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& lh(z) = y & (Vi

Hence by the table, it will suffice to show that w = χ ( t ) is Σ . Since P is

Π , this follows from
71

w = Xf£i) *-> (w = l & P(z)) V (w = 0 & -P(z))

and the table, α

14.9. COROLLARY. A relation is Δ^ , , iff it is recursive in Π^.

Proof. A relation R i s Δ i f f both R and -«Λ are Σ j hence,

by Post's Theorem, iff both β and ->β are RE in Γr . By the relativized version

of 14.6, this holds iff R is recursive in ΓΓ . α

Since -»β is recursive in R and R = -i- Λ is recursive in -«Λ, 12.4 and the

sho>

corollary.

table show that we can replace Π by Σ in both Post's Theorem and its
H 71

15. Degrees

If F and G are total functions, we let F <D G mean that F is recursive in

G. By 12.5,

(1) F<RF;

and by the Transitivity Theorem

(2) F < R C & G < R / / ^ F < R / / .

Let F ΞR G mean F <R G & G <R F. It follows from (1) and (2) that =R is an

equivalence relation. The equivalence class of F is called the degree of F and is

designated by dg F. By a degree, we mean the degree of some total function.

We use small boldface letters, usually a, b, c, and d, for degrees.

We let dg(F) < dg(<7) if F <R G. By (2), this depends only on dg(F) and

dg((7), not on the choice of Fand G in these equivalence classes. It follows from

(1) and (2) that < is a partial ordering of the degrees, i.e., that

a< a,
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a < b & b < c - > a < c .

The degree of F is, roughly speaking, a measure of the difficulty of computing F;

and dg F < dg G means that F is at least as easy to compute as G.

By the degree of a relation R, we mean the degree of x^ we will

sometimes say (with an abuse of language) that R belongs to that degree. Every

degree is the degree of a relation; for a total function has the same degree as its

graph (because of the equivalences βp(x,y) «-* F(x) = y and F(x) = μy Qp(i,y).}

A total function or relation has the same degree as its contraction by the

contraction equations; so every degree contains a real and a set.

Let 0 be the class of recursive total functions. It is easy to see that 0 is a

degree and that 0 < a for every degree a. Thus 0 is the smallest degree.

15.1. PROPOSITION. Every finite class of degrees has a least upper bound.

Proof. Let the degrees in the class be dg(FΛ ... dg(F,) where Fp

..., Fk are reals. Set G(x) = <F1(j),...,Ffc(j)>. Since F£x) = (G(x))^Γ F?; is

recursive in (7; so dg G is an upper bound of the set. Now let dg(//) be any

upper bound. Then each F. is recursive in H. Since G is recursive in Fp...,F^,

it is recursive in //; so dg G < dg //, as required, α

Most of the rest of degree theory consists of showing that the partial

ordering of the degrees fails to have some nice properties. We shall illustrate the

idea by proving that it is not a linear ordering.

15.2. PROPOSITION (KLEENE-POST). There are degrees a and b such that

neither a < b nor b < a.

Proof. It suffices to produce reals F and G such that neither F <^

G nor (7<o F. We break this down into infinitely many conditions which we
/~1

wish to satisfy. Condition C~ is that F Φ {e} J; condition (79 , j is that G #

M'.
We define F and G in infinitely many steps, at each of which we define

finitely many values of Fand G. At step e we ensure that C is satisfied. We*'
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shall only describe step 2e, since step 2c+ 1 is similar.

Suppose we are at the beginning of step 2e. Let x be the least number

such that F(x) is not yet defined. Suppose first that there is a z in Seq such that

7\ λ(e,x,z) and such that (z) - = G(i) for every i < lh(z) such that G(ί) is defined.
1,1 I

Define G(z) = (2 .̂ for every i < /Λ(z) such that G(ί) is not yet defined. Then

) = z and hence e^G^z))). It follows that (e}G(x) =

We set F(z) = 1 - U(lh(z)}, so that F(x) Φ (e}G(x).
/~1

Now suppose that there is no such z. Then we know that {e} (x) will be
S~1

undefined, so that we will have F ί {e} . We set F(x) = 0 and define no new

values of G.

It remains to show that F and G are total. At step 2e, we defined F at

the smallest argument for which it was not already defined. It follows that F is

total. Similarly, the action at step 2e+l makes G total, α

A degree a is RE if it contains an RE relation. Since the contraction of

an RE relation is an RE set, every RE degree contains an RE set. (However,

every RE degree other than 0 contains sets which are not RE.)

