
6. Canonization Problems

This is the first of two chapters dealing with canonization. In this chapter
we consider canonization up to logical equivalences =£, in particular for
the logics C = L^oω and C^ω. We investigate the relation between PTIME
canonization, PTIME inversion of the invariants, and the existence of recursive
presentations and normal forms for related fragments of PTIME. It is shown
for instance that PTIME invertibility for the /£*, for all k would imply that
FP+C captures exactly all queries that are PTIME computable and C^ω-
definable. This and similar implications are of a hypothetical status, however:
the problem of PTIME invertibility — and of PTIME canonization for Ck and
Lk — remains open for arbitrary k. We show in this chapter that the general
case essentially reduces to that for the three variable fragments. An explicit
solution to the problem for the two variable fragments will be presented in
the next chapter.

• Section 6.1 reviews the general notion of canonization and discusses canon-
ization with respect to isomorphism in connection with algorithms on struc-
tures.

• In Section 6.2 PTIME canonization for =c is related to recursive presenta-
tions of fragments of PTIME.

• Section 6.3 discusses PTIME inversion of the ICk and ILk in relation to can-
onization and normal forms for the related fragments of PTIME. In particular
we present theorems on the impact of PTIME invertibility of all ICk, respec-
tively all ILk (in the sense of Definition 6.9), on the classes PTIME Π C^ω

and PTIME Γ\L^ω.

• The reduction of these results to the three variable fragments is presented
in Section 6.4.

6.1 Canonization

For the general notion of canonization compare Definition 1.57 and related
remarks in Section 1.7.1. Formally a function H provides canonization for
~ if it satisfies two conditions. For all x we want H(x) ~ x and whenever
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x ~ x1 then H(x) = H(x'}. Dealing with finite structures as basic objects and
considering computable canonization with respect to an equivalence relation
on some fin[τ], we require #(21) to be a structure with standard domain,
if (21) G stan[τ]. Compare in particular Definition 1.61.

An important case is the canonization problem of combinatorial graph
theory, namely the problem of canonization of finite graphs up to isomor-
phism. This is often also termed graph normalization. The same problem ap-
plies to any other class of finite structures, in particular to the entire classes
fin[τ] for arbitrary finite relational vocabularies τ. Normalization for any
fin[τ], however, reduces to graph normalization for most purposes. This is
because there are natural encoding schemes mapping relational structures of
an arbitrary fixed vocabulary to graphs in a way that would be compatible
with normalization. With encodings by means of relativized interpretations
of r-structures in graphs, standardization of the parent structure (the graph)
immediately induces a corresponding standardization of the interpreted r-
structure.

The problem of finding a standard representative up to isomorphism for
relational structures is closely related with the analysis of algorithms over
structures as discussed in the introduction (compare also Section 1.2). Stan-
dard models of computation require the input structure to be represented as
a string over some alphabet. This is possible in a canonical way for ordered
structures since these admit a trivial low complexity normalization procedure.
Let < G r and recall that ord[τ] stands for the class of finite r-structures that
are linearly ordered by <. The natural canonization then is

H: ordfr] —ϊ stan[τ]

a = (A, <*,-..) -> (\A\,<\A\,...),

where (|A|, <'Λ ',...) is the unique structure in stan[τ] with the natural or-
dering, that is isomorphic with (A, <a,...). If a priori we admit an arbitrary
representation also for 21 G ord[τ] through an arbitrary isomorphic represen-
tative in stan[τ] we find that this functor H is computable in LoGSPACE.

It is difficult to imagine any feasible representation of the isomorphism
type of finite structures for standard computational models and in particular
the Turing model, that does not implicitly introduce a linear order on the
domain of the given structure. In general one therefore has to admit repre-
sentations of the abstract structure 21 G fin[τ] through arbitrary isomorphic
representative in stan[τ] — or, equivalently, through the introduction of an
arbitrary ordering for representational purposes. Uniqueness of the represen-
tative is given up and the notorious invariance problems have to be dealt
with. Algorithms for structures have to satisfy a semantic invariance condi-
tion, since the outcome of the computation must be independent of the input
representation.

This problem can be side-stepped, however, if there should be a feasi-
ble construction of unique representatives after all. In the general case this
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requires a feasibly computable functor

H : finfr] — > stan[τ]
a h— > if (a),

satisfying V21 H (21) ~ 21,
vav2t' a ~ a' -* if (a) = if (a').

It is here irrelevant whether we regard fin[τ] or stan[τ] as the domain of
this functor. A functor if with these properties is a computable canonization
functor with respect to isomorphism on fin[τ] in the sense of Definition 1.61.
In the context of logics for fragments of PTIME "feasible" here means "PτiME
computable" . It is not known whether there is a PTIME normalization pro-
cedure for all finite relational structures, or equivalent ly for the class of all
finite graphs. It is clear that PTIME graph normalization would immediately
yield a PTIME algorithm for the graph isomorphism problem. The status with
respect to complexity of the graph isomorphism problem, however, is a no-
torious open problem.

For an upper bound on the complexity of graph normalization one can at
least show that it is contained in Δ£l at the second level of the polynomial
hierarchy. Δζ01 is the class of those problems that admit a PTIME solution
relative to an oracle in NPTIME (and NPTIME =

Example 6.1. There is a graph normalization functor if in
For the oracle we choose the weak subgraph isomorphism problem. The

weak subgraph relation Φi Cw <S2 holds if the universe of <$ι is a subset
of the universe of ($2 and if all edges of Φi are also edges of 62- Let O be
the set of all standard encodings of pairs of graphs (©1,62) where (Si is
isomorphic with some ®i Cw <82 Obviously O is in NPTIME, in fact it is
NPTiME-complete.

