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RECURRENCE RELATIONS FOR SUPER-HALLEY’S METHOD
WITH HOLDER CONTINUOUS SECOND DERIVATIVE
IN BANACH SPACES
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Abstract

The aim of this paper is to study the semilocal convergence of the Super-Halley’s
method used for solving nonlinear equations in Banach spaces by using the recurrence
relations. This convergence is established under the assumption that the second Fréchet
derivative of the involved operator satisfies the Holder continuity condition which is
milder than the Lipschitz continuity condition. A new family of recurrence relations
are defined based on two constants which depend on the operator. An existence-
uniqueness theorem and a proori error estimates are provided for the solution x*. The
R-order of the method equals to (2+ p) for pe(0,1] is also established. Three
numerical examples are worked out to demonstrate the efficacy of our approach. On
comparison with the results obtained for the Super-Halley’s method in [3] by using
majorizing sequence, we observed improved existence and uniqueness regions for the
solution x* by our approach.

1. Introduction

Many scientific and engineering problems can be reduced to solving non-
linear equations. There exists a large number of applications that give rise to
thousands of such equations depending on one or more parameters. The bound-
ary value problems appearing in Kinetic theory of gases, elasticity and other
applied areas are reduced to solving nonlinear equations. Dynamic systems are
mathematically modelled by difference or differential equations and their solutions
usually represent the equilibrium states of the systems obtained by solving non-
linear equations. Many optimization problems also lead to solutions of these
equations. Generally, iterative methods are used for this purpose under various
continuity conditions like Lipschitz, Holder and w on first/second Fréchet deriv-
atives of the involved operators. The local, semilocal and global convergence
analysis are also established for them by using either majorizing sequences or
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recurrence relations. In the case of majorizing sequences, a sequence generated
by an iterative method in Banach spaces is majorized by a sequence generated by
the same iterative method applied on a scalar function. But, the main advantage
of recurrence relations is that the problem in Banach spaces can easily be reduced
to simpler problems with real sequences and functions. The convergence analysis
depends on the choice of the distance ||.||, but for a given distance the speed of
convergence of the sequence {x,} is characterized by the speed of convergence
of the sequence of nonnegative numbers ||x* — x,||. Two important measures of
the speed of convergence are the Q-order and R-order of convergence. It is well
known that a sequence {x,} converges with Q-order at least v > 1, if there exists

a positive constant b such that |[x,,; —x*|| <b||x, —x*||", n=0,1,.... And
it converges with R-order at least 7 > 1 if there are constants C e (0,00) and
7€ (0,1) such that ||x, — x*|| <™, n=0,1,.... Both these orders of conver-

gence are important to study the convergence of the sequence {x,} derived from
an iterative method. But the R-order of convergence is more important be-
cause of their differences. That is, if a sequence {x,} converges with Q-order
at least ¢ > 1, then it converges with R-order at least 7 > 1, but not vice versa.
For further studies of these orders of convergence, one can see the work of
[13, 14].

In this paper, we are concerned with the semilocal convergence of a third
order Super-Halley’s method used for approximating a locally unique solution x*
of nonlinear operator equations

(1) F(x) = 0.

where, F: Q = X — Y be a nonlinear operator on an open convex subset Q of a
Banach space X with values in a Banach space Y. The most well known second
order iterative methods used to solve (1) are Newton’s method and it’s variants.
The Kantorovich theorem [12, 15] provides sufficient conditions to ensure conver-
gence of these methods. Many researchers [1, 6, 9] have also considered the
convergence of one point third order iterative methods such as the Chebyshev’s
method, the Halley’s method and the Super-Halley’s method used for solving (1)
under the assumption that the second order Fréchet derivative satisfies Lipschitz
continuity condition. Under the assumptions that F” is Lipschitz continuous,
Candela and Marquina [1] used recurrence relations and derived a family of four
real sequences in order to study the semilocal convergence of the Chebyshev’s
method in Banach spaces. Gutiérrez and Hernandez [10] used recurrence rela-
tions and derived two real sequences in order to study the semilocal convergence
of the second order derivative free version of the Chebyshev’s method. Gutiérrez
and Hernandez [6] studied convergence of the Super-Halley’s method under the
assumption that F” is Lipschitz continuous. Ezquerro and Hernandez [4] estab-
lished semilocal convergence of second order derivative free version of the Super-
Halley’s method by using recurrence relations. Their main assumption for the
convergence analysis was that the second Fréchet derivative satisfies Lipschitz
continuity condition. However, it is not always true as the following example
illustrates.
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Example. Let us consider the integral equation of Fredholm type [2]:

