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A NOTION OF D-MULTIGENUS FOR CERTAIN

RANK TWO AMPLE VECTOR BUNDLES

Enrique Arrondo, Antonio Lanteri and Carla Novelli

Abstract

A notion of ‘‘delta-genus’’ for ample vector bundles E of rank two on a smooth

projective threefold X is defined as a couple of integers ðd1; d2Þ. This extends the

classical definition holding for ample line bundles. Then pairs ðX ;EÞ with low d1 and

d2 are classified under suitable additional assumptions on E.

Introduction

Let X be a smooth complex projective variety and let L be an ample line
bundle on X . In order to study polarized manifolds ðX ;LÞ Fujita [2] intro-
duced the D-genus of ðX ;LÞ, which is a nonnegative integer defined by the
formula

DðX ;LÞ :¼ dim X þ dðX ;LÞ � h0ðX ;LÞ;
where dðX ;LÞ ¼Ldim X . The theory developed around this invariant has been
a powerful tool in characterizing polarized varieties with D small enough [2]. As
noticed in [2, p. 176] there is not a good vector bundle version of the theory of
D-genus. This sentence motivated our interest in the subject.

Let E be an ample vector bundle of rank rb 2 on X . In principle one
could conceive a D-genus for ðX ;EÞ either as a single integer (e.g. see [8]), or as
an r-tuple of integers, if one wants to give an invariant related to the geometry
of the Grassmannian to which E maps the variety X . This last point of view
presents several di‰culties even for the first non-trivial cases (as explained in
Section 1), so that we will restrict ourselves to a very particular case.

Specifically, in this paper we consider ample vector bundles E of rank 2 on
a smooth threefold X . We define the D-genus of such a pair ðX ;EÞ as a couple
of integers ðd1; d2Þ. While d1 is the classical D-genus of the scroll associated to
ðX ;EÞ, hence d1 b 0, d2 involves the endomorphisms of E (see Definition 1.1).
Its meaning becomes geometrically clear if we assume that E has a section
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vanishing on a smooth curve Z (condition (*) in the paper). Actually, under this
assumption, d2 turns out to be greater than or equal to the classical D-genus of
the surface scroll induced by E on Z, which implies that d2 b 0.

We investigate pairs ðX ;EÞ with low d1 and d2. Of course, the stronger are
the properties of the vector bundle E, the larger are the values of d1 and d2 we
can include in our classification. In fact we classify pairs ðX ;EÞ with d1 a 2,
results being complete for d1 ¼ 2 only when E is globally generated (Proposition
1.5 and Proposition 1.6). As to the second invariant, under assumption (*) we
classify pairs ðX ;EÞ with d2 a 1 (Corollary 2.2 and Proposition 2.3) and with
d2 ¼ 2 when either the vector bundle E has curve genus g ¼ 1 (Theorem 2.5) or
gb 2, E being globally generated (Proposition 2.7). Our results are roughly
summarized by the following

Theorem. Let E be an ample vector bundle of rank 2 on a complex smooth
projective threefold X.

(A) If d1 a 1, then d1 ¼ d2 ¼ 0 and ðX ;EÞ ¼ ðP3;OP3ð1Þl2Þ.
(B) If d1 ¼ 2 and in addition E is spanned, then d2 ¼ 0 and ðX ;EÞ ¼
ðQ3;OQ3ð1Þl2Þ.

(C) If d2 ¼ 0, d1 b 3 and condition (*) holds, then ðX ;EÞ is either
ðP3;OP3ð2ÞlOP3ð1ÞÞ (here d1 ¼ 5), or

ðPP1ðOP1 lOP1ða1ÞlOP1ða2ÞÞ; xn p�ðOP1ðb1ÞlOP1ðb2ÞÞÞ,ðaÞ
where p : X ! P1 is the bundle projection, x is the tautological line
bundle on X , and the integers ai, bi satisfy 0a a1 a a2, 1a b1 a b2 a
b1 þ 1 (here d1 ¼ 2ða1 þ a2Þ þ 3ðb1 þ b2Þ � 2b 4).

(D) If d2 ¼ 1 and condition (*) holds, then ðX ;EÞ is as in ðaÞ with b2 ¼
b1 þ 2.

(E) If d2 ¼ 2, d1 b 3 and in addition E is spanned then either ðX ;EÞ is as in
ðaÞ with b2 ¼ b1 þ 3, one of the pairs listed in Theorem 2:5, or a general
section of E vanishes along a smooth hyperelliptic curve of genusb 2 and
E splits on every such curve as Ll2, where L is the hyperelliptic line
bundle.

In fact we suspect that d2 b 0 even without assumption (*). In connection
with this in Section 3 we discuss the inequality d2 > dimðBsjEjÞ, proving it is true
when E is generically spanned and the rational map from X to an appropriate
Grassmannian of lines defined by E has one-dimensional image (Proposition 3.2).
In Section 4 we discuss some problems that arise in trying to extend our
definition to rank 2 ample vector bundles on projective manifolds of higher
dimension.

1. D-genus for ample vector bundles

Before defining the D-multigenus of an ample vector bundle, let us analyze
closely the definition of the classical D-genus of a polarized manifold ðX ;LÞ.

138 enrique arrondo, antonio lanteri and carla novelli



If L admits a section vanishing along a smooth hypersurface Y we can
easily see that

DðX ;LÞ ¼ dim X � 1þ dðY ;LY Þ � dim Im½H 0ðLÞ ! H 0ðLY Þ�;

the arrow denoting the restriction homomorphism. Recalling the definition of
DðX ;LÞ for any linear system L on X [2, p. 33], we can consider the linear
system TrY jLj, so that DðX ;LÞ ¼ DðY ;TrY jLjÞ.