Relative to the oracle O we get the following PTIME algorithm A for graph
normalization.

On input (n, E), a graph on standard domain n, A successively computes
edge relations Em C m x m for m = 1, . . . , n, where E\ = 0 and , for m > 1,
Em is the lexicographically maximal element of the set

Sm = { f lCra xra I Em-ι C R and ((m,R),(n,E)) G O}.

The lexicographic ordering on the R C m x m is the usual one if R is identified
with the sequence of values of its characteristic function x#(0,0), XΛ(U, 1),
. . . , XR(m — l,m - 1). It is easily shown inductively that the Sm are non-
empty. All the (m,Em) will actually be isomorphic with subgraphs of (n,£),
as any addition of more edges to some R is an upward move in the lexico-
graphic ordering. In fact (m, E) automatically is the lexicographically maxi-
mal graph of size m that is isomorphic with a subgraph of (n, E).

Therefore H(n,E) := (n,En) is as desired. It remains to argue that the
Em can be determined in PTIME relative to (9, which is not quite obvious at
first as in general Sm is of exponential size in m.
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But to compute Em from Em-ι it suffices to settle the values of χ = χ#m

at (0, ra - 1),..., (m - 2, m - 1). All other entries are in fact determined:

(i) χ(m - 1, m - 1) = 0, by irreflexivity of Em.
(ii) χ(m - l,j) = χ(j, m - 1) for j < m - 1, by symmetry of Em.

(iii) x \ (m - 1) x (m - 1) = χ .̂!,
because Em D jE?m_ι and Em \ (m - 1) x (m - 1) ̂ lex Em-i-

That sequence χ(0, m - 1),..., χ(m - 2, m - 1) that leads to the lexico-
graphically maximal Em can be constructed as follows.

Put χ°(0, m - 1) = ... = χ°(m - 2, m - 1) = 0; the resulting E^ equals
Em_ι and thus is in 5m. Proceeding inductively, let χj+l be χj with the
value at (j, m - 1) changed to 1 if the EJ+1 that is so obtained is in Sm, and
χi+l = χl otherwise. Then x := χm~l is as desired.

If PTIME canonization up to isomorphism is unlikely to be attained, it is
sensible to consider canonization with respect to rougher, and in particular
logical notions of equivalence instead of isomorphism.

6.2 PTIME Canonization and Fragments of PTIME

Definition 6.2. Let C be a logic, =c the induced notion of equivalence on
fin[τ] and on fin[τ;r]. A PTIME computable functor H:fm[τ] ->• stan[τ] pro-
vides PTIME canonization up to =c on fin[τ] or canonization for C on fm[τ]
if the following are satisfied:

va jff(α) =c a,
a =c a' -

The analogous requirements are imposed on a functor H: fin[τ; r] — > stan[τ; r]
for PTIME canonization on fin[τ;r].

Canonization up to =£ determines a unique standard representative
within each class of /^-equivalent finite structures, respectively of finite struc-
tures with parameters. The difference between canonization for plain struc-
tures and structures with parameters is inessential for the logics under con-

sideration, because =° and =L satisfy the requirements of the following
lemma. Recall that =c and =L* are in PTIME as relations on fin[τ; r] for
all r ^ k, because the invariants for Lk and Ck on the fin[τ; r] are PTIME
computable. Compare Corollaries 3.9 and 3.14.

Lemma 6.3. Let C be such that =c is in PTIME as a relation on fin[τ;r]
and such that a =c a' implies that a and a; realize the same C-types of
r-tuples: a =£ a7 => Tp£(a;r) = Tp£(a;;r).

Then any PTIME canonization functor H: fin[τ] -> stan[τ] extends natu-
rally to a PTIME canonization ίί:fin[r;r] ->• stan[τ;r] on fin[τ;r].
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Sketch of Proof. The following extension of H satisfies the requirements —
we denote it H as well. Let #(2l,α) := (if (21), ft) where b is the lexi-
cographically least r-tuple over the standard domain of H(%) for which

=*(a,ά) D

PTIME canonization bears the following simple yet fundamental relation-
ship with recursive presentations of fragments of PTIME.

Lemma 6.4. Let H provide PTIME canonization up to =c on fin[τ] and on
the finfr r]. Then the class of all those queries over fin[τ] that are PTIME
computable in the usual sense and closed with respect to =c, is recursively
enumerable. In fact the following are equivalent for any boolean query Q C
fin[r]:

(i) Q is closed with respect to =** and Q is in PTIME.
(ii) Q = {21 I .ff(a) G Q} and there is a PTIME algorithm that recognizes

QlΊstaiψ ].

For an r-ary global relation R on fin[τ] the following are equivalent:

(i) R is closed withjrespect to =c andJ*ΎlME-computable.
(ii) R* = {a G A \ b G R* where (55,6) = £Γ(2t,ά)} and there is a PTIME

algorithm that, applied to ίf(2l,α) = (55,5), decides whether b G β®.