The degree of W (x), considered as a relation of e and x, is designated by

O1. This degree is RE; and, since every RE set is clearly recursive in this

relation, it is the largest RE degree. Since there is an RE set which is not

recursive, there is an RE degree other than 0; so 0 < O1.

We shall show that there is a connection between 0' and limits. An

infinite sequence {F§} of reals is recursive if the function G defined by G(s,x) ~

FS(X) is recursive. We say Fis the limit of {/y if for each x, there is an SQ such

that F(χ) = F(x) for all 5 > sn.o U

F ^
15.3. LEMMA. If {F } is a recursive sequence of reals, then {e} (x) ~ z

F
and {e} (x) is defined are recursive relations of e,s,x,z. If F is the limit of

O

p F
{Fg} and {e} (x) ~ z, then {e}$

 s(x) ~ zfor all sufficiently large s.
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Proof. Making use of (1) of §12,

F _
e} sCx) ~ z~ (3j, < s)(T (e,z,y,F(y)) & ϋ(y) ~ 2),

F _
{e}s

 sCx) is defined ~ (3y < s)T^m(e,x,y,Fs(y)).

If G(s,x) = F (z), G(s,a:) = F (x); so F (x) is a recursive function of s and x.
o o o

This proves the first part of the proposition. Suppose that {e} (x) ~ z and that
17

y is the computation number of {e} (~x). Again using (1) of §12, {e} s( 1) ~ z if

— Fς
F (y) = F(y), which is true for large s. But then {e} (x) ~ zfor 5 > t/. α

«5> 5

15.4. LIMIT LEMMA. A real is the limit of a recursive sequence of reals iff it

has degree < O1.

Proof. Let Fbe the limit of the recursive sequence {F }, and defines

an RE R by

R(n,x) ~ 3m(m > n & Fm(*) * /y*)).

Setting H(x) z μn-*R(n,x), His total and F(x) - Ffffn\(x) ^ follows that F is

recursive in β; so dg F < dg R < O1.

Now suppose that dg F< O1. Then Fis recursive in an RE set. Say that
w» w*cF = {/} e. Define F ( x ) = { f } c

 e's(x) if the right side is defined and Fix) =
S o o

0 otherwise. Since { W ' c} is recursive and has limit W. 15.3 shows that {F} is
C,5 €• S

recursive and has limit F. α

The problem of whether there is an RE degree other than 0 and 0' is

known as Post's Problem. We solve this problem by extending 15.2 to RE

degrees. The method used is called the priority method.

By an RE construction, we mean a construction in which at each step, a

finite number of numbers are put into a set A, and the construction is recursive

(i.e., x is put into 4 M step 5 is a recursive function of x and s). Then A is RE,

since

x E A «-* 3s(x is put into A at step 5).
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15.5. PROPOSITION (FRIEDBERG-MUCHNIK). There are RE degrees a and b

such that neither a < b nor b < a.

Proof. We shall use an RE construction to construct RE sets A and

B such that neither A <R B nor B <R A. We shall use Church's Thesis to verify

that the construction is recursive; this is clearly a non-essential use of Church's
p

Thesis. We wish to satisfy the conditions C , where C^ is Aφ {e} and Gjf+i
A

is BΦ {e} . We shall discuss only C^ CU , j is treated similarly but with A

and B interchanged.

Let us consider first how we could make CU hold if we had no other

conditions to worry about. Pick an j; we will make C* hold by insuring that x
P ς

E A iff {e} (x) ~ 1. Let Br be the (finite) set of number put into B before step s.

βS
At step s, if x has not yet been put in A, we see if ί f l (x) ~ 1; we can do thiss

8s

effectively by 15.3. If {e}0 (a:) ~ 1, we put j into A, and agree not to put anys

numbers < s into B at step 5 or later; otherwise, we do nothing at step s. If

B B8

{e} (x) ~ 1, then {c}0 (x) ~ 1 for all sufficiently large 5 by 15.3; so x € A.
o

B8

Suppose that x e A\ say x is put into A at step s. Then {e} (x) z 1 with

computation number z< s. Since no number < 5 is put into B at step 5 or later,

When we try to treat all of the conditions at once, we run into conflicts; it

may happen that C wants to put a number x into A and C, wants to keep x out

of A. We resolve this conflict be giving priority to the lower numbered

condition. Thus if e < f, we put x into Λ; if /< f, we keep x out of A. (No

condition will conflict with itself.)