by

x(1)*7 dt,

F)(s) = x(s) — £(5) - AJ

0S+[

with s€[0,1], x, f € C[0,1], pe (0,1] and A is a real number.
Under the sup-norm on the operator F, the second Fréchet derivative of F
satisfies

1F7(x) = F" ()l < 141 + p)(2+ p) log 2|Ix = yII”,  x,yeQ.

Hence, for pe (0,1), F” does not satisfy the Lipschitz continuity condition,
but it satisfies the Holder continuity condition. Hernandez and Salanova [§]
studied the convergence of the Chebyshev’s method by using recurrence rela-
tions under the assumption that F” satisfies Holder continuity condition. J. A.
Ezquerro et al. [5] discussed the convergence of Super-Halley’s method using
majorizing sequences under the Lipschitz continuity condition. The conver-
gence of the Chebyshev’s method and the Convex Acceleration of Newton’s
method using majorizing sequences under the Holder conditions are given in
(3, 7].

This paper is organized as follows. Section 1 is the introduction. In Sec-
tion 2, some preliminary results are given. Then, two real sequences are gen-
erated and their properties are studied. In Section 3, recurrence relations are
derived. In Section 4, a convergence theorem is established for the existence and
uniqueness regions along with a priori error bounds for the solution. In section
5, three numerical examples are worked out and results obtained are compared
with those obtained in [3] to demonstrate the efficacy of our approach. Finally,
conclusions are covered in Section 6.

2. Preliminary results

In this section, we shall give some preliminary results in order to establish
the convergence of the Super-Halley’s method under the assumption that the
second Fréchet derivative satisfies the Holder continuity condition for solving
(1) in Banach spaces by using recurrence relations. Let [y = F’(xo) ' € L(Y, X)
exists for some xp € Q, where L(Y, X) is the set of bounded linear operator from
Y into X. The Super-Halley’s method can now be written in the form for
n=0,1,...

(2)

Yn = Xy — rnF(xn)
Xpl = Vn JF%LF(xn)(I - LF(xn))il(yn — Xn)

where, Lr(x,) = F'(x,) "F"(x,)F(x,) "' F(x,).
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Let the following assumptions hold true

L [ITo]l = [IF"(x0) ™"l < 5.
2. | F'(xo) " F(xo) | < 7,

3
®) 3. IF"(x)|| < M, VYxeQ,
4. ||F"(x) = F"(y)| < Kllx—y|”, Vx,yeQ, K>0, pe(0,1]
Let
(4) ap = Mpy, bo=Kpy'"!

Now, we define the real sequences

(5) apy1 = anf(an)zg(an,bn) and bn+1 = bnf(aﬂ)erzg(a”’bn)erl
where
. 2(1-x)
(6) SN =3 s
and
B x? Y X’
(7) o) =T I DG+ D0 = 81 =)

The following Lemmas will be used to establish some propertiecs of these
sequences.

LemMmA 1. Let the real functions [ and g be given by (6) and (7) respectively
and let p € (0,1], then for x € (0,ry) where ry be the smallest positive zero of the
polynomial 2x* — 9x3 + 32x* — 32x 4+ 8 =0, we get

(i) f is a increasing function and f(x) > 1 in (0,ro].