Note that the algorithms in (ii) are not subject to any semantic con-
straints, since these algorithms need merely realize boolean functions on
stan[τ] or stan[τ;r], respectively. A natural recursive set of representatives
consists of all algorithms that first check the input size, then initialize some
counter to a fixed polynomial in this size and terminate their computation
after this pre-set number of steps (polynomially clocked algorithms).

Sketch of Proof. We indicate the proof for boolean queries. Observe that =c-
closure is equivalent with Q = {21 | H(Λ) G Q}. Therefore, any PTIME
algorithm A that recognizes an =^ -closed class Q is semantically equivalent
with ΛoH. For (i) =» (ii) use A in restriction to stan[τ]. For the converse use
A as given in (ii) and compose it with H to get the PTIME algorithm A o H
which computes the boolean query Q over fin[τ]. D

Definition 6.5. Let PτiMEΠ£ stand for the class of all those global relations
that are both in PTIME and C-definable.

Recall from Lemma 1.33 that for logics C that are closed under countable
disjunctions and conjunctions and under negation, ^-definability coincides
with closure under =£. Lemma 6.4 therefore yields a connection between
PTIME canonization for C and a recursive presentation for PTIMEΠ£. Assume
for the following definition that H: fin[τ] -» stan[τ] provides canonization on
fin[τ] and extends to functors ίf:fin[τ;r] -» stan[τ;r] on the fin[τ;r] in the
sense of Lemma 6.3 above.
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Definition 6.6. Let PTIME (if) stand for the class of all queries that are
PTIME computable in terms of the images under H. More precisely,

(i) a boolean query Q on fin[τ] is in PTIME (H) if membership of%inQ is
a PTIME property of H(%).

(ii) an r-ary query R on fin[τ] is in PTIME (H) if membership of a in
is a PTIME property of

Again, as the PTIME algorithms mentioned in the definition are not sub-
ject to additional semantic constraints, PTIME (H) is recursively presented
through all compositions of polynomially clocked algorithms with some fixed
algorithm for H.

Lemma 6.4 can be rephrased with this notion of PτiME(H) as follows. We
state it for £ = C^ω or L^ω. Note that for these any PTIME canonization
on fin[τ] extends to all fin[τ;r] with r ^ k by Lemma 6.3. This is sufficient
for the statement below since there are no L^ω- or C^ω -definable queries in
arities greater than k.

Corollary 6.7. Let C = C^ orL^ and let H provide PTIME canonization
for C on fin[τ]. Then H extends to the finfr r] for r ^ k and

PTIME Π C = PTIME (H) .

In particular PTIME Π C is recursively enumerable (i.e. admits a recursive
presentation).

6.3 Canonization and Inversion of the Invariants

As sketched in the abstract setting in Lemma 1.60, canonization problems
are generally related with inversion problems for complete invariants. While a
canonization H must assign representatives, complete invariants may assign
any kind of values that are characteristic of classes. Canonization may be
obtained from an invariant if it is possible to reconstruct a typical member of
each class on the basis of the value of that class under the invariant. The mere
existence of such an inverse is obvious from the definitions. Its complexity,
however, is critical. Different complete invariants for the same equivalence
relation might lead to entirely different inversion problems in particular with
respect to complexity.

We return to the canonization problem for the C^ω and L^ω. The func-
tors ICk and ILk provide complete invariants. Recall that we write ICk and
ILk for the complete invariants on fin[τ] as well as for their natural extensions
to the fin[r; r] for r ^ k. We shall see below that also with respect to the
corresponding inversion problems a solution for ILk or ICk on finfr] naturally
extends to a solution over the fin[r;r]. We restate for convenience the defi-
nition of an inverse to a complete invariant, Definition 1.59, in the present
context.
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Definition 6.8. Let C — C^ω or L^ω, Ic the corresponding invariant. A
function

F: {/£(2l) I 21 E fin[τ]} —> stan[τ]

is an inverse for Ic on fin[τ] if it satisfies: V2t F(/£(2l)) =c 21. The anal-
ogous condition applies for inverses of Ic on fin[τ;r] for r ^ k. Equivalently
these conditions can be put as Ic ° F = id on image(Ic)-

Generally an inversion of a complete invariant yields a canonization sim-
ply through composition of the inverse with the invariant itself (Lemma 1.60).
Also a PTIME computable inversion F here yields PTIME canonization, since
the Ic themselves are PTIME computable. Note however that the converse
need not a priori be true. It is conceivable that H provides PTIME canon-
ization while the associated F defined by the requirement that H = F o Ic
might not be in PTIME. In fact, for the L^oω with k ^ 3 we already know
that inversion of ILk cannot be in PTIME in the usual sense, simply because
the image under F might necessarily be of a size that is exponential in the
size of the argument. See Example 3.23. The following definition takes care of
this obvious obstacle and defines PTIME inversion for the ILk as an inversion
that is polynomial time computable in terms of the size of the desired image.

Definition 6.9. We say that ICk admits PTIME inversion if there is an in-
verse F for ICk that is PTIME computable in the usual sense.

Iik admits PTIME inversion if there is an inverse F for I^k, such that for

all 21, F is computable on ILk (21) in time polynomial in min{ |2J| | 95 =L 21}.
To mark the difference in the complexity requirement let us say that such F
is computable in PTIME*.

In either case we shall speak, however, of F as a PTIME inverse of the
invariant.