It follows that, under suitable assumptions, e.g. the very ampleness of L,
the classical D-genus can be defined recursively starting from that of a curve.
Observe also that this D-genus is related to the minimal degree of the embedding
of X defined by L.

If we want to imitate this for a pair (X ;EÞ, where E is an ample vector
bundle of arbitrary rank, the analogous assumption would be that E defines an
embedding in the Grassmannian. Starting with the case in which X is a curve,
there is only one degree, namely the degree of X in the Plücker ambient space of
the Grassmannian, which coincides with the degree of the ruled variety PX ðEÞ
embedded by its tautological line bundle xE. Hence if dim X ¼ 1 it is natural to
define the D-genus of (X ;E) as d1 ¼ DðPX ðEÞ; xEÞ. Note that this is equivalent
to d1 ¼ rk Eþ c1ðEÞ � h0ðEÞ.

In higher dimension the embedding of X in the Grassmannian has now a
multidegree, expressed as the intersection with the corresponding Schubert cycles
of the appropriate dimension. According to a natural ordering of these Schubert
cycles, the first degree is again the degree of the ruled variety PX ðEÞ, so that we
can still define d1 as above.

On the other hand, some of these Schubert cycles consist of linear spaces
satisfying, among other conditions, that of being contained in a hyperplane. The
pullback on X of the set of linear spaces contained in a hyperplane is the zero
locus of a section of E. So to define the part of D-genus corresponding to these
particular Schubert cycles it looks natural to use the recursive procedure men-
tioned in the case of line bundles.

So now assume that the ample vector bundle E satisfies the following
condition:

(*) there exists a section whose zero locus is a smooth subvariety Z of the
expected dimension.

For that recursion we need to compute dim Im½H 0ðEÞ ! H 0ðEZÞ�. This dimen-
sion can be computed by using the Koszul’s exact sequence tensored by E. It is
di‰cult to provide the precise expression in general. However for rk E ¼ 2, the
exact sequence becomes

0! E4! EnE4! E! EZ ! 0;

where E4 stands for the dual of E. So, since h0ðE4Þ ¼ h1ðE4Þ ¼ 0, from the
Kodaira–Le Potier vanishing theorem, we derive

dim Im½H 0ðEÞ ! H 0ðEZÞ� ¼ h0ðEÞ � h0ðEnE4Þ:
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This shows the di‰culty of that recursive process even for rk E ¼ 2. In fact,
if there were a second step in the recursion, we would need to compute
h0ððEnE4ÞZÞ, and this should be done from the Koszul’s exact sequence
tensored by EnE4. On the other hand, for dim X ¼ 3, Z is a smooth curve,
so that no further step is needed. This motivates to confine our discussion to the
case of ample vector bundles of rank 2 on threefolds and to give the following
definition:

Definition 1.1. Let E be an ample vector bundle of rank 2 on a smooth
complex projective variety X of dimension 3. We define the D-genus of the pair
ðX ;EÞ as the pair of numbers

DðX ;EÞ :¼ ðd1; d2Þð1:1:1Þ
defined as follows:

d1 :¼ DðPX ðEÞ; xEÞ ¼ 4þ c31 � 2c1c2 � h0ðEÞ and

d2 :¼ 2þ c1c2 � h0ðEÞ þ h0ðEnE4Þ;

where xE is the tautological line bundle of E on PX ðEÞ, ci denotes the i-th Chern
class of E, and we used the Chern–Wu formula x4E ¼ c31 � 2c1c2.

Remark 1.2. Let G be the Grassmannian Gð1;NÞ, with N ¼ h0ðEÞ � 1, and
denote by WðN � 4;NÞ and WðN � 3;N � 1Þ the two Schubert cycle classes
generating H 6ðG;ZÞ. Suppose that E defines an embedding of X into G. Then
c31 � 2c1c2 ¼ a and c1c2 ¼ b, where a ¼ X �WðN � 4;NÞ and b ¼ X �WðN � 3;
N � 1Þ. Note that the class of X can be written in terms of the dual Schubert
cycle classes as X ¼ aWð0; 4Þ þ bWð1; 3Þ.

Example 1.3. Let E ¼ LlM, L, M being ample line bundles on X .
Then

d1 ¼ DðX ;LÞ þ DðX ;MÞ þ L2M þ LM 2 � 2ð1:3:1Þ
and

d2 ¼ 2þ L2M þ LM 2 � h0ðLÞ � h0ðMÞ þ h0ðEnE4Þ:ð1:3:2Þ
Note that EnE4¼ Ol2

X l ½L�M�l ½M � L�. Suppose that jLj and jMj
contain irreducible surfaces, say S and T , respectively. Then (1.3.1) takes the
form d1 ¼ DðX ;LÞ þ DðX ;MÞ þ dðS;MSÞ þ dðT ;LTÞ � 2. Moreover, recalling
the definition of DðX ;LÞ for any linear system L on X [2, p. 33], and taking
into account the exact cohomology sequences induced by

0! ½M � L� !M !MS ! 0 and 0! ½L�M� ! L! LT ! 0;

(1.3.2) becomes d2 ¼ DðS;TrSjMjÞ þ DðT ;TrT jLjÞ.
In particular, let E ¼ Ll2, for any ample line bundle L on X . Then

EnE4 ¼ Ol4
X , hence d1 ¼ 2DðX ;LÞ þ 2dðX ;LÞ � 2 and d2 ¼ 6þ 2L3 � 2h0ðLÞ
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¼ 2DðX ;LÞ. For instance, for ðX ;EÞ ¼ ðX ;Ll2Þ, where ðX ;LÞ is a del Pezzo
threefold of any degree d, we have ðd1; d2Þ ¼ ð2d; 2Þ.

