T. T. NGUYEN
KODAI MATH. J.
36 (2013), 77-90

BIFURCATION SET, M-TAMENESS, ASYMPTOTIC CRITICAL
VALUES AND NEWTON POLYHEDRONS

TAT THANG NGUYEN

Abstract

Let F=(F,F,...,F,):C"— C" be a polynomial dominant mapping with
n>m. In this paper we give the relations between the bifurcation set of F and
the set of values where F is not M-tame as well as the set of generalized critical values
of F. We also construct explicitly a proper subset of C"” in terms of the Newton
polyhedrons of Fy, F>,. .., F, and show that it contains the bifurcation set of F. In the
case m =n— 1 we show that F is a locally C*-trivial fibration if and only if it is a
locally CP-trivial fibration.

1. Introduction

Let F = (F,F,...,F,): C" — C™ be a polynomial dominant mapping with
n>m. It is well-known that the mapping F is a locally C*-trivial fibration
outside a bifurcation set B(F) (see [21]). In general, the set B(F) is larger than
Ky (F)—the set of critical values of F. It contains also the set B, (F) of critical
values at infinity. Roughly speaking, the set B, (F) consists of points at which F
is not a locally C*-trivial fibration at infinity (i.e., outside a compact set).

It is a natural question to ask how the set B(F) can be computed. The
answer was given for polynomial functions in two variables (see, for example
[8], [7], [10]) where the bifurcation set is determined in terms of the topological
properties of the fibers (Euler characteristic, transversal crossing with balls,...)
and for polynomials which have only isolated singularities at infinity ([19]).

The aim of this paper is to generalize the results in [16] where the
author proved that the bifurcation set of polynomial functions is contained
in some explicit subsets of C for the case of polynomial maps from C” to
c”.

In order to state the main theorems, let us introduce the following
notion.
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DEerFINITION 1.1. Let e C” arbitrary. The map F is called to be M-tame
at t if there does not exist a sequence {py},—, such that

F;_}Epk) )

where J(F) is the Jacobi matrix of F. We denote by M., (F) the set of 1€ C" at
which F is not M-tame. Let M(F) := Ko(F)U M (F).

<m,

J
llpell — o0, F(px) — ¢ and rank( (

When m =1 the notion of M-tame was introduced by A. Nemethi and
A. Zaharia (see [16] and [17]).

The function v from set of linear maps 4 : C" — C™ to the complex numbers
is defined as follows (see [20]):

v(4) [Aa]].

= inf
{weC™:||lw||=1}

The set of asymptotic critical values at infinity of F is defined by (see [13] and
[20])

K, (F) := {t e C"|there exists a sequence x; — oo such that
F(x;) — t and ||x/]| - v(dF(x;)) — 0}.

Let K(F) := Ko(F)UK, (F). We say that K(F) is the set of generalized critical
values of F.
It is proven in [16] that

THEOREM 1.2 (See [16]). Let f:C" — C be a polynomial function. Then
B(f) = M(f).
In Section 2 of this paper, we prove the following theorem.

THEOREM 1.3. Let F: C" — C™ be a polynomial map. Then
B(F) € M(F) < K(F).

In Section 3, we introduce the notion of Newton non-degenerate polynomial
mappings and a proper subset X(F) of C"™ which is constructed explicitly in
terms of the Newton polyhedrons of coordinate polynomials Fi, F5, ..., F,. Our
second main theorem (Theorem 3.4) shows that if the polynomial map F is
Newton non-degenerate then B(F) < X(F). This is an extension of Theorem 2 in
[16].

In the last section, we prove that for polynomial maps F : C" — C"! the
problem of computing bifurcation values is, in some sense, a topological problem.
More precisely, we show that if F is a locally C°-trivial fibration then it is a
locally C*-trivial fibration (Theorem 4.3).
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2. M-tameness and generalized critical values at infinity

In this section, we will prove that the bifurcation set of a polynomial map is
contained in the set of values at which the map is not M-tame, as well as the set
of generalized critical values of the map.

Proof of Theorem 1.3. Let {* = (£9,8),...,1%) be a regular value of F such
that 1° ¢ M., (F). We will show that F defines a trivial fibration in some neigh-
bourhood of #°.

Indeed, since F is M-tame at ¢° there exist a closed ball B, centered at the
origin, in C" and a neighbourhood D of #° such that

rank<J(F)_3(x)) >m, xeF '(D)\B.

Hence, for each i = 1,...,m, we can construct in F~Y(D)\B a smooth vector field
v’ such that
Qx> =0
(o', grad Fiy =1
' grad F) =0, j#1i, _ _
. 0p 0p
where by grad ¢ of a function ¢ we mean the vector |—,...,—|. By
0x1 0x,

integrating those vector fields we obtain a diffeomorphism trivializing the
restriction

Fir-1(p) :Fﬁl(D) — D.
Thus
B(F) € M, (F)UKy(F) = M(F).