(i) g is a increasing in both arguements for y > 0.

(iii) f(yx) < f(x) and g(yx,y"*'y) < p"*'g(x, p).

Proof. The proof is simple and hence omitted here.

LemMa 2. For a fixed p € (0,1] and two real functions f and g given by (6)
and (7) respectively, define

(p+1)(P+2)(2x* —9x3 + 32x2 — 32x + 8)
8(1 —x)

(®) D) (x) =

Now, f0r20 <ayg<ry and 0 < by < Dpy(ay), we get
(1) f(an) g(an,bn) <1

(i) {an}, {bu} are decreasing sequences and a, < 1.
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Proof From the definitions of functions f and g, one can easily conclude
that f(a,)%g(ap,b,) <1 iff

4(1 —ay)’ a? by N a -
2 —da, +a2)* |(1—ar)  (p+1)(p+2)(1 —an)  §(1 —a,)’
or,
4 _ 9,3 2
bn < (p + 1)(17 + 2)(2a}é(1 9_612—;-3261” 32“’1 + 8) = (I)p(an)

This Lemma can be proved by using induction. For 0 <ay<ry and 0 <
by < ®p(ap), we can easily conclude that f(ao)*g(ag,by) < 1. From (5), we
obtain

a = aof(ao)zg(ao,bo) <ay<1

and as f(x) > 1 in x € (0,ry], we get

by = bof (a0)" *g(ao, bo)”™" < bo(f(a0)g(a, bo))(f (a0)*g(a0, bo))” < bo

Now, let us assume that the statement hold true for n = k. Then, proceeding
similarly as above, one can easily prove that a1 <ar <rp <1 and by < by.
Since f and ¢ are increasing functions, we get

far1)glaxsn, besr) < f(ax)’glax,be) < 1

Hence, the Lemma 2 holds true for all n.

Lemma 3. Let 0 <ag <ry and 0 < by < ®,(ap). Define y= ﬂ’ then for
nx>=1 we get ] a@

() a, < y(2+[))” 4, < p(( 2+p)"=1)/(1+p) g for n>1

(11) b, < (V(2+p) )1+Pb < y(2+p) Ibo fOI" n>1

i flaw)gtan, bo) _ 72"

i) f(ay)g(an, b,) <y _ n>0

e ) Y S (o)

Proof:  We can prove (i) and (ii) by using induction. Since a; = yay and
a; < ag, we get y < 1. Using (i) of Lemma 1, we get,

aj

I+p
by = bu (an) glan, b < (Flanatan, ) 7o = () = 1780
Suppose (i) and (ii) hold for n =k, then

k-1 k-1 k-1
a1 = arf(ar) glag, br) <y @ f(a 1) g @y, (P ) )

k-1 k-1 k
y(P+2) akflf(akfl)z(y(zﬂl) )Hpg(akfl;bkfl) =y gy
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Hence,

arey < @0 g < @00 g <@t e ) g

k+1
— P+ 1) g

From f(x)>1 in (0,ry], we get

bt = bif ()" glag, b)) < bi(f (ar)*glar, bi))"
p+1
_ Ut (p+2)*\p+1
S e <
bk( @ > <(y ) by
Hence,

k k k-1 0 k41
st = (YD g < (TP (DT Pl () Pl ()T

Thus, (i) and (ii) hold by induction. (iii) follows from

n

F(@)g(an, by) < [P =D/ o) (p (A2 =D/ (D) gy oy (P21

(pr2)" S (@0)9(a0, bo) _ (2" 11 (

=7
14

a())
as y = ay/ao = f(ao)’g(ao, by).