Remark 1.4. The classical theory of D-genus implies d1 b 0 [2, Theorem
4.2]. A priori we cannot claim the same for d2. However, assume that E
satisfies (*), so that it has a section whose zero locus is a smooth curve
Z. Define d 02 :¼ DðPZðEZÞ; ðxEÞPZðEZÞÞ. Then d 02 ¼ 2þ c1ðEÞc2ðEÞ � h0ðEZÞ.
According to Definition 1.1, d2 ¼ DðPZðEZÞ;LÞ, where L ¼ TrPZðEZÞjxEj, i.e.
the linear system corresponding to the image of the restriction homomorphism
H 0ðEÞ ! H 0ðEZÞ. Hence d2 b d 02, equality holding when the homomorphism
H 0ðEÞ ! H 0ðEZÞ is surjective. In particular, d2 b 0 under assumption (*).

In the following Proposition we give the characterization of pairs ðX ;EÞ
whose D-genus is ð0; 0Þ.

Proposition 1.5. Let X and E be as in Definition 1:1. Then the following
facts are equivalent:

(1) DðX ;EÞ ¼ ð0; d2Þ;
(2) DðX ;EÞ ¼ ð0; 0Þ;
(3) ðX ;EÞ ¼ ðP3;OP3ð1Þl2Þ.

Proof. Assume that d1 ¼ 0, i.e. DðPX ðEÞ; xEÞ ¼ 0. By [8, Theorem 3.6],
this is equivalent to ðX ;EÞ ¼ ðP3;OP3ð1Þl2Þ. Then we conclude by Example 1.3.

r

The previous proposition shows that DðX ;EÞ ¼ ð0; 0Þ is equivalent to d1 ¼ 0.
Notice that it cannot be d1 ¼ 1 in view of [8, Lemma 1.4]. Then

DðX ;EÞ0 ð1; d2Þ for any d2:

So the next case to analyze is d1 ¼ 2. The only example we know fitting in
Fujita’s partial classification of polarized manifolds with D-genus 2 [2, Ch. I, §10]
is ðX ;EÞ ¼ ðQ3;OQ3ð1Þl2Þ. We will meet this pair in Section 2 again. More-
over, we have

Proposition 1.6. Let X and E be as in Definition 1:1 and assume that E is
spanned. Then the following facts are equivalent:

(1) DðX ;EÞ ¼ ð2; d2Þ;
(2) DðX ;EÞ ¼ ð2; 0Þ;
(3) ðX ;EÞ ¼ ðQ3;OQ3ð1Þl2Þ.

Proof. Assume that d1 ¼ 2, i.e. DðPX ðEÞ; xEÞ ¼ 2. Then [8, §4, pp. 684–
687] implies ðX ;EÞ ¼ ðQ3;OQ3ð1Þl2Þ. Then we conclude by Example 1.3. r

In connection with our goal of classifying pairs ðX ;EÞ according to d2 in
Section 2, it is useful to spend some words on the D-genus of surface scrolls.
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Let E be an ample vector bundle of rank rb 2 on a smooth curve C of
genus q. Set Y :¼ PCðEÞ and let L be the tautological line bundle. Note that
L is ample, so being E. We say that ðY ;LÞ is the scroll associated with E.
Looking at it as a polarized variety, we have DðY ;LÞ ¼ rþ d � h0ðEÞ, where
d ¼ Lr ¼ deg E. Hence, recalling the Riemann–Roch theorem, DðY ;LÞ ¼
rq� h1ðEÞ. In particular,

Remark 1.7. If E is non-special (i.e. h1ðEÞ ¼ 0), then DðY ;LÞ ¼ rq.

Note that if qa 1 then any ample vector bundle E is non-special. This is
obvious if q ¼ 0 (E is a direct sum of r ample line bundles and h1 ¼ 0 for all of
them) and is due to Atiyah for q ¼ 1 (e.g. see [4, Lemma 1.1]). Moreover, we
know that DðY ;LÞb 0 with equality characterizing the case q ¼ 0 [2, Theorem
5.10, p. 41]. On the other hand, for q ¼ 1 we have DðY ;LÞ ¼ r. This allows us
to assume qb 2 in the following. Moreover, for our need in Section 2 from now
on we will confine our discussion to the case r ¼ 2, i.e.

ðY ;LÞ will be a surface scroll of genus qb 2:ð1:7:1Þ

According to Remark 1.7, we know that DðY ;LÞb 2qb 4, provided that E is
non-special. Nevertheless, in general DðY ;LÞ can be smaller. It cannot be 0 by
what we said, but, in principle it could be 1. However, this is not the case.
This follows from [8, Lemma 1.4], but for surfaces the argument is very easy and
we include it for the convenience of the reader.

Proposition 1.8. Let C be any smooth curve of genus qb 2. Then
DðY ;LÞb 2.

Proof. As we said, DðY ;LÞb 1. Suppose this equality holds. According
to Fujita’s classification of polarized manifolds of D-genus one [2, Ch. I, Section
6], we have the following possibilities: (i) db 3 and Y is a del Pezzo surface
with L ¼ �KY ; (ii) d ¼ 2 and there is a finite morphism p : Y ! P2 of degree 2
with L ¼ p�OP2ð1Þ; (iii) d ¼ 1. Cases (i) and (ii) are not compatible with (1.7.1).
This is obvious in case (i) and it follows easily from the ramification formula in
case (ii) (to see this, let D A jOP2ð2bÞj be the branch locus of p; then 0 > 8ð1� qÞ
¼ K 2

Y ¼ ðp�OP2ðb� 3ÞÞ2 ¼ 2ðb� 3Þ2 b 0, a contradiction). In case (iii) we have
h0ðLÞ ¼ 3� DðY ;LÞ ¼ 2, hence jLj is a pencil with a single base point, say y.
Let f0 be the fiber of Y containing y. Since jLj ¼ jL� yj is a pencil, there is
an element D A jLj tangent to f0 at y. This implies that D ¼ Gþ f0, with G
consisting of a section plus possibly some fibers. We thus get

1 ¼ L2 ¼ LD ¼ Lf0 þ LG ¼ 1þ LG:

But this would imply that LG ¼ 0, which contradicts the ampleness of L. There-
fore case (iii) cannot occur. r

142 enrique arrondo, antonio lanteri and carla novelli



Next we focus on the D-genus 2 case, which, as already noted, includes all
elliptic surface scrolls. Here is an interesting example showing that for any qb 2
there are surface scrolls with D ¼ 2.