Let rs(c) be the largest t < s such that a number is put into A or B by C

at step t (or 0 if there is no such t). Let R (e) be the maximum of the r (/) for /
s s

< e, and let x ( e ) = <e,R(e)>. Then ί (f) is known at the beginning of step s.
t> α S
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(The numbers < r ( e ) are the numbers C wants to keep out of A and B at step

Cec;

priorities.)

s. Hence C can put x (e) > R0(e) into A or β at s without violating ourc s s

Now we describe step s. Let /= (s)0 and x = x s ( f ) If /= 2f and

β5

{e} _ (x) 2 1, we put j in Λ (unless it has been put in A earlier); if /= 2e+l ands

As

{e} (x) ~ 1, we put xm B.

We now have to prove that the construction works, i.e., that all of the

conditions are satisfied. We shall first prove that for each e, there are only

finitely many numbers x (e). The proof is by induction on e. It is clearlys

sufficient to prove that for each /< e, C* puts only finitely numbers into A and

B. But any number put into A or B by Cf is x (f) for some some /; and there
/ s

are only finitely many x (f) by the induction hypothesis.s

Now we show that C^( is satisfied. Let x be the largest of the numbers
D

x0(2e); we show that z € A iff {e} '(x) ~ 1. Since xc(2e) is increasing in s, x0(2e)
o 5 o

D βS

= J for all sufficiently large 5. If {f} (x) ~ 1, then {e} (x) ~ 1 for all large s.s

Choosing s this large with (sL = 2e, we see that # is put into A. Suppose that x

is put into A at step s. Since x is of the form <2e,z>, it is put into A by (C* );

β5

so {e} (x) ~ 1. Hence it is enough to show that no number < s is put into B

after step s. Suppose that x^f) < sis put into B at step t > s. Then /is odd;

so f φ 2c. If 2f < / then ^(/) > R ^ f ) > rβe) > .s, a contradiction. Thus

/< 2c; so Λm(2e) > ^+1(/) > * > -5 > R$('2e) and hence a?ί+1(2c) > xs(2e) = J,

contradicting the choice of x. A similar proof shows that CU ,. is satisfied, α

If F Ξp G, then by 12.4 the same functions are recursive in F and G.

Hence if we have relativized some property Q, then Q in F is equivalent to .Q in

G. Thus if a = dg F, we may as well say Q in a for Q in F. We define a degree

b to be RE m a if b contains a relation RE in a. The relativization of the

Friedberg—Muchnik Theorem tells us that for each a, there are degrees b and c
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RE in a such that neither b < c nor c < b. The method used to define 0', when

relativized, shows that there is a largest degree RE in a. It is called the lump of

a, and is designated by a1. The relativized Limit Lemma shows that a real is a

limit of a recursive in a sequence of reals iff it has degree < a'.

16. Evaluation of Degrees

We shall now show how to evaluate the degrees of certain explicitly given

relations.

Let Φ be a class of relations. We say a relation R is Φ complete if R is in

Φ and every relation in Φ is reducible to R (where reducible is defined before

13.3). It follows that R has the largest degree of any relation in Φ; so any two Φ

complete relations have the same degree. (Caution: Some authors use complete

in a somewhat different way.)
p

EXAMPLE. If Fis total, W( (x) is RE in F complete; its degree is the jump

of dg F. Hence any RE in F complete relation has degree (dg F)1.

The degree obtained by applying the jump n times to 0 is designated by

On

16.1. PROPOSITION. For every n, there is a Σ complete set of degree Ow

and a Γr complete set of degree On.

Proof. We use induction on n. If n = 1, let P be a recursive set; if

n > 1, let P be a Π^_j complete set of degree 0. Then W (x) has degree O71

by the example. By Post's Theorem, Σ is the class of relation RE in P; so

P 0 P 72 0
We (x) is Σn complete. Then -*W (x) is of degree 0 and is Π^ complete, α

16.2. COROLLARY. Every Σ complete or Π complete relation has degree

If Φ is a class of RE sets, then the set of indices of sets in Φ is called the

index set of Φ.

16.3. PROPOSITION (Rιcε). If Φ is a non-empty class of RE sets which is


