
A 1—ary relation is simply a set of numbers. We understand set to mean

set of numbers; we will use the word class for other kinds of sets. We use A and

B for sets.

If R is a fc-ary relation, the representing function of Λ, designated by Xp,

is the fc-ary total function defined by

= 1 otherwise.

A relation R is computable if the function χR is computable. We adopt the

convention that whenever we attribute to a relation some property usually

attributed to a function, we are actually attributing that property to the

representing function of the relation.

3. The Basic Machine

To define our class of functions, we introduce a computing machine called

the basic machine. It is an idealized machine in that it has infinitely much

memory and never makes a mistake. Except for these features, it is about as

simple as a computing machine can be.

For each number i, the computing machine has a register Hi. At each

moment, Ίi contains a number; this number (which has nothing to do with the

number t) may change as the computation proceeds.

The machine also has a program holder. During a computation, the

program holder contains a program, which is a finite sequence of instructions. If

N is the number of instructions in the program, the instructions are numbered 0,

1,..., ΛW (in the order in which they appear in the program). The machine also

has a counter, which at each moment contains a number.

To use the machine, we insert a program in the program holder; put any

desired numbers in the registers; and start the machine. This causes 0 to be

inserted in the counter. The machine then begins executing instructions. At



each step, the machine executes the instruction in the program whose number is

in the counter at the beginning of the step, provided that there is such an

instruction. If at any time the number in the counter is larger than any number

of an instruction in the program, then the machine halts. If this never happens,

the machine goes on executing instructions forever.

The instructions are of three types. The first type has the format

INCREASE Hi. When the machine executes this instruction, it increases the

number in Hi by 1 and increases the number in the counter by 1. The second

type has the format DECREASE Hi,n, where n is the number of an instruction in

the program. If the machine executes this instruction when the number in Tti is

not 0, it decreases the number in that register by 1 and changes the number in

the counter to n. If it executes this instruction when the number in Hi is 0, it in-

creases the number in the counter by 1. The third type has the format GO TO

n, where n is the number of an instruction in the program. When the machine

executes this instruction, it changes the number in the counter to n. Note that if

Hi is not mentioned in an instruction, then the instruction does not change the

number in Hi and the number if Hi does not affect the action of the instruction.

This completes the description of the basic machine. Of course, we have

only described the action of the machine, not its physical construction.

However, all of the actions of the basic machine can be carried out by a person

with pencil and paper and with the program in front of him; he merely keeps

track at each step of the number in the counter and the numbers in the registers

mentioned in the program.

For each program P for the basic machine and each fc, we define an
p

algorithm A , with k inputs. To apply this algorithm to the inputs £,,...,£,, we

start the machine with Pin the program holder, jp...,2Γι in ΐl,...,Irrespectively,

and 0 in all other registers. If the machine eventually halts, the number in TtQ

after it halts is the output; otherwise, there is no output. The fc-ary function



p
computed by P is the function computed by A fc. A fc-ary function F is recursive

if it is the Jfc-ary function computed by some program for the basic machine. (In

accordance with our convention, a relation is recursive iff its representing

function is recursive.)

It is clear that every recursive function is computable. It is not at all

evident that every computable function is recursive; but, after some study of the

recursive functions, we shall argue that this is also the case.

4. Macros

It is tedious to write programs for the basic machine because of the small

number of possible instructions. We shall introduce some new instructions and

show that they do not enable us to compute any new functions. The idea is

familiar to programmers: the use of subroutines, or, as they are often called

nowadays, macros.

For each program P for the basic machine, we introduce a new instruction
*

P , called the macro of P. When the machine executes this instruction, it begins

executing program P (with whatever numbers happen to be in the registers at the
*

time). If this execution never comes to an end, then the execution of P is never

completed. If the execution of P is completed, the machine changes the number
*

in the counter to 1 more than the number of the instruction P and continues

executing instructions. The macro machine is obtained from the basic machine

by adding all macros of programs for the basic machine as new instructions. We

define the notion of a program computing a function for the macro machine as we

did for the basic machine.

We say that the program P and P' are equivalent if the following holds.

Suppose that we start two machines with P in the program holder of the first

machine, P' in the program holder of the second machine, and the same number

in Hi in both machines for all i. Then either both machines will compute forever;