Example 1.9. Let C be a smooth hyperelliptic curve of genus q and let
E ¼Ll2, where L is the hyperelliptic line bundle of C (i.e. jLj is the g12 of C).
Then d ¼ 2 deg L ¼ 4 and h0ðEÞ ¼ 2h0ðLÞ ¼ 4, so that DðY ;LÞ ¼ 2.

Note that in the example above E is ample and spanned, but not very
ample. In fact, according to [5, Corollary 1], any very ample vector bundle on a
smooth hyperelliptic curve with qb 2 is non-special. Then, for the correspond-
ing surface scroll we have DðY ;LÞ ¼ 2qb 4 by Remark 1.7.

Assuming that E is also spanned, we have the following characterization.

Proposition 1.10. Let E be an ample and spanned vector bundle of rank 2
on a smooth curve C of genus qb 2. If DðY ;LÞ ¼ 2, then ðC;EÞ is as in the
example above.

Proof. L is spanned, since E is so, hence h0ðLÞb 3. From 2 ¼ DðY ;LÞ ¼
2þ d � h0ðLÞ we thus see that db 3. If d ¼ 3, then the morphism jL : Y ! P2

defined by L expresses Y as a triple plane. Then by using Miranda’s formula
for triple covers as in [8, Proposition 4.4, proof of case (a)] we see that this is
not compatible with the scroll structure of ðY ;LÞ. Let d ¼ 4. Then, arguing as
in [8, Theorem 4.3, proof of case d ¼ 4] we conclude that ðC;EÞ is as in the
example above. Finally, if db 5 then L is very ample, by [2, Theorem 3.5,
p. 30]. Hence E itself is very ample, but this is impossible. Otherwise E would
be non-special by [5, Corollary 1], contradicting DðY ;LÞ ¼ 2, as noted before.

r

2. Classification results under condition (*)

In this section we continue the classification of polarized pairs with small
values of the D-genus. We will need for this to assume condition (*). We start
with d 02 ¼ 0. We set ðY ;LÞ ¼ ðPZðEZÞ; ðxEÞPZðEZÞÞ.

Theorem 2.1. Let X and E be as in Definition 1:1 and assume that E
satisfies condition (*). If DðY ;LÞ ¼ 0, then one of the following holds:

(1) ðX ;EÞ ¼ ðP3;OP3ð1Þl2Þ;
(2) ðX ;EÞ ¼ ðP3;OP3ð2ÞlOP3ð1ÞÞ;
(3) ðX ;EÞ ¼ ðQ3;OQ3ð1Þl2Þ;
(4) ðX ;EÞ ¼ ðPP1ðVÞ; ½xV þ b1 f �l ½xV þ b2 f �Þ, where V ¼02

i¼0 OP1ðaiÞ
with 0 ¼ a0 a a1 a a2, xV is the tautological line bundle of V, f stands
for a fiber of the scroll projection, b1, b2 are positive integers.
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Moreover, DðX ;EÞ ¼ ð0; 0Þ in case ð1Þ, DðX ;EÞ ¼ ð5; 0Þ in case ð2Þ, DðX ;EÞ ¼

ð2; 0Þ in case ð3Þ, while DðX ;EÞ ¼ ð2aþ 3b� 2; 0Þ if b1 ¼ b2

ð2aþ 3b� 2; b2 � b1 � 1Þ if b2 > b1

�
, where

a :¼ a1 þ a2 and b :¼ b1 þ b2 in case ð4Þ.

Proof. Since DðY ;LÞ ¼ 0 and the Picard number is rðYÞ > 1, [2, Theorem
5.10] implies that ðY ;LÞ is a scroll over P1; in particular Z ¼ P1, hence
gðX ;EÞ ¼ gðZÞ ¼ 0. Therefore, by [6, Theorem A] we have the following
possibilities for ðX ;EÞ:

(a) ðP3;OP3ð1Þl2Þ;
(b) ðP3;OP3ð2ÞlOP3ð1ÞÞ;
(c) ðQ3;OQ3ð1Þl2Þ;
(d) ðPP1ðVÞ; ½xV þ b1 f �l ½xV þ b2 f �Þ, where V is a rank-3 vector bundle

on P1 normalized in the form V ¼ OP1 lOP1ða1ÞlOP1ða2Þ with 0a
a1 a a2, xV is the tautological line bundle of V, f stands for a fiber of
the scroll projection and b1, b2 are positive integers, due to the ampleness
of E [1, Lemma 3.2.4].

As to the last assertion, Example 1.3 gives

DðP3;OP3ð1Þl2Þ ¼ ð0; 0Þ; DðP3;OP3ð2ÞlOP3ð1ÞÞ ¼ ð5; 0Þ;

DðQ3;OQ3ð1Þl2Þ ¼ ð2; 0Þ;

which proves the assertion in cases (1)–(3) of the statement. Moreover, in case
(d), we get d1 ¼ 3bþ 2a� 2, where a ¼ a1 þ a2 ¼ deg V and b ¼ b1 þ b2. Of
course we can assume that b2 b b1, up to exchanging the summands of E.
Then

h0ðEnE4Þ ¼ 2þ h0ððb1 � b2Þ f Þ þ h0ððb2 � b1Þ f Þ ¼
4 if b1 ¼ b2;

3þ b2 � b1 if b2 > b1;

�

which leads to the value of d2 in case (4) of the statement. r

As a corollary we get the characterization of pairs ðX ;EÞ with d2 ¼ 0.

