 5.4. For any k ≥ 3, there are constants C > 0 and σ̄ > 0 such that
V arW ≥ σ̄2n and

sup
x

∣∣∣∣P(
W

σ̄
√

n
≤ x

)
− Φ(x)

∣∣∣∣ ≤ C

σ̄2
√

n

(
1
σ̄

+

√
k

k − 1

)
.
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From this it follows that the count W (X) for the antivoter model on the com-
plete graph satisfies the Central Limit Theorem (CLT), and thus so will the count
on the multipartite graph M(k, l) provided l is not too large. However, if the groups
contain only a small number of vertices each, then an approximation of stationary
distribution of the count on the multipartite graph with the stationary distribution
of the count on the complete graph will be more accurate. This section is devoted to
making the above heuristic precise. Note that for the bipartite graph M(2, n/2) the
CLT will not hold; the stationary distribution is trivial (see Rinott and Rotar [12]).
Thus for large l we expect the approximation to break down. The main tool for
assessing the proximity of the stationary distributions is Stein’s method, applied
as described in Holmes [6]. As observed by Rinott and Rotar [12], the transition
probabilities of the Markov chain describing the antivoter process, when restricted
to W (X), can be derived as follows. Set

a(X) = the number of edges (i, j) with Xi = Xj = 1,

b(X) = the number of edges (i, j) with Xi = Xj = −1,

c(X) = the number of edges (i, j) with Xi �= Xj.

Observe that

W (X) =
2a(X) + c(X)

r
,

and thus

n − W (X) =
2b(X) + c(X)

r
. (5.1)

Then we have for W = W (X(t)), W ′ = W (X(t+1)), which Rinott and Rotar [12]
prove to be an exchangeable pair, that

P (W ′ − W = −1 |X) = 2a(X)/rn, P (W ′ − W = 1 |X) = 2b(X)/rn. (5.2)

The above process can be viewed as a birth and death chain with birth rate βl,k

satisfying
E(βl,W |X) = 2b(X)/rn

and with death rate δl,k satisfying

E(δl,W |X) = 2a(X)/rn;

the index l refers to the decomposition in the multipartite graph. The corresponding
generator for this chain, using the scaling in Holmes [6] with 1/λ, where λ = 2/n
following [12], is

Tlf(k) = n
(
βl,kf(k + 1) − δl,kf(k)

)
.

In the complete graph the situation is particularly easy: if W vertices are labelled
with the first color, we have

a(X) =

(
W
2

)(
n
2

)
and

b(X) =

(
n−W

2

)(
n
2

) .
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Thus the birth and death rates are

βk = β1,k =

(
n−k

2

)(
n
2

)
and

δk = δ1,k =

(
k
2

)(
n
2

) .

The corresponding generator is

T1f(k) = n

((
n−k

2

)(
n
2

) f(k + 1) −
(
k
2

)(
n
2

)f(k)
)

.

Let πl be the stationary distribution for W on M(k, l), and let π be the sta-
tionary distribution for W on the complete graph. Then, following Holmes [6], we
have for all w that ∣∣πl(w) − π(w)

∣∣ =
∣∣E(Tl − T1)f(W )

∣∣,
where f is the pseudo-inverse of h(w) = 1k(w), that is, f solves the Stein equation
for h

1k(w) − π(k) = T1f(w). (5.3)

Thus it suffices to bound |E(Tl − T1)f(W )|, for all such functions f . First we will
derive a bound on ‖f‖ = supx |f(x)|.

Lemma 5.2. Let n ≥ 6. For each k = 0, 1, . . . , n there is a function f that solves
the Stein equation (5.3) for the complete graph such that

‖f‖ ≤ 7
n

.

Proof. The existence is shown in Holmes [6]. As, for the complete graph, it is easy
to check that the birth rates βk are strictly decreasing in k, whereas the death
rates δk are strictly increasing in k, from Holmes [6] we have∥∥f(w)

∥∥ ≤ ∆U1k(k),

where

∆U1k(k) =
1
n

π(k)
(

1 − Sk

βkπ(k)
+

Sk−1

βk−1π(k − 1)

)
,

with

Sk =
k∑

j=0

π(j).