PTIME canonization and PTIME inversion for the Lk are discussed in
Dawar's dissertation [Daw93] and in [DLW95]. The appropriate notion of
PTIME inversion of ILk is put forward there and the question whether ILk
admits PTIME inversion in this sense is formulated as an open problem.

A natural and intuitively stronger definition of PTIME inversion for ILk
would be to require an algorithm that takes as its input pairs (I^k (21), n) and
produces in time polynomial in max{ !/£,*, (21) |,n} a structure 05 € stan[τ]

of size n with 05 =L 21 if such exists. From such an algorithm a PTIME
inverse in the sense of the preceding definition is obtained through application
to (/Lfc(2l),n) for growing n until a successful output is constructed. This
exhaustive search for a standardized pre-image under I^k (of minimal size
even) is still polynomial in the size of a minimal solution.

We come to the extension of inverses to the ILk and ICk on fin[τ] to
inverses of the extended invariants on fin[τ; r], r ^ fc.
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Lemma 6.10. Let C = C^ω or L^ω and Ic = ICk or ILk, respectively.
PTIME inversion of Ic on fin[r] extends naturally to PTIME inversion of Ic
on fin[r;r] for r ζ k.

Sketch of Proof. Assume F: {/£(2l) | 21 G fin[τ]} -> stan[r] is an inverse to
/£ on fin[τ]. Recall that the extension of Ic to fin[τ; r] maps (21, α) to the ex-
pansion of /£(2l) in which the £-type of a is marked: /£(2l,ά) = (/£(2l), [α]).

Extend F to fin[r;r] by putting F(/£(2l,α)) := (F(/£(2t)),6) for the lexi-

cographically least tuple b in the standard domain of F(/£(2l)) which sat-
isfies /£(F(/£(2l)),&) = /£(2l,α). The search for this tuple is polynomi-
ally bounded in the size of F(/£(2l)). Therefore if F is PTIME, respectively
PTIME* in the sense of the preceding definition, on fin[τ], then so is its ex-
tension to finfr; r]. D

Theorem 6.11. Let C = C^ω or L^oωί and correspondingly Ic = Ick or

ILk. If F is a PTIME inverse for Ic, then H := F o /£ provides PTIME can-
onization for C. Moreover this composition is compatible with the respective
natural extensions of the Ic, H and F to the fin[r; r] for r ^ k.

Sketch of Proof. We check the requirements in the case of ILk. H maps 21 £
fin[τ] to a standard structure equivalent with 21, since ILk o F o ILk = ILk
by the definition of inverses. As a composition with ILk, H certainly maps
L^-equivalent structures to the same image. It remains to check that H is in
PTIME, even if F is computable only in PTIME* in the sense of Definition 6.9.

Since min{|®| | <B =Lk 21} ^ |2l|, the computation of F on /Lfc(Sl) is still
polynomial in terms of |2t|.

Compatibility with the extensions to cover fin[τ; r] instead of fin[τ] follows
directly from the definition of these extensions. See in particular the above
lemma and compare with Lemma 6.3. G

Combining Corollary 6.7 with Theorem 6.11 we get the following connec-
tion between PTIME inversion of the ICk and the capturing of PTIME Π C^ω.
Recall Definition 4.17 for the classes PΎiME(lCk). The global relations in

PTIME(lck) are those that are PTIME computable over the invariants !&•
Logically the same class is representable by the logics FP (/<?*) also discussed
in connection with Definition 4.17 and Theorem 4.18.

Theorem 6.12. If Ich admits PTIME inversion, then

PTIME n C^ω = PTIME (Ick) = FP(/C*).

Proof. Let F be a PTIME inverse for ICk. The non-trivial inclusion PTIME Π
C<x>ω ^ PTIME(/Cfc) follows from Corollary 6.7 if we observe that F o Ick

provides PTIME canonization for C^: PTIME Π C^ω C PTIME (F o Ick] C

PTIME (/cfc), as F is in PTIME. D

Putting Theorem 4.18 — FP-hC = \JkΈP(ICk) — and the last theorem
together, we obtain the following hypothetical theorem.
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Corollary 6.13. // the ICk admit PTIME inversion for all fc, then

PTIME n C^ω = FP+C.

For the L^3θω the situation is somewhat less smooth because of the possible
collapse in size that can occur in the passage from 21 to /Lfc(2l). Note that,
because of this potential collapse, it is not true that — as in the proof of
Theorem 6.12 — PTIME(F o ILk) C PTIME(JL*) for a PTIME inverse F of
ILk (which need actually only be computable in PTIME*).

Theorem 6.14. Assume ILk admits PTIME inversion through F. Then
PTIME Π L^ω is recursively enumerable. A boolean query is in PTIME Π L^ω

if it is computable on the basis of the ILk (21) in time polynomial in the size of
F(lLk (21)). Similarly for the computation of an r-ary global relation in terms
o f t h e I L k ( V L , a ) .

Let us say that I^k is bounded on a class /C C fin[τ] if there is a polynomial
p such that |2t| ^ p(\^Lk(^)\) f°Γ all 21 £ 1C. Obviously, if ILk is bounded
on /C, then so is ILk for all k' > k. Suppose that ILk is bounded on /C
and that ILk admits PTIME inversion through F. Then F must in fact be
computable in PTIME rather than in PTIME*: F(lLk (21)) must be polynomial
time computable in terms of | A\ by definition, and \A\is polynomial in the size
of /Lfc(2l) for bounded ILk. The following is then proved in precise analogy
with Corollary 6.13 above.