Now, let * € M, (F) be an arbitrary regular value of F. To complete the
proof, it suffices to show that ° € K. (F). Because F is not M-tame at ¢°, there
exists a sequence {pr},—; = C" such that

Dk

Then, since /° is a regular value of F there is a sequence {s};~,; = C"
satisfying

lpll — o,  F(pr) — ° and rank(J(F)(pk)) <m.

m
pe=>_ ski-grad Fi(p),
P

where sk = (Sk.1,5%,2,---,S.m). Therefore, according to the Curve Selection
Lemma (see [15], [17]), there exist analytic curves ¢(s) in C" and A(s) =
(A1(s), 22(s5), ..., Am(s)) in C™ such that
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(al) llms~>0 ||¢(S)(||

(42) tim,_o F(pls)) = "
(@) l6) = 27, 19 grad F(p).
We have
HaF() = min |3 o arad )|
So
ol .
) T = el |- e R = ol vaF ()

On the other hand, we have the following estimation

d|g|*
2 ds

= |Rep, 0" < <9, 0"

- ’<21:/1 grad Fi(w),q)’>
=[x 2 < - |2,

ds

If F(p(s)) = ° then ||¢(s)|| is constant, which contradicts condition (al). Hence
condition (a2) implies that we may express F(¢(s)) as follows:

F(p(s)) = (° + cs” + terms of higher exponents,
where ¢ € C"\{(0,...,0)} and p > 0. In particular, we get

o)t
Hence

(2) ord(|lg|%) — ord(||A]) = p > 0.
It follows from (1) and (2) that

lim lg]| - v(dF (p)) = 0.
Combining this with (al) and (a2) we obtain ° € K., (F). O

Remark 2.1. (i) Theorem 1.3 was proved in [4] for mixed functions and in
[5] for real maps. (ii) It follows from Theorem 1.3 that B(F) = K(F). This fact
was proved in [20], [6] and [11]. However, the equality does not occur in
general, see [9], Proposition 3.2. The following example show that the M-
tameness is indeed better in controlling the topology of the map at infinity than
the generalized critical values.
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Example 2.2. Let
F=(xy—1,y%):C' - C%

It is easy to check that Ky(F)={(—1,0)} and B(F) = Ky(F), (see [9]).
To compute M., (F), we see that

J(F
(3) rank( ( _)(p)) <2
P
if and only if y=0 or xx — yy+2zz2=0, where p= (x,y,z). The first case
implies (—1,0) € M, (F). In the second case, let (¢, %) := F(p), one can assume
that y # 0, we obtain

41 b
zZ = R
Y Y

where (yy)® — (1; + 1)(7 + 1)y7 — 26,5, = 0. Then, we can easily check that
there exists a sequence of point (x, y,z) going to infinity and satisfying (3) only
when (71,%,) tends to (—1,0).

Thus M., = {(—1,0)}. It means B(F) = Ko(F)U M (F). Nevertheless, it
was shown in [9] that the set of asymptotic critical values K., (F) contains at least

(0,0) ¢ B(F).

We know from [20, 11] that the set K(F) of generalized critical values of a
polynomial map F is an algebraic set, but it is not easy to find a defining equa-
tion for such a set. In the later example, we give a defining equation for B(F),
M(F) and K(F) where they are all equal. First of all, we recall the notion of
Gaffney number which can be used to determine the asymptotic critical values.

DEFINITION 2.3 (See [6]). Let 4:C" — C™ be a linear mapping (n > m).
Let a =[a;] be the matrix of 4. Let M;, where I = (i1,...,i,), denote an
(m x m) minor of a given by columns indexed by I. Let M;(j) denote an
(m—1xm—1) minor given by columns indexed by J and by deleting the jth
row (if m =1 we put M,;(j) =1). Then by the Gaffney number of A we mean
the number

(M)
9(4) = NENVEN

(s M5 (17

(If this number is not defined we put g(4) =0.)

It deduces from [11, Propositions 2.2 and 2.3] or [13, Remark 4.1] that

ProOPOSITION 2.4. Let F:C" — C" be a polynomial mapping. Then

K (F):={te C"|there exists a sequence x; — oo such that

F(x;) — t and ||x/| - g(dF (x;)) — 0}.
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Example 2.5. Let
F=(y+1,(xyz+D)(xyz+z-1)):C* = C%
For #; #1 we have
F i (n,0) ={((n = 1)/y,»,2) | ye C,i=1,2},
where z; satisfies
(4) n(n =1z +zi— (1+6)=0,

see [9]. Note that if #;(¢; — 1) — 0 then either z; or z; goes to infinity.
One can show that

Ko(F)={(u,v) |lu=1,ve C}U{(u,v) [4u(u—1)(v+1)+1=0}
and
B(F) = {(u,v) |u(u—1)=0}U{(u,v) |[4u(u—1)(v+1)+1=0}.