Corollary 2.2. Let X and E be as in Definition 1:1 and assume that E
satisfies condition (*). Then d2 ¼ 0 if and only if ðX ;EÞ is as in Theorem 2:1,
cases (1)–(3) and case (4) with b2 ¼ b1 b 1 or b2 ¼ b1 þ 1b 2.

Proof. Assume that d2 ¼ 0, consider the smooth curve Z and the polarized
surface ðY ;LÞ. It follows from Remark 1.4 that DðY ;LÞ ¼ 0, so we are in the
assumption of Theorem 2.1. Clearly d2 ¼ 0 in cases (1)–(3) of that proposition.
Assume now that ðX ;EÞ is as in case (4) of Theorem 2.1, then d2 ¼ 0 if and only
if b1 ¼ b2 or b2 ¼ b1 þ 1. r

As to the next values of d2 we have the following.
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Proposition 2.3. Let X and E be as in Definition 1:1 and assume that E
satisfies condition (*). If d2 ¼ 1 then ðX ;EÞ is as in case (4) of Theorem 2:1 with
b2 ¼ b1 þ 2.

Proof. Let d2 ¼ 1 and consider the polarized surface ðY ;LÞ. According to
the discussion in Remark 1.4, we have 1 ¼ d2 b d 02, so that either ðX ;EÞ is as in
Theorem 2.1 or DðY ;LÞ ¼ 1. The former case gives the assertion in view of the
second part of Theorem 2.1, and the converse is obvious. The latter case is ruled
out by Remark 1.7 and Proposition 1.8. r

Proposition 2.4. Let X and E be as in Definition 1:1 and assume that E
satisfies condition (*). If d2 ¼ 2 then either:

(1) ðX ;EÞ is as in case (4) of Theorem 2:1 with b2 ¼ b1 þ 3, or
(2) d 02 ¼ 2.

Proof. Let d2 ¼ 2 and consider the polarized surface ðY ;LÞ. According to
the discussion in Remark 1.4, we have 2 ¼ d2 b d 02, so that there are three
possibilities, according to whether d 02 ¼ 0; 1 or 2. The first case leads to (1) in
view of the second part of Theorem 2.1, while the third gives (2). On the other
hand, the second possibility is ruled out by Remark 1.7 and Proposition 1.8.

r

Let g :¼ gðX ;EÞ be the curve genus of ðX ;EÞ. Concerning case (2), con-
dition (*) allows us to get a complete classification result for g ¼ 1.

Theorem 2.5. Let X and E be as in Definition 1:1, assume that E satisfies
condition (*) and let g ¼ 1. Then d2 ¼ 2 if and only if ðX ;EÞ is one of the
following pairs:

(1) ðP3;OP3ð2Þl2Þ;
(2) ðP3;OP3ð3ÞlOP3ð1ÞÞ;
(3) ðQ3;OQ3ð2ÞlOQ3ð1ÞÞ;
(4) ðX ;Hl2Þ where ðX ;HÞ is a del Pezzo threefold;
(5) ðP2 � P1; p�TP2 nOP2�P1ð0; 1ÞÞ, where p stands for the projection onto

the first factor;
(6) ðP2 � P1;OP2�P1ð2; 1ÞnOP2�P1ð1; 1ÞÞ;
(7) ðQ3;Sð2ÞÞ, where S is the spinor bundle on Q3 (see [11, Definition 1.3]).

Proof. Pairs ðX ;EÞ satisfying assumption (*) with g ¼ 1 are listed in [7,
Theorem 1]. As n ¼ dim X ¼ 3, we have the following possibilities:

(a) X is a P2-bundle on a smooth curve B isomorphic to Z and EF ¼
OP2ð1Þl2 for every fiber F of the bundle projection p : X ! B;

(b) ðX ;EÞ is as in cases (1)–(7) of the statement;
(c) ðX ;EÞ ¼ ðP3;Nð2ÞÞ, where N is a null correlation bundle on P3 (see

[10, p. 76]).
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We have to select those with d2 ¼ 2. As to (b), we can easily see that d2 ¼ 2
in cases (1)–(4). This follows immediately from what we said at the end of
Example 1.3 in cases (1) and (4), and from a straightforward direct computation
in cases (2) and (3). In the next two cases let F GP2 be any fiber of the second
projection. In case (5) we get c1c2 ¼ 15 and h0ðEÞ ¼ 2h0ðTP2Þ ¼ 16, as we see
with the help of the exact sequence

0! p�TP2 ! E! EF ! 0:

Moreover, h0ðEnE4Þ ¼ h0ðp�TP2 n p�T4
P2Þ ¼ h0ðTP2 nT4

P2Þ ¼ 1, since TP2 is

simple [10, p. 74]. Therefore d2 ¼ 2, by definition. In case (6) we have
c1c2 ¼ 13 and the exact sequence

0!M � F !M !MF ! 0

applied to each summand M of E shows that h0ðEÞ ¼ 2ðh0ðOP2ð2ÞÞ þ h0ðOP2ð1ÞÞÞ
¼ 18. Finally, h0ðEnE4Þ ¼ h0ðOl2

X Þ þ h0ðOX ð1; 0ÞÞ ¼ 5. All this gives d2 ¼ 2.

In case (7) [11, Theorem 2.8 (i)] shows that c1ðSÞ ¼ �h, c2ðSÞ ¼
h2

2
, where

h is the ample generator of the Picard group. Then c1ðSð2ÞÞc2ðSð2ÞÞ ¼ 15
h3

2
¼

15. Furthermore, h0ðSð2ÞÞ ¼ 16 (cf. [8, Proof of Theorem 5.1 Case (v)]) and
EnE4 ¼Sð2ÞnS4ð�2Þ ¼SnS4. Notice that S is stable [11, Theorem
2.1]. It thus follows from [11, Lemma 2.7] that h0ðEnE4Þ ¼ 1. Thus, by
definition, we get d2 ¼ 2.