Corollary 6.15. If the I^k admit PTIME inversion for all k, then

PTIME Π ££>„ = FP on 1C

for all classes 1C on which I^k is bounded for some k.

6.4 A Reduction to Three Variables

We exhibit a reduction technique that shows that PTIME canonization and
PTIME inversion for the L^ω and C^ with arbitrary k essentially reduce
to the three variable cases. Essentially' because the proposed reduction does
not work in a k-by-k fashion but rather introduces a shift in the number
of variables of the following kind. Assuming for instance PTIME invertibility
of /c3 we get a PTIME construction that, given Ic™ (21) for certain m > fc,
yields a standard structure that is Ck-equivalent with 2t. The effect of this
mismatch is smoothed out, however, if we consider the effect with respect to
the unions across all levels k. For instance, from PTIME invertibility of Ic*
we shall still get FP+C = PTIME Π C^ω.

Here are the precise statements concerning the reduction, first in terms of
canonization, then in terms of inversion of the invariants. Note that a priori
these statements might be of independent interest, since the existence of a
PTIME canonization procedure does not, as far as we can see, imply PTIME
invertibility of the particular invariants considered here.
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Theorem 6.16. Suppose C^ω admits PTIME canonization. Then there is
for each r and each k a PTIME functor /f3*'*:fin[τ] —> stan[r] such that

va #3Λ'Λ(a) =G a,
vava' a =c3fc a' ->

77ιe same statement holds of the L^ω and under the assumption that L^X)ω

admits PTIME canonization.

Note the difference between K3k'k and a canonization functor with respect
to C^ω. While K3k*k also produces Cfc-equivalent standard structures, these
representatives may depend not only on the Ck -theory of the given struc-
ture but on its C3*-theory. The analogous reduction result for the inversion
problem is the following.

Theorem 6.17. Suppose Ic* admits PTIME inversion. Then there is for
each r and each k a PTIME functor G3k'k: image(Ic^) —ϊ stan[τ] such that

va G3k>k(ι

or equiυalently, /^soC3*'* = Π3k*k where Π3k>h is the obvious projection that
sends Icsk(9L) to ICk(3ί). Again, the same holds (for PTIME* computability)
with respect to the L^ω and I^k and under the assumption that 1^3 admits
PTIME inversion.

The appropriate notion of PTIME* computability for G3Λ>*: image(/L3fc) ->
stan[r] is the following: G3k'k(lLak(3l)) has to be computable in time poly-
nomial in the size of a minimal 05 that is L3Λ-equivalent with a.

For our present purposes we thus have the following corollaries. The first
is in terms of PTIME canonization for the three variable case, the second in
terms of PTIME inversion for the three variable invariants. In both settings
we find that the general statements of Corollaries 6.7, and Corollaries 6.13
and 6.15 respectively, reduce to the three variable cases if we consider the
overall effect on the unions across all fc, PTIME Π C^ω and PTIME Π L^ω.

Corollary 6.18. Let C = C^ω or L^, respectively. Assume that C^,
respectively L^u, admits PTIME canonization. Then PTIME Π£ is recursively
enumerable; in fact

PTIME n £ = (J PτiME(K3k>k),
k

where PTIME (if3*'*) is formally defined in analogy with Definition 6.6 for
the functors K3k*k as characterized in Theorem 6.16 (and their natural ex-
tensions to the fin[τ; r] where r-ary queries rather than just boolean ones are
concerned).
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Sketch of Proof. Consider £ = C^ω. Both inclusions are in fact obvious.
Any query in some PτiME(K3k>k) is in PTIME, and also in C%£ω since the
image under K3k>k only depends on the C^-theory of structures. For the
converse inclusion note that any query in PTIME Π (7̂  can without affecting
its semantics be evaluated after application of K3k>k because K3k>k preserves
Cfc-equivalence. D

Corollary 6.19. (i) Assuming that /c3 admits PTIME inversion we get:
PTIME Π C^ω = FP+C.

(ii) If /χ,3 admits PTIME inversion, then PTIME Π L^ω = FP on all classes
on which ILk is bounded for some k.

Sketch of Proof. We indicate how the claim for boolean queries in PTIME Π
C^ω follows from Theorem 6.17. Suppose that Q C fin[r] is in PTIME ΠC*^.
Let A be a PTIME algorithm that recognizes Q. Then a £ Q if and only
if G3*'*(/C3Jb(a)) € Q if and only A o G3k'k o /C3fc accepts a. The latter
composition is in FP+C because I^k is FP+C-interpretable over the a*
and A o G3k'k is FP-interpretable as a PTIME functor on the ordered IC3k.
Closure of FP+C under interpretations (Proposition 4.8) yields Q G FP+C.
The converse inclusion FP+C C PTIME Π C^ω is obvious anyway (compare
Corollary 4.20).

For the case of PTIME Π L^oω compare the appropriate modifications in
Corollary 6.15 to adapt the argument to obtain (ii). D

Whether or not the three variable cases are solvable, remains open. The
reduction achieved here therefore remains hypothetical. The two variable case
is settled positively in the next chapter. In view of the above statements, a
positive solution in the three variable case would be a major break-through
in the understanding of the bounded-variable fragments of PTIME. The re-
duction argument itself is of interest because it also applies to other model
theoretic questions about the L^ω and C^ω, in particular we think of ques-
tions related to spectrum properties for these fragments, cf. [Ott96b]. For the
present investigation it also illustrates where the essential power of three, as
compared to two variables lies. At a more technical level it may also indicate
potential obstacles for three variable canonization.