Moreover we know that

π(k) =
βk−1

δk

βk−2

δk−1
· · · β1

δ2
π(1).
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Thus

∆U1k(k) =
1
n

(
1 − Sk

βk
+

Sk−1π(k)
βk−1π(k − 1)

)
=

1
n

(
1 − Sk

βk
+

Sk−1

δk

)
<

1
n

(
1 − Sk

βk
+

Sk

δk

)
,

where we bounded Sk−1 by Sk in the last step. It is easy to see that the last
expression is maximized for βk = δk, which translates to k = n

2 for n even, and
k = n−1

2 or k = n+1
2 for n odd. Let us assume first that n is even. We have

∆U1k(k) <
1
n

(
1 − Sn/2

βn/2
+

Sn/2

δn/2

)
=

1
n

(
n
2

)(
n/2
2

)
= 4

n − 1
n(n− 2)

<
7
n

,

as n ≥ 6. For n odd we have

∆U1k(k) <
1
n

(
n
2

)(
(n−1)/2

2

)
= 4

n

n(n − 3)

≤ 7
n

,

as n ≥ 7.

Note that the case n < 6, which is not covered by the above result, is not of
interest of us, since for those cases the only possible non-bipartite but multipar-
tite graph is the complete graph itself. Now we have the ingredients to prove an
approximation result.

Theorem 5.5. Let πl be the stationary distribution for W on M(k, l), let n = kl,
and let π be the stationary distribution for W on the complete graph on n nodes.
Then

‖πl − π‖TV ≤ 7
n

(
2l(n− l) + (l − 1)n2

(n − 1)(n − l)

)
.

From Theorem 5.4 it follows in particular that πl satisfies the CLT if l is not
too large. Moreover note that Theorem 5.5 gives a bound for any finite l, n; we are
not required to describe a limiting procedure for the different graphs. Note also
that, for large n, the bound in Theorem 5.5 is of the order 1

k−1 , so that for large
k and small l this approximation with the stationary distribution on the complete
graph might indeed be more accurate than the normal approximation. However,
both here and in Theorem 5.4 only upper bounds are given.
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Proof. From the above, it suffices to bound E(Tl − T1)f(W ) for all f which are
solution of the Stein equation (5.3) for some indicator function h. We have

E(Tl − T1)f(W ) = nE
(
(βW − βl,W )f(W + 1) − (δW − δl,W )f(W )

)
.

For the first difference on the right-hand side, note that from (5.1), 2b(X) = r(n −
W ) − c(X). Thus

E(βW − βl,W )f(W + 1)
= E(βW − E{βl,W |X})f(W + 1)

= E

(
(n − W )(n − W − 1)

n(n − 1)
− 2b(X)

n(n − l)

)
f(W + 1)

= E

(
(n − W )(n − W − 1)

n(n − 1)
− (n − l)(n − W ) + c(X)

n(n − l)

)
f(W + 1)

= E

(
(n − W )W
n(n − 1)

− c(X)
n(n − l)

)
f(W + 1).

Similarly we obtain

E(δW − δl,W )f(W ) = E

(
W (W − 1)
n(n − 1)

− 2a(X)
n(n − l)

)
f(W )

= −E

(
(n − W )W
n(n − 1)

− c(X)
n(n − l)

)
f(W ).

Hence ∣∣E(Tl − T1)f(W )
∥∥

=
∣∣∣∣nE

(
(n − W )W
n(n − 1)

− c(X)
n(n − l)

)
(f(W + 1) + f(W ))

∣∣∣∣
≤ 2‖f‖ 1

(n− 1)(n − l)
E

∣∣(n − l)W (n − W ) − (n − 1)c(X)
∣∣

= 2‖f‖ 1
(n− 1)(n − l)

E
∣∣(n − l)(W (n − W ) − c(X)) + (l − 1)c(X)

∣∣.
If there are W nodes labelled 1, then at most l of them can be in the same compo-
nent. Also there will then be n − W nodes labelled 0, and again at most l of them
can be in the same component. Thus

c(X) ≥ (W − l)(n − W − l)

and

W (n − W ) − c(X) ≤ W (n − W ) − (W − l)(n − W − l)
= l(n − l).