Next we rule out case (c). From the exact sequence (e.g. see [10, p. 77])

0!Nð2Þ ! TP3ð1Þ ! OP3ð3Þ ! 0

one easily gets c1ðNð2ÞÞ ¼ 4 and c2ðNð2ÞÞ ¼ 5. Recalling that N4 ¼
ðdet NÞ�1 nN ¼N, dualizing the above exact sequence and taking into
account that h0ðW1

P3ð3ÞÞ ¼ 20 by Bott’s formula [10, p. 8], we get h0ðEÞ ¼ 16.
Moreover, EnE4 ¼Nð2ÞnN4ð�2Þ ¼NnN4, so that h0ðEnE4Þ ¼ 1,
since N is simple [10, p. 77]. Then by definition we get d2 ¼ 7.

The proof is completed by the following lemma.

Lemma 2.6. In case (a) it cannot be d2 ¼ 2.

Proof. Since n ¼ 3, there exists a vector bundle V of rank 3 on the smooth
curve B of genus 1 such that X ¼ PBðVÞ, and up to a twist we can suppose
that V is ample. Let h be the tautological line bundle of V on X . Since
EF ¼ OP2ð1Þl2, En h�1 restricts trivially to every fiber F of p, hence there exists
a vector bundle G of rank 2 on B such that E ¼ hn p�G. Notice that the
equality

H 0ðEÞ ¼ H 0ðp�EÞ ¼ H 0ðp�ðhn p�GÞÞ ¼ H 0ðVnGÞ;

coming from the projection formula, can be interpreted as saying that any
morphism from p�G4! h factorizes as p�G4! p�V! h, where the first map
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comes from a morphism G4!V and the second one is the surjection of the
relative Euler sequence on PBðVÞ. In particular, this implies that, if the mor-
phism G4!V vanishes at some point b A B, then the corresponding morphism
p�G4! h vanishes at the whole fiber p�1ðbÞ. Since E satisfies condition (*),
there is some morphism G4!V not vanishing at any point of B, so that there is
an exact sequence

0! G4!V! L! 0ð2:6:1Þ

where L is a line bundle on B.
Note that c1 ¼ 2hþ p� det G and c2 ¼ h2 þ hp� det G, where ci ¼ ciðEÞ. As

a consequence,

c1c2 ¼ 2h3 þ 3h2p� det G ¼ 2 deg Vþ 3 deg G ¼ degðVnGÞ;

the last equality coming from the splitting principle. Since B has genus 1 we
have wðVnGÞ ¼ degðVnGÞ, by the Riemann–Roch theorem. Hence we
get

h0ðEÞ � c1c2 ¼ h0ðVnGÞ � degðVnGÞ ¼ h1ðVnGÞ ¼ h0ðV4nG4Þ;
the last equality coming from Serre’s duality. Finally, h0ðEnE4Þ ¼
h0ðp�ðEnE4ÞÞ ¼ h0ðGnG4Þ, by the projection formula again. Recalling the
definition of d2, all this gives

d2 ¼ 2� h0ðV4nG4Þ þ h0ðGnG4Þ:

Assume by contradiction that d2 ¼ 2, i.e. h0ðV4nG4Þ ¼ h0ðGnG4Þ.
Suppose for a while that we also have H 0ðL4nG4Þ ¼ 0. Then, applying
the functor Homð ;G4Þ to (2.6.1) we get that the natural map HomðV;G4Þ
! HomðG4;G4Þ is an isomorphism because we are assuming that both spaces
have the same dimension and the kernel of this map is zero. In particular the
identity map on G4 would lift to a morphism V! G4, yielding the splitting of
(2.6.1). But then we would have a natural inclusion PBðG4ÞHPBðVÞ. This is
absurd, since restricting E to S :¼ PBðG4Þ we would get a vector bundle ES with

c1ðESÞ2 ¼ c2ðESÞ ¼ 0, so that ES, hence E, could not be ample.
We thus arrive to the conclusion that H 0ðL4nG4Þ0 0. Since degðVnGÞ

¼ degðLnGÞ, as we see tensoring (2.6.1) with G, it follows that c1c2 ¼
degðLnGÞ, which is positive because E is ample. Hence [4, Lemma 1.1] im-
plies that LnG decomposes, so the same is true for G. Write G ¼ L1 lL2.
Hence E ¼ ðhn p�L1Þl ðhn p�L2Þ, so that each hn p�Li must be ample. But
then an easy calculation gives 0 < c1ðhn p�LiÞ2 � c1ðhn p�LjÞ ¼ degðLnLiÞ if
i0 j, so that each LnLi is ample and hence H 0ðL4nL4

i Þ ¼ 0. This implies
again H 0ðL4nG4Þ ¼ 0, which we proved to be false. r

To say more on case (2) of Proposition 2.4, when gb 2, we will assume that
E is spanned. Note that this assumption implies condition (*). This leads to a
very restricted situation.
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Proposition 2.7. Let X and E be as in Definition 1:1, assume that E is
spanned and let gb 2. If d2 ¼ 2, then the general section of E vanishes along a
smooth hyperelliptic curve of genus g and E splits on every such curve as Ll2, L
being the hyperelliptic line bundle.

Proof. As E is spanned, its general section vanishes along a smooth curve
Z, whose genus is gb 2 by assumption. We know that 2 ¼ d2 b d 02 ¼ DðY ;LÞ
¼ 2 by Proposition 2.4, because g ¼ 0 in case (4) of Theorem 2.1. Then the
assertion follows from Proposition 1.10 since E is spanned. r

An obvious nice pair ðX ;EÞ as in the proposition above is given by the
following.