It might be worth pointing out that 3 is just the minimal number of
variables for which we can show the reduction to go through. The reduction
argument applies, essentially unchanged, to any other number of variables
above 3. (And indeed, it is not clear why for instance k-variable canonization
for some k > 3 should directly yield 3-variable canonization.)

None of the material in the rest of this chapter will be used in the last
chapter on two-variable canonization.

6.4.1 The Proof of Theorems 6.16 and 6.17

The following definition of the k-th power of a relational structure resembles
the definition of the game Λ -graphs, Definition 2.26. Here we include more
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complete information about the equality types of pairs of fc-tuples for reasons
that will become apparent below.

For finite relational r let τ[k] consist of unary predicates PΘ for θ G
Atp(τ fc) and binary predicates = for 1 ^ i,j ^ k. The intended inter-

pretation for the latter — over some Ak — is that (α,α') £ — if α* = α^ . We

shall write a = a' instead of (α,α') € =.

Definition 6.20. For 21 € fin[τ] let the k-ih power of 21 be the following
structure 2l[fc] in vocabulary τ[k]:

with the natural interpretations for the PΘ and the = . Denote by Γk the
functor that takes 21 to its k-th power 2t[fc]. Let Γk (fin[r]) C fin[τ[fc]] denote the
closure under isomorphisms of the class of all k-th powers 2l[fc] for 21 £ fin[τ].

Just as the game fc-graphs 2l(fc), the 2l[fc] are quantifier free interpretable
in the fc-th power over the given structures 21.1 Moreover, the game fc-graphs
2l(fc) are quantifier free (and directly) interpretable over the 2t(fcl: the edge

relation Ej of the game fc-graphs is the intersection of the = for all i φ j.

Note, however, that conversely the = are not quantifier free definable from
the EJ.

The crucial fact for the desired reduction is that the Ck -theory (respec-
tively Z^-theory) of 21 is fully captured by the C2 -theory (respectively L2-
theory) of the fc-th power 2l[fc] of 21. This follows directly from Proposition 3.25
where it was shown that even the C2 -theory of the game fc-graph 2t(fc) de-
termines the Ck -theory of 2t. Clearly, the C2 -theory of 2t[fc] determines that
of 2l(fc) owing to quantifier free interpretability of 2t(fc) in 2t[fc]. In fact Propo-
sition 3.25 says that the fc- variable invariants ICk (21) or ILk (21) are PTIME
computable (FP-interpretable) in the 2-variable invariants of the game fc-
graphs, 7C2(2t(fc)) or 7L2(2l(fc)). This carries over to the 2t[fcl as well as for
instance JC2 (2l(fc)) is PTIME computable (FP-interpretable) in 7C2 (2l[fc]). We
thus have the following, as a corollary to Proposition 3.25.

Proposition 6.21. The two-variable theories of the k-th powers fully deter-
mine the k-υariable theories of the base structures:

=L2

 α/w ^ 21 =L" 21' , and W" =c* a'M => 21 =°k 21'.

Moreover, /cfc(^) and ^Lk(^) are PTIME computable from /C2(2t[fcl) and
/L2(2l[fc]), respectively.

1 There is no conflict with the notion of interpretability in the k-th power: this
notion may be identified with (direct) interpretability over the (interpreted) 2t[fc].
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Canonization or inversion of the invariants in the three variable case will
prove to be sufficient for Theorems 6.16 and 6.17 because being a fc-th power
is definable in three variables, in fact even in L^ω.

Lemma 6.22. Let the arities in r be at most k.

(i) There is a sentence φ in L^ω[τlk]] such that fmod(φ) = Γfc(fin[τ]).
(ii) St is PTIME computable from 2llfc] .

More precisely, (ii) is to say that there is a PTIME algorithm that maps
£ G stan[rlfc]] Π Γfc(fin[r]) to a structure <B G staα[τ] such that <B(fc] ~ £.

The proof of the lemma is postponed — we first show how it applies
to prove Theorems 6.16 and 6.17. For this we need one more simple lemma
about an interpret ability relation between certain invariants.

Lemma 6.23. Let m ^ 2. Then the m-variable theories of of the k-th powers
are fully determined by the mk -variable theories of the base structures:

a =Lmk a' =*> a"" =Lm a"fcl , and a =cmk a' => a'fc> =°m a"*'.

Moreover, /cm (Sl(fcl) and IL™ (Stlfc]) are PTIME computable from I^mk (St) and

/Lmfc(2l), respectively.

Proof. The proof is similar to that of Proposition 3.25: it suffices to check
that the entire inductive generation of the pre-ordering underlying the in-
variable invariant of St[fc] can be simulated over the rafc- variable invariant of
St. Let «i and =^ be the stages in the generation of =°m and =^ over St[fc] as
required for Ic™ (2l[fc]).