3. Recurrence relations

In this section, the recurrence relations will be derived for the Super-Halley’s
method under the assumptions given in the previous section. Let I'y = F’ (X(])_]
exists for xp € Q. Then,

ILr(x0)|| < M||Tol| |IToF (x0)] < ao
K| To[l IToF (xo) 7! < K™
and
[[y0 = xol| < [[ToF(x0)l| <7
we can now prove the following conditions for n > 1
)Tl = 11F" () ™ < f (@n1) [Tl
(D NGF )l < f(an-1)g(an—1, bu-1)[[Ta-1 F (xn-1) |
(D) [|Lr(xa)[| < M| [T (x0) | < an
®) (IV) K|G | I (e) | < b,
(
(

(1
I

a

Vv il — Xl < [ 1 .
) s =l < (14552

VI) v, Xni1 € B(x0, Ry)

)||rnF<xn>|
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. 7N
Assuming that (1 +————)ap <1 and x; € Q, we get
2(1 — Cl())

11 = ToF"(en)|| < [[Toll [ (x0) = F'(x1)
1

< Hrouj IF" (xo + 101 — x0))]| dillx1 — ol
0

< M|[To]| [lx1 = xo|

From

o
b ol = (14 7255

we get

HI—IhF%XOHﬁfwﬁ<1+§ﬁ?%aﬁ)n

ap
<14+ — 1
- ( Jr2(1 —00)>a0 =

Then, by Banach Lemma, I'y = F'(x;)"" exists and

Il __2-a)

Ol T Coo) — FC)] = @ a4y 01 =)ol

(10) [Ty < —
Using the Taylor’s formula, we get

(11) F(Xn+1) = F(yn) + F/(yn)(xnﬂ - yn) + JXUH F//(X)(xn+1 . x) dx

_ L [F"(%n + 1(yn = x2)) = F"(x)]

< (1= (I = Le(x) ™ (5 = x)?

1

- . FN(xn +t(yn — x0))I — LF(XI1))71LF(xn)(1 —)(yn— xn)z dt

+ F//(Xn + [(yﬂ - xn)) d[(yﬂ - xn)(xn+l - yn)
0

1

+ F//(yn + l(anrl - yn))(l - l) dl(anrl - .Vn)2
0

For n=0 and y; e Q, we get
Mn?ay Knr+? Mn?ay Mn*al
(I=a) (p+1(p+2)(1-a0) 2(1—ar) 8(1—ap)*

HOES
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This gives

(12) [T E e[| < (1T HIEGen)] < f (@0)g(ao, bo) [IToF (xo) |

and (II) holds for n=1. To prove (III) and (IV) for n = 1, notice that
(13) IZr ()| = MIT[ T F (x| < aof (a0)g(ao, bo) < ar,

and

(14) KT T FGe) |7 < K (ao) [ Toll [ToF (xo) 7 (@) g(ao, o)

< bof(a0)"g(a, bo)"*!
< b

This leads to

|71 = xoll < lly1 = x| + [[x1 = xol|

s{fwMMwww+(1+z_@_ﬁﬂ”

(1 —dy

< (1 + 2(14_0(10)) [1+ f(ao)g(ao, bo)ln

<(H?U?%Q(P$M

Therefore,
(15) 1 — xoll < Ry
and
ap
16 — <14+ —)I|I'1F
(16) e =l = (14 5 ) NG
From,
2 = xoll < 1o — 3l + o — xoll < (145 1 2@
27Xl = 12 =X X 200 —a0)) (1 —7A) 21 —ap)
we get
(17) > — x| < Ry

Using (10), (12) and (13) to (17) respectively, the conditions (I)—(VI) hold true for
n=1. Let us assume that (I) to (VI) hold for n = k. Proceeding similarly as
above, we can easily prove that these conditions also hold for n = k+ 1. Hence,
by induction (I) to (VI) hold for all n.
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4. Convergence theorem

In this section, an existence and uniqueness theorem is established for the
solution of nonlinear equations (1) in Banach spaces obtained by the Super-
Halley’s method by using recurrence relations under the assumption that the
second Fréchet derivative satisfies the Holder continuity condition. The R-order
of the method equals to (2 + p) is shown along with a priori error bounds. Let
us denote 7y :ﬂ, A=1/f(ap), R :—ao, B(x0, Ry) = {xeX: ||x — x| <

ap 2(1 — ao)
Rn} and %(xo, Ry) = {xeX: |x— x| < Ry}.