Example 2.8. Let p : X ! P3 be a double cover branched along a smooth
surface D A jOP3ð2bÞj with bb 3, and let E ¼Al2, where A :¼ p�OP3ð1Þ. Then
E is ample and spanned and its general section vanishes along a smooth hyper-
elliptic curve Z of genus g ¼ b� 1. Moreover, EZ ¼Ll2, L :¼AZ being the
hyperelliptic line bundle. According to (1.3.2), we have

d2 ¼ 2þ 2A3 � 2h0ðAÞ þ h0ðEnE4Þ ¼ 2:

Note also that d1 ¼ 4 by (1.3.1).

3. An approach without condition (*)

We would like to show that d2 b 0 without the assumption (*). This
is in line with the non-negativity of the D-genus of an ample line bundle
L on a smooth projective variety X . In fact this property follows from the
inequality

DðX ;LÞ > dimðBsjLjÞð3:0:1Þ

[2, Theorem 4.2]. This is obvious if h0ðLÞ ¼ 0, while for h0ðLÞ > 0, Fujita uses
the rational map X dPN defined by L.

Coming back to our ample vector bundle E of rank 2 on a threefold X we
define the base locus of jEj, BsjEj as the locus of points x A X where E is not
spanned, i.e. where the evaluation homomorphism

evx : H
0ðEÞnOX ! Exð3:0:2Þ

fails to be surjective. We put the following

Question 3.1. Let E be any ample vector bundle of rank 2 on a smooth
projective threefold. Is it true that

d2 > dimðBsjEjÞ?ð3:1:1Þ
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If h0ðEÞ ¼ 0, we have dimðBsjEjÞ ¼ 3. On the other hand, by Definition 1.1
we get d2 :¼ 2þ c1c2 þ h0ðEnE4Þb 4, due to the positivity of c1c2 [3, Theorem
I] and of the last summand. Hence (3.1.1) holds in this case.

If E is spanned, then obviously BsjEj ¼ j and condition (*) holds. There-
fore (3.1.1) follows from Remark 1.4.

If h0ðEÞ > 0 and E is not spanned the first object we need to adapt Fujita’s
argument to our setting is a rational map

j : X dGð1;NÞ;ð3:1:2Þ

from X to the Grassmannian of lines of PðH 0ðEÞ4Þ. To have such a map,
which is defined via the evaluation homomorphism (3.0.2), we need to assume
that E is generically spanned, so that dimðBsjEjÞa 2. Assuming this, we can
provide a first evidence for (3.1.1) to be true in general.

Proposition 3.2. Let X be a threefold and let E be an ample and generically
spanned vector bundle of rank 2 on X. Assume that the image W of the map j in
ð3:1:2Þ has dimension 1. Then

(i) d2 b 2 if dimðBsjEjÞ ¼ 2, and
(ii) d2 b 1 if dimðBsjEjÞa 1.

Proof. As E is generically spanned, there is a rational map j : X d
Gð1;NÞ as in (3.1.2). Observe that W ¼ jðXÞ is nondegenerate in Gð1;NÞ
in the sense that there is no hyperplane in PN containing all lines parameterized
by W .

Note that B :¼ BsjEj has a natural scheme structure given by the inclusion
of the ideal sheaf IB ,! OX factoring the natural map 52

H 0ðEÞn ðdet EÞ4
! OX .

Let ~XX be the normalization of the blowing-up of X along the scheme B,
and let s : ~XX ! X be the composed morphism. Then the pull-back of the ideal
sheaf of B is s�IB ¼ O ~XX ð�EÞ, where E is an e¤ective Cartier divisor such that
sðEÞ ¼ B as a set.

Consider the following diagram

~XX ���!s X

r

???y j

Gð1;NÞ:

ð3:2:1Þ
 
��
�

Let ~EE be the pull-back r�Q, where Q is the universal rank 2 quotient bundle.
Since the sheaf homomorphism H 0ðEÞnO ~XX ! ~EE is surjective, so is 52

H 0ðEÞn
O ~XX ! det ~EE, which is the pull-back via s of 52

H 0ðEÞnOX ! det EnIB.
Hence ~cc1 :¼ c1ð ~EEÞ ¼ s�c1 � E. Therefore

c1c2 ¼ s�c1s
�c2 ¼ ð~cc1 þ EÞs�c2:ð3:2:2Þ
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Note that W ¼ rð ~XX Þ and recall that dim W ¼ 1 by assumption. Then, letting F
denote the general fiber of r, we have ~cc1s

�c2 ¼ deg Ws�c2jF . As dim sðFÞ ¼ 2
and E is ample, it follows that c2sðF Þ > 0 [3, p. 58], so that ~cc1s

�c2 b deg W .
Similarly we get Es�c2 b 0, with strict inequality if dim B ¼ 2 (note that
dim Ba 2, since E is generically spanned).

Denote by W HPN the ruled surface corresponding to W . Since it is not
degenerate because W is not degenerate in Gð1;NÞ, it follows that

h0ðEÞa h0ðOW ð1ÞÞa 2þ deg W ¼ 2þ deg Wð3:2:3Þ
a 2þ ~cc1s

�c2 ¼ 2þ c1c2 � Es�c2;

the last equality coming from (3.2.2). As h0ðEnE4Þb 1, it follows from the
definition of d2 that

d2 b 2þ c1c2 � h0ðEÞ þ h0ðEnE4Þb 3þ c1c2 � h0ðEÞb 1þ Es�c2:ð3:2:4Þ

Hence d2 b 1; moreover d2 b 2 if dim B ¼ 2. r

Remark 3.3. Taking into account (3.2.3) and (3.2.4), we observe that in
each case (i) and (ii) of Proposition 3.2 equality implies that h0ðEnE4Þ ¼ 1,
so that E is simple, and also that h0ðW ;OW ð1ÞÞ ¼ 2þ deg W , so that W is a
rational normal scroll or a cone.