Writing α = (α^ , . . . , α^m^) for mfc-tuples over A we indicate their identi-
fication with m-tuples over Ak. A «;-class a can be represented over ICmk (St)
as

At the atomic level, i = 0, this representation is sound because the atomic
τ[fc]-type of (ά^\ . . . ,α^m^) is directly determined by the atomic r-type of α.
It remains to consider the refinement step — soundness of the representation
and PTIME computability in terms of 7Cmfc(St). Let a be a w^-class, α its
representation. The refinement step is governed by the counting functions

These values clearly only depend on the CmA:-type of α, and they are PTIME
computable from (ic^ (2t) , α) . In fact v?(a) is the cardinality of a definable

fc-ary predicate, definable in terms of a union of Cmk -equivalence classes that
is represented over ICmk (St) through α. D
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Proof of Theorem 6.16. Let H3 be a PTIME canonization functor for C3

on fin[τ[fc1]. By definition H3 satisfies for all 2l[fcl: H3(W*) =c* 2l[fcl. With
Lemma 6.22 we conclude that H3(Wk]) G Γfc(fin[r]), since 2l[fc] G A(fin[r])
and A(fin[τ]) is closed under C3-equivalence. Therefore H3(%lk]) ~ <B[fc] for
some 05 G stan[r] that is PTIME computable from H3(%lk]) by Lemma 6.22.

We infer from Proposition 6.21 that 05 =ck a. By Lemma 6.23, H3 (2l[fc]) and
therefore the resulting 05 are fully determined by the C3A;-theory of 21. The
composite mapping Γ^1 o H3 o Γk is thus seen to satisfy the requirements on
fc3k,3 -m fae theorem. The statement concerning the Lk rather than the Ck

is obtained in exactly the same manner. D

In complete analogy we also prove Theorem 6.17.

Proof of Theorem 6.17. Consider first the case with counting quantifiers.
Assume that F3 is a PTIME inverse for JCs. For all 05: F3(/C3(05)) =°3 05.
Since membership in Γk (fin[τ]) is a C3-property by Lemma 6.22, F3 restricts
to {/C3(05) I 05 G A(fin[τ])} such that

F3 : {/C3 (05) I 05 G A (fin[r])} —> stan[τM] Π Γk (fin[r]).

Let / be the mapping /: JC3fc(2t) i-* /c3 (2t[fc]), which is in PTIME accord-

ing to Lemma 6.23. The composite mapping G3k*k = Γj^1 o F3 o I satisfies
the requirement of Theorem 6.17:

va

This is because

F3 o /(/C3fc(2i)) = F3(ιc*(*w)) =°3 aw = A(α)

Γ"1 o F3 o 7(/C3fc(2l)) =°k a now follows with Proposition 6.21.
For the case of Lk one merely checks in addition that the modified notion

of PTIME inversion adapted to the ILk carries over from the corresponding
given F3 to the composite mapping G3k'k. Note that the minimal size of
structures 05 that are L3-equivalent with a[fe] is bounded from above by the
fc-th power of the size of any structure 05' that is L3fc-equivalent with 21. D

Proof of Lemma 6.22. Obviously any 2l(fc] satisfies the following axioms
that are all in L3

ω.

(1)

(2)

(3) Λ
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(4) /\

Axioms (1) - (4) exclusively concern the equality structure. We add a finite
schema of axioms that formalize compatibility conditions between the atomic
types as encoded in the PΘ and the equality structure described by the =. Let
^ be the set of all quantifier free τ[k] -formulae in two variables x and y that
are valid in A(fin[r]); we can restrict these to some syntactic normal form
to keep the set finite without changing its semantics. In fact, the quantifier
free kernels of (1) and (2) above are also represented in Ψ. Thus (1) and (2)
become redundant when we now further put

(5) VxVy /\ φ.

We first show that

any (=) -structure satisfying (1) - (4) is isomorphic with a structure

NO, . . . ,n — l}fc, (=) J with the natural interpretation for the =.

The isomorphism is unique up to a permutation of n — {0, . . . , n - 1}.

To prove (A) let 05 = (£, (= *)) be a model of (1) - (4). Observe that

(1) - (3) imply that the = are equivalence relations on B whose common
refinement is equality. Denote by [b]i the equivalence class of b with respect

to =. It follows from (2) that

is an injection. We show that (4) implies π is surjective. Assume to the
contrary that some ([&ι]ι, . - - , [bk]k) is not in the image of π. Then at least
one of

or k-iι [bk]k)

is not in the image of π. Otherwise, choosing pre-images under π of these
for x and y and applying (4) with s = {!,.. .,&-!}, one would get a pre-
image of ([&ι]ι, . . . , [&fc]fc) Proceeding inductively we obtain that for some 6,

([δ]ι, . . . , [b]k) is not in the image of π, which is clearly absurd. Therefore π

is a bijection. By definition it maps = to equality in the ί-ih component.
Finally, the = ® induce bijections between the different factors B/ =.

This follows from (3): (3) implies that = is closed under = on the left and

under = on the right, so that it factorizes to yield a binary relation between

B/ = and B/ =. We claim that in this sense it becomes the graph of a
bijection. For reasons of symmetry (1) it suffices to show injectivity, or that
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fci y b Λ 62 y 6' Λ 6 J^ 6' => 61 '̂  62,

which is immediate from (3) and (1). Let pV .Bj = — » β/ = be this bijec-
tion. Then

π:B — > (B/ ^) x x

is an isomorphism between 05 and (#/ =)* with the standard interpretation

for the *=. We have shown that (A) holds. The proof also shows that the

desired isomorphism with some ({0, . . . ,n — !}*,(==)) is unique up to the

choice of an identification of B/ = with the appropriate set n. If 05 is itself
presented as a standard structure over some {0, . . . , nk — 1}, then the natural
order on B induces an ordering of B/ = which can be used to determine a

unique isomorphism of 05 with ({0, . . . ,n — 1}*, (*==)). This isomorphism is
constructible in PTIME.