THEOREM 1. Let F:Q < X — Y be a nonlinear twice Fréchet differentiable
on a non-empty open convex subset Q of a Banach space X with values in a
Banach space Y. Assume that To = F'(xo) ' € L(Y,X) exists for some xq € Q.
Under the assumptions given in (3) and %(xo, Ry) < Q, the method (2) starting
from xo generates a sequence of iterates {x,} converging to the root x* of (1),

2
which is unique in ,@(x07M— — R}y) NQ. Furthermore the error bounds on x* is
given by b

(2 - a0y<<P+2)n*1)/(1’+1)) (212" =)/ ) A
2(1 — agy(P2™=D/(+ D)) [ — y(r2)"A

(18) 2" = x|l <

Proof. 1In order to establish the convergence of {x,}, it is sufficient to show
that the sequence {x,} is a Cauchy sequence. From the condition (IV) of (9),
we can conclude that

(19) | yn = Xull < f(@n-1)g(@n—1,bp-1)|| yn-1 — Xu-1|
n—1
< “'(Hf(ak)g(ak,bk)> | o — ol
k=0
n—1
< < f(ak)g(ak,bk)>’7
k=0
and
(20)  [[xXmen = Xl < [ Xmsn = Xgnt || + -+ [[Xms1 — X

(2~ amin1) (2 —am)
= 2(1 — am+n—1) ||ym+n71 mernfl” + 2(1 — am) ”ym XmH

— ay, m+n—2 m—1
= 2<(21 — am)) [ H Sla)g(ag, bi) + - H fla)g(ar,br) | n

k=0 k=0
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Now, for ay =ry, we get by = ®p(ap) =0. Hence, from Lemma 2, we get

f(a0)*g(ao, bo) = 1

ap =0y—)1 = Ay = +++d] = Ao
and
by=by-1=byo="-by=0
Thus,
| vw = Xull < (f(a0)g(ao, bo))"n = Ay
and
I =5l 5 3"

From this, we get

(2_ ) m+n— m
(21) ||xm+n _me < m[A ! +.. A ]

If we take m = 0 then we get

(22) [, — xol| < 2((21— aO)) (11__AAn)77

2(1 — ao)

Thus, x, € #(xo, Ry). Similarly, we can prove that y, € #(xo, Ry).

(2 a)A” (1

As A< 1,

from (21), we conclude that {x,} is a Cauchy sequence. Let 0 < ay < ry and

0 < by < ®y(ap) then from the (19) and Lemma 3 (iii), for n > 1

n—1

(23) yn =l < (Hf ax)g(ay, by) )77 < H (r+2)" Ay = y((P+2)"*1)/(p+1)An,7

Hence, from (20), we obtain

2 a m+n—2 m—1
([ Xm+n — 2Xm| < 30 —a) [ 11:[0 fla)g(ak, bi) + H Sax)g(ax, bi) | n
2 — am (« m+n—1_ _ m_
< = 7m (2 D/(p) gmtn=1 o (p+2)"=1)/(p+1) Am
N 2(1 - am) [ * / ]’7
2 —ay

< -
“2(1 —ap)

2 — (D D+ Dgy e ()
= 2(1 =y =D+ gq)

[p(r2" (p+2)”"*1)/(17+1)A”*1 T ) ()" D (D) A

AP D) AT (042 1) ()

+1]
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By Bernoulli’s inequality, for every real number x > —1 and every integer k > 0,
we have (1 +x)" —1>kx. Thus, we get