We would like to understand the actual necessity of E being generically
spanned. This seems di‰cult even in the decomposable case. In fact the
generic spannedness of E ¼ LlM implies that both h0ðLÞ > 0 and h0ðMÞ >
0; otherwise the homomorphism (3.0.2) could not be surjective at the general
point. So, one should look at the case h0ðLÞ > 0 and h0ðMÞ ¼ 0, in which, by
(1.3.2),

d2 ¼ 4þ LMðLþMÞ � h0ðLÞ þ h0ðL�MÞ:

4. Final remarks

The question of what happens in dimension n0 3 is probably in the reader’s
mind. Here are some comments.

Let X be a smooth projective variety of dimension nb 2 and let E be an
ample vector bundle of rank 2 on X satisfying condition (*).

For instance, let us look at d2. We would like to define d2 ¼ DðPZðEZÞ;LÞ,
with L ¼ TrPZðEZÞjxEj where xE is the tautological line bundle of E on PX ðEÞ.
Set P :¼ PZðEZÞ, z ¼ ðxEÞP and denote by p be the projection PX ðEÞ ! X .
Then dim P ¼ n� 1,

degðP; zÞ ¼ zn�1 ¼ ðxEÞn�1 � P ¼ ðxEÞn�1 � p�Z ¼ ðxEÞn�1 � p�c2ðEÞ ¼ pðc1; c2Þc2,
where pðc1; c2Þ is a polynomial in c1 and c2 thanks to the Chern–Wu relation.
Then d2 ¼ n� 1þ pðc1; c2Þc2 � ðh0ðEÞ � h0ðEnIZÞÞ.

Since r ¼ 2, we have the following diagram
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0 ���! E4 ���! EnE4 ���������! E ���! EZ ���! 0

EnIZ

0 0:

 ��� ���!

����!  ����

It follows that h0ðEnIZÞ ¼ h0ðEnE4Þ � h0ðE4Þ þ s ¼ h0ðEnE4Þ þ s, with
sa h1ðE4Þ ¼ hn�1ðWn

X nEÞ by Serre duality, which is equal to zero according to
the Kodaira–Le Potier vanishing theorem if nb 3.

So, if nb 3, we get d2 ¼ n� 1þ pðc1; c2Þc2 � h0ðEÞ þ h0ðEnE4Þ.
Here is the expression of pðc1; c2Þ in some instances:

ðn ¼ 2Þ pðc1; c2Þ ¼ 1

n ¼ 3 pðc1; c2Þ ¼ c1

n ¼ 4 pðc1; c2Þ ¼ c21 � c2

n ¼ 5 pðc1; c2Þ ¼ c1ðc21 � 2c2Þ

n ¼ 6 pðc1; c2Þ ¼ c41 � 3c21c2 þ c22

n ¼ 7 pðc1; c2Þ ¼ c51 � 4c31c2 þ 3c1c
2
2

n ¼ 8 pðc1; c2Þ ¼ c61 � 5c41c2 þ 6c21c
2
2 � c32

n ¼ 9 pðc1; c2Þ ¼ c71 � 6c51c2 þ 10c31c
2
2 � 4c1c

3
2

For n ¼ 2 we have no control on the term s. Mimicking the 3-dimensional
case, one could be tempted to define d2 ¼ 1þ c2 � h0ðEÞ þ h0ðEnE4Þ, while the
other natural choice would be d2 ¼ 1þ c2 � h0ðEÞ þ h0ðEnE4Þ þ h1ðE4Þ. In
either case, for instance when X ¼ P2 and E ¼ TP2 (which is even very ample),
we get d2 ¼ �3;�2, respectively. This prevents from expecting a reasonable
positivity result. This is clearly due to the fact that Z is reducible. On the
other hand, the analogue of d 02 for surfaces would be d 02 ¼ 1þ c2ðEÞ � h0ðEZÞ ¼
1� c2ðEZÞ, where Z, the zero set of a section of E, according to (*) is a finite set
consisting of c2ðEÞ points. So, even d 02 a 0, since the ampleness of E implies that
c2ðEÞb 1. Moreover, we get equality if and only if c2ðEÞ ¼ 1. Note that when

E is spanned, this happens if and only if ðX ;EÞ ¼ ðP2;OP2ð1Þl2Þ by [9].
If X is a curve, the general section s A GðEÞ has no zeroes, i.e. Z ¼ ðsÞ0 ¼ j.

Therefore d 02 is not defined; however, when X is a curve, we can define DðX ;EÞ ¼
d1ðX ;EÞ, and this is equal to the definition given in [8].

On the other hand, suppose that dim X ¼ nb 3 is odd, say n ¼ 2hþ 1,
and E admits h sections s1; . . . ; sh A GðEÞ whose zero loci Zi :¼ ðsiÞ0 satisfy
dim 7 t

i¼1 Zi ¼ n� 2t and Yt :¼7 t

i¼1 Zi is smooth for every t ¼ 1; . . . ; h. Letting
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Pt ¼ PYt
ðEYt
Þ and zt ¼ ðxEÞPt

, then we can define

d 0tþ1 :¼ DðPt; ztÞ; t ¼ 1; . . . ; h:

When dim X ¼ 5, this says that E admits 2 sections s1; s2 A GðEÞ whose zero
loci Zi :¼ ðsiÞ0 satisfy dim Z1 ¼ 5� 2 ¼ 3, dim Z1 VZ2 ¼ 5� 4 ¼ 1 and Y1 :¼ Z1

Y2 :¼ Z1 VZ2 are smooth; then we can define

d 02 :¼ DðP1; z1Þ; and d 03 :¼ DðP2; z2Þ:

Note that dim P1 ¼ 4, while dim P2 ¼ 2.
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