Assume now that 05 carries interpretations for the PQ and is a model also
of (5). For the full claim of the lemma it remains to translate the information
in the PΘ to a r-interpretation over n.

Let now π: (05 \ (=)) ι — > ({0, . . . ,n — l}fc, (=)) be an isomorphism with
the standard model of the equality part. (5) implies in particular that

(a) the PQ? form a partition of B. Introduce the mapping θ: B -»• Atp(τ; k)
which sends b to that θ with b 6 P®.

(b) π(b) = (mi, . . . ,ra/k) implies that the equality type of (mi, . . . ,771*) is as
prescribed in θ(b).

(c) if π(b) = (mi, . . . , m^) and π(b') = (m^, . . . , ra'fc), then the instantiations
(θ(δ))[raι,...,rajb] and (0(6')) [m^, . . . ,771^] are consistent, i.e. respect
the equality type of the tuple (mi , . . . , πik , m( , . . . , m'k} .

It follows that {0, ... ,n - 1} can be expanded to a r-structure 21 in a
unique and consistent way by the stipulation that atpa(π(6)) = θ(b). Thus
π becomes an isomorphism between 05 and 2llfcl. 21 can obviously be computed
from 7Γ and 05 in polynomial time, so that the second claim of Lemma 6.22
also follows. D

It is interesting to note that in the above L^-axiomatization three vari-
ables are necessary for the transitivity conditions (3) and the sentence (4),
which ensures surjectivity of π. A condition to the effect of (4) can actually
also be formalized in C^ω. Let χn be the sentence

3=mxx = x Λ

with ra = nk, s = n*""1. Then (4) above can be replaced by \l nχn One
obtains an axiomatization of /* (fin[τ]) in C^ω that uses three variables only

in the transitivity conditions for the = in (3).
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6.4.2 Remarks on Further Reduction

This aside is of a more technical nature. The proofs of Theorems 6.16 and 6.17
given in Section 6.4.1 need seemingly weaker assumptions than full PTIME
canonization (or inversion of the invariants) in the three variable cases. We
strengthen the formulation accordingly in this section. As all these consider-
ations remain hypothetical — we have no well founded conjecture whether
PTIME Π C^ω or PTIME Π L^ω can indeed be captured — the interest in
these ramifications mainly is a technical one. We explicitly address the Ck

in this aside, but once more everything translates to the Lk. Consider the
situation with respect to canonization. The proof of Theorem 6.16 rests on
the existence of PTIME computable functors

|nΓfc(fin[τ]) (6.1)

such that for all C and C' in the domain of HQ:

H~ ί(T\ —C"2 &

(6.2)

for some m. From these we obtain 'weak canonization functors' Kmk'k from
fin[τ] to stan[τ] that satisfy

va κmk>k(Λ) =°k a,
VaVSl' a =cmh a' -» ίfm*'*(a) --

In the proof of Theorem 6.16 we have explicitly used this construction for
a proper canonization functor H for C^ω in place of HQ and with m = 3.

Note that in this special case both H(K™) G Γk (fin[r]) and H(Ά[k]) =c*
are consequences of the stronger requirement that

Surprisingly, a twofold application of the reduction schema leads to a
further reduction in the assumptions expressed in equations 6.1 and 6.2.
One need only assume the existence of such HQ for k = 3. In particular this
amounts to a reduction to vocabularies τ[31 with a fixed set of binary relations

(=)ι^ij^3 and only unary predicates besides.

Proposition 6.24. Assume that for each r there is a PTIME functor

JT:fin[(τM)181] —>stan[(τM)181] Π Γ3(fin[r^j)

such that for all £,£' € fm[(τ[fcl)l3]] and some fixed m:

H(€) =°2 C

C= c mC ; -> H(€)=H(e).
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Then HQ := Γ^1 o H o Γ"3 satisfies the conditions in equations 6.1 and 6.2,
with 3m in place of m and consequently K3πιk'k := Γj^1 o Γ^~l o H o Γ3 o Γk
provides 'weak canonization' for C^Qω in the sense of Theorem 6.16 on fin[τ]:

Va K3mk>k(%) =Ξck a,

vava' a =c3mk a' -> κ3mk>k(X) = ̂ ^^(a'j

Sketch of Proof. The crucial observation is that #o := -Γg"1 o ff o Γa is well

defined, has image in Γfc(fin[τ]) and satisfies for all a G fin[τ]: /ίo(a[fcl) =c

a1*1.
Let a G fin[r], a[fc] its fc-th power. Let H((ΛW)™) ~ Bw. By Propo-

sition 6.21 we know that (a[fc])l3] =c* Q5[3] implies that a[fc] =c* 05. By
Lemma 6.22, 05 therefore is itself a fc-th power. A further application of

Proposition 6.21 yields Γ"1^) =°k a. As H(£) only depends on the Cm-
theory of (t by assumption, it follows that [H o Jg] (a) is determined by the

C3m-theory of a and finally that [H o Γ3 o Γk] (a) is fully determined by the
C3mfe-theory of a (compare Lemma 6.23). D