(2- y<(p+2>”’71)/(p+1)a0)
(1 — y((ﬁ+2)m—l)/(ﬁ+1)ao)

1 — p(Pt" A"
1 — y(P+2)mA

mo ((p+2)"=1)/(p+1)

(24) ||xm+n - xm” <

Now, for m =0, we get

(25) 10 = xol < ((21_[20)) (tl_y;i:) n<Ry

Hence, x, € #(xo, Ry). From
(26) [ne1r = Xoll < lynsr = Xusa [l 4 121 = 20l + - - 1 = ol

<l I+ 2= | [
- X —|lyn— X
S || Vit n+1 2(1 — an) Yn n

e 2T |
2(1 — ap) Yo 0
2—an+1 2—61;1
< _— _ _— _
— 2(1 _an.H) HYn+1 xn+1|| +2(1 _an)Hyn an
e 2T
21 —ag) 0T

2_ 1_ n+1An+1
<. o< do 7 n=Ry
20 —ay) 1-A

we get y, € #(xo,Ry). On taking the limit as n — oo in (22) and (25), we
get x* € B(xo, Ry). To show that x* is a solution of F(x) =0, we use
|1F(x)|l < [|F'(xn)|| |IT2F (x4)|| and since, the sequence {|F’(x,)||} is bounded
as

[1F” (xn)

| < IF'(xo)ll + Mllxn = xol| < [|F"(xo0) || + MRy

and F is continuous, by taking the limit as n — oo, we get F(x*) =0.
To prove the uniqueness of the solution, let y* be the another solution of (1)
in %(x0,2/((MF) — Ry))NQ. From,

0=F") -F(x") = L FI(xX"+1(y" = x7)) di(y* = x7)

Clearly, y* = x*, if f(} F'(x*+t(y* — x*)) dt is invertible. This follows from
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1
I L F/(x* + 1y — x*)) — F'(x0)] dt

1
< Mﬁj I 4 £(p* — x°) — x| dr
0
1
< Mﬁj (1= 0)llx* = xoll + 1]l3* — xo] dt
0

2
< A;ﬁ(R;y+MﬂRn>l

and by Banach’s theorem. Thus, y* = x*.

5. Numerical results

Example 1 ([4]). Let X = C[0, 1] be the space of all continuous functions on
the interval [0, 1] and consider the integral equation F(x) =0, where

1 1
(27) F(x)(s) =x(s) — s+ EJ s cos(x(?)) dt
0
If we choose xo = xo(s) = s and the norm |[|x| = max,cp,1y|x(s)|, then we get

1 .
F(xo)(s) < 3 sin Ls

and

Taking u(s) = [F'(x)] 'v(s), we get

g (!
(28) v(s) = u(s) — fJ u(t) sin(x(z)) dt

Now, multiplying (28) by jol sin(x(s)) ds, we get

Jl o(s) sin(x(s)) ds = Jl u(s) sin(x(s)) ds — Jlg sin(x(s)) Ul u(t) sin(x(1)) dz] ds

0 0 0 0
This gives
1
1 |, o9 sintts)
(29) L u(s) sin(x(s)) ds = —=° T
1 - J 3 sin(x(s)) ds
0
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Consequently,
1
J v(s) sin(x(s)) ds
u(s) = [F'(x)] " o(s) = v(s) + =0
1 - Jo % sin(x(s)) ds
From this, we get
1
1 J v(s) sin(x(s))
(30) Tou(s) = [F'(x0)] " v(s) = v(s) +—=° p