Together with the observation that c(X) ≤ W (n − W ), this yields∣∣E(Tl − T1)f(W )
∣∣ ≤ 2‖f‖ 1

(n− 1)(n − l)
(
l(n − l) + (l − 1)nEW

)
= 2‖f‖ 1

(n− 1)(n − l)

(
l(n − l) + (l − 1)

n2

2

)
.

Lemma 5.2 now gives the assertion.
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5.5. The empirical Stein’s method

The empirical Stein method is described in detail in Stein [13]. In the context of
the antivoter model it can be sketched as follows.

As exact sampling from the stationary distribution is rather time-consuming, in
particular in the tails of the distribution. To estimate the stationary distribution
we draw one exact sample and let the chain run for a long time with this initial
value. The classical frequency estimate of the stationary distribution π of W is

π̂(w) =
1
T

T∑
t=1

1W (t)=w.

Here W (t) denotes the number of 1’s at time t, where the antivoter chain has been
started at a configuration drawn from its stationary distribution. However, this
frequency estimate can be improved considerably by making use of the conditional
distributions in the problem.

From the above, we already know that a central limit theorem holds for the
complete graph, as well as for suitable multipartite graphs. Thus we expect the
stationary distribution π to be roughly normal, for the antivoter model on multi-
partite graphs. Therefore this example is an interesting test case for the empirical
Stein method, and it will illustrate its power.

Let (W, W ′) = (W (t), W (t + 1)) denote two consecutive instances of the num-
ber of ones in the antivoter model, started in stationarity. Rinott and Rotar [12]
have shown that this is an exchangeable pair. We have already made use of the
property (5.2)

P (W ′ − W = −1 |X) = 2a(X)/rn, P (W ′ − W = 1 |X) = 2b(X)/rn.

This gives another estimate of the ratios of the stationary distribution

π̃(x + 1)
π̃(x)

=
P̃ (W ′ = w + 1|W = w)

P̃ (W ′ = w|W = w + 1)
.

Now we estimate

P̃ (W ′ = w + 1|W = w) =
2

∑t
t=1 1W (t)=wa(X(t))/rn∑t

t=1 1W (t)=w

and

P̃ (W ′ = w − 1|W = w) =
2

∑t
t=1 1W (t)=wb(X(t))/rn∑t

t=1 1W (t)=w

.

Using the fact that probabilities sum up to 1 thus leads to a new estimate π̃, which
we call the “empirical Stein estimate”, for the stationary distribution π.

Keeping track of the whole configuration X(t) contains more information than
just keeping track of the sums W (t), and hence it is not surprising that this estimate
is more accurate in practice than the standard frequency estimate. Figures 1–6 show
quantile-quantile and distribution plots for two different tripartite graphs. First we
consider the tripartite graph on 300 nodes. The estimated distribution should be
approximately normal, so we compare both estimates with the corresponding stan-
dardized normal distribution, using the estimated standard deviations (Figure 1).
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Figure 1: Distribution plot for W

Figure 2: Quantile-quantile plot for W , estimated by empirical Stein
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Figure 3: Quantile-quantile plot for W , estimated by empirical frequency method

Figure 4: Distribution plot for W
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Figure 5: Quantile-quantile plot for W , estimated by empirical Stein

Figure 6: Quantile-quantile plot for W , estimated by empirical frequency method
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The empirical Stein estimate is much closer to its normal analog than the frequency
estimate is to its, after a moderate run length of 100,000 runs. The quantile-quantile
plots for the frequency estimate and for the empirical Stein estimate illustrate again
that the empirical Stein estimate (Figure 3) is much closer to the normal than the
frequency estimate (Figure 2); moreover it is considerably smoother. The same is
true for the tripartite graph on 30 nodes. Here a run length of 100,000 puts both
estimates much closer to the corresponding normal distribution (Figure 4); yet the
quantile-quantile plots reveal that the empirical Stein estimate is even closer to
normality than the frequency estimate is (Figures 5 and 6).

The empirical Stein method outperforms the standard frequency estimate also
in all other multipartite graphs we have looked at. This poses intriguing open
questions - why is this estimate so much better? Would the same be true for the
antivoter model on other graphs? More examples remain to be considered.
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