This gives
3—sinl
Flix) < — >
IF (o)1l < 2—sinl+cosl
in 1
7 -1p - sin _
1" (xo) (xo)ll < 2—sinl+cosl g
1
IF'(¥)|| < 5=M
2
and

|F"(x) — F"(y)|Juv(s) < %Jl |cos x(#) — cos y()|uv(z) dt
0

<Ly
=3 y

This implies that K = %, p=1, f=1.2705964 and n = 0.4953234. Hence, we
get ap = M By = 0.314678 < ry = 0.380778 and by = KBn* = 0.155867 < ®,(ag) =
0.191729. Hence, the conditions of theorem 1 are satisfied and the solution of
(27) exists in the ball Z(xg,0.883997). and is unique in the ball #(x,2.26413).
However, solving (27) by using majorizing sequence [3], we find that the solu-
tion exists in the ball #(xg,0.609569) < Q and is unique in Z%(xo,1.70991).
This clearly improves the existence and uniqueness regions of solution by our
approach.

Example 2. Let X be the space of all continuous functions on [a,b] and
consider the integral equation F(x) =0 on X, where

1

(31) F)(5) = x(5) = £(5) = 2| 07 de

oS+t

with se€[0,1], x,f€X, pe(0,1] and 4 is a real number.
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The given integral equation is called Fredholm-type integral equations
studied by [2]. Here norm is taken as the sup-norm.

Now it is easy to find that the first and the second order Fréchet derivatives
of F as

1

F'(x)u(s) = u(s) — 22+ p) L %Hx(l)lﬂ’u(t) dt, ueQ

1

F"(x)uv(s) = =42+ p)(1+ p) L SL_Hx(t)p(uv)(t) dt, u,veQ

Here F” does not satisfy the Lipschitz condition as, for p e (0,1) and for all
X, €
1
s
17700 = /()] = 2+ )14 ) |3 0" = w0
1

J > ar
0 +t

< |42+ p)(1 + p) log 2||x — y|I”

< |A[(2+ p)(1 4 p) max [x(2)” — y(0)"|]

s€(0,1]

6F S-(R(S)n+1) sl (pp(ao(s)) — by

o
=
o
=
o
=
=
S
I
=
=
3

FiGUure 1. Conditions on the parameter S.

But it satisfies the Holder continuity condition as p e (0,1]. Hence K =
[4|(2 4 p)(1 + p) log2. Now, we need to compute the parameters M, 7, f.
Clearly,

IF (x0)l| < [Ixo — f1| + | 4] log 2||xo ]|+
Also note that

1T = F'(x0)]| < |21(2 + p) log 2xo "7
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and, if |A|(2+ p) log 2||xo]|"™” < 1, then by Banach theorem, we obtain

1
I =212 + p) Tog 2[|x

-1
IToll = [[F'(x0) || < 5 =p

and
[F" () <[22+ p)(1 + p) log 2||x[|” = M(x)
Hence

lro = f11 + 4] log 2[lxof” _
1 —[2](2 + p) log 2|lxo] "7

Now, for A=1/4, p=1/5, f(s)=1 and xp = x¢(s) = 1 in the interval [0, 1],
we have ||Ty| <f=1.61611, ||T\F(xo)| <#n=0.280051, K =0.457477, and
by = KBn'*? =0.160518. Now we find the domain in the form of Q=
AB(x9,S) such that Q= %(xy,S) = C[0,1]=X. So M = M(S) =0.457477S?,
ap = ao(S) = M(S)pn = 0.207051S?. In this situation, from Theorem 1, it is
necessary that #(xo, Ry) < Q. For this it is sufficient to check S — (R(S)y + 1)
>0 and ®,(ap) — by > 0. This requires that S € (1.39475,14.9209) as is evident
from Fig. 1. Also, ao(S) < ro=0.380778 if and only if S < 21.0365. Taking
S =14, we get Q = %(1,14), M = 0.775523, ay = 0.350997, and by = 0.160518 <
0.178796 = ®,(ap). Thus, all the conditions of the Theorem 1 are satisfied.
Hence a solution of (31) exists in %(xo,0.76485). and is unique in the ball
%(1,0.830898). But, by using majorizing sequences [3], we find that the solution
exists in the ball %(xp,0.377703). < Q and is unique in %(xp,0.958765). From
this result, one can easily conclude that our existence and uniqueness regions of
solution improved the existence and uniqueness regions obtained by majorizing
sequences.

IToF (xo) | <

if and only if S <82.1227. Hence if we choose S = 14, then we have Q =
#B(1,14), M = 0.775523, ap = 0.350997, and by = 0.160518 < 0.178796 = @, (ay).
Thus the conditions of the Theorem corresponding paper satisfied. Hence the
solution of Eq. (31) exist in #(1,0.420745) and the solution unique in the ball
A(1,1.175)NQ

Example 3. Consider the differential equation
(32) V'Y =y =0, y(0)=y(1)=0

1
We divided the interval [0, 1] into » subintervals and we set # =—. Let {z;} be
the points of the subdivision with n

O=zp<z1<zmp<--<z=1
and corresponding values of the function

Yo =y(z0), y1 = y(z1), s yn = ¥(za)
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Standard approximations for the first and second derivatives are given respec-
tively by

yi= i = yi)/h v = (yiet = Wi+ yip)/1°, i=1,2,...n—1
Noting that yy =0 = y,, define the operator F : R"™!' — R"! by

F(y) =G(y) +hJ(y) = 2h°g(),

where
-4 2 0 0 0 1 0 -0
2 -4 2 0 -1 0 1 -0
G=| 0 2 -4 0|, y=| 0 -1 0 -0
: 0 .0
0 —4 0 -0
)’13 1
y% )2
gm= . | r= . |
yn3,1 Yn—-1
Then, we get
y2 0 0 0
0 » 0 0
Fl(y)=G+hl—6h?| 0 0 » 0 1,
0
0 y;%fl
yio0 0 0
0 » 0 0
F'(y)=—12r2 0 0 s 0,
: : : . 0
(T

Let xeR"!, 4eR" ' x R"! and define the norms of x and A by

n—1
x| = max |xi|, (4]l = max > |ax
1<i<n-—1 lglgn—lkzl

For n=10 and for all x,ye R""!, we now get

IF"(x) = F"(p)]| < 0.12]|]x — y
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As the solution should vanish at the end points and be positive in the interior, a
reasonable choice of initial approximation seems to be exp(zx)/100. This gives
the following vector:

0.0136911
0.0187446
0.0256633
0.0351359
xo = | 0.0481048 |,
0.0658606
0.0901703
0.1234530
0.1690200

We now get the following results for our method:

|Tol| < =06.11998638, |[ToF(xo)| <#n=0.168893, |F"(x)|| <M = 0.0202824,
N =0.12, ay = Mpn = 0.02096435, by = 0.0209486, ry = 0.380778 and ®@,(ay)
=0.0401631. This implies that ay < ro = 0.380778, and by < ®,(ap). Thus, all
the conditions of Theorem 1 are satisfied. This implies that the solution of equa-
tion (32) exists in the ball #(1,0.171405) and unique in the ball %(1,15.9411)N
Q. Solving (32) by using majorizing sequence, we obtained that the solution
exists in #(1,0.17017) and unique in #(1,2.67306)NQ. From this, we can
easily conclude that the existence and uniqueness regions of solution are improved
by our approach.

6. Conclusions

The semilocal convergence of Super-Halley’s method used for solving non-
linear equations in Banach spaces by using the recurrence relations is established
in this paper. This is done under the assumption that the second Fréchet
derivative of the involved operator satisfies the Holder continuity condition which
is milder than the Lipschitz continuity condition. A new family of recurrence
relations are defined based on the two constants which depend on the operator F.
An existence and uniqueness theorem along with a priori error bounds for the
solution x* is given. The R-order of the method equals to (2 + p) for p € (0,1]
is also established. Three numerical examples are worked out to demonstrate the
efficacy of our approach. On comparison with the method described in [3], we
observed the improved existence and uniqueness regions of solution.
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