Let consider (a,b) € K,(F). By the definition of asymptotic critical values
and Proposition 2.4, there exists a sequence {(xk, yx,zx)} going to infinity such
that

(1, 15) := F(x, yi, 2x) — (a,b)
and
”(xka J’kyzk)” . g(dF(xk, Vi, Zk)) — 0.

By a computation we obtain
g(dF (xk, yi, zx))

_ 22K (eF = Dz + 12 (o) + 4] ?) _
oel® 1l + 125 = Dzie+ 17 + Lzl (ol + )26 = 117

Put Ay = [2¢5(t¥ — 1)z + 1|7 and By = |xi|* + |yx|>. There are three cases.

Casi 1: Ay — oo. It implies from (4) that

k 2
Ak‘Z(zz Jrl)i1

Zk

Therefore z; — 0, and then By = |x;|* + |yx|*> — 0. This follows that

2
Xicy Vies Zk
1Gves s 20017+ g(AF Gy, 20))? = —— W22
TR ]
Ar By Ay

a contradiction.

CASE 2: Ay /> oo and zx — oo. It is obvious that k(K +1)—0. In
particular (a,b) € B(F).
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CASE 3: Ay /4 oo and z; 4 oo. In this case, we see that By — oo and the
sequence {|zx|} is bounded from above by some positive constant ¢. We have

(et v z6) 1> - Ak

= ' .
T+ 25 e ek =12
By

et vies 201 - 9 (AF (s yies210))* =

Since ||(xk, vk, zk)|| - 9(AF (xk, yi,2zx)) — 0 and (X, Y, zx) — 00 _as k — o0 we

- o 2(tk +1
get Ay — 0. Combining this with the fact 4; = %

2(b+1). Therefore
A = 2058 = 1)z + 112 — |da(a — D) (b+ 1) + 1%

That means 4a(a—1)(b+1)+1=0, in other words (a,b) € B(F).
Thus, we have shown that K(F) < B(F). Moreover, according to Theorem
1.3 that

— 1‘ gives us z; —

B(F) € M(F) =< K(F).
Then

3. Newton polyhedrons

In this section, we will generalize the notion of Newton non-degeneracy of
polynomial functions for polynomial maps and give an estimation for the bifur-
cation set B(F) of F in terms of F;’s Newton polyhedrons.

Firstly, let us recall some notations and definitions, see [12], [16]. Let
f:C"— C be a polynomial function. We express f as follows:

f@ =Y a

n
ueZl,

where Z-( denotes the set of non-negative integers. The support supp(f) is
defined to be {o|a, #0}. We denote I'_(f) to be the convex hull of the set
{0} Usupp(f). The Newton boundary at infinity T, (f) is by definition the union
of the closed faces of the polyhedron I'_(f) which do not contain the origin.
Here and below, by face we shall understand face of any dimension. For each
closed face A of I',(f) we denote by fa the polynomial ), . axz”.

The polynomial f is called Newton non-degenerate if for each face
AeT,(f), the system of equations

Un U _Un_

= == 0
521 622 OZ,,

has no solutions in (C*)". The polynomial f is called convenient if the inter-
section of supp(f) with each coordinate axis is non-empty.

Let supp(f) be the convex hull in R” of the set supp(f). A closed face A of
supp(f) is called bad if
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(i) the affine subvariety of dimension = dim(A) spanned by A contains the

origin, and
(ii) there exists a hyperplane H = R" with equation aja; + ayon + - - + a,0
=0, where oy,a,...,a, are the coordinates in R”, such that

(ii;) there exist i and j with a;-a; <0, and

(ii,) H Nsupp(f) = A.
More geometrically, the condition (ii,) says that the hyperplane H intersects the
region of R” whose coordinates are all positive. We denote by # the set of bad
faces of supp(f). For Ae %, we define

Zo(fa) = {/a(z")|z° € (C*)" and grad fu(=*) = 0}.

Let

2o ()= U Zo(/a)-

Ae#R

It is clear that X((fa) = Ko(fa). This, together with an algebraic version of
Sard’s theorem (see [1]), yields that X, (f) is a finite set.

The following result gives an estimation for the bifurcation set B(f) of f in
terms of its Newton boundary at infinity.

THEOREM 3.1 ([12], [2], [16]). Let f :C" — C be a Newton non-degenerate
polynomial function. Then the following statements hold.

(i) If f is convenient, then B(f) = Ko(f).

(i) If f is not convenient, then B(f) < Ko(f)UZ,(f)U{f(0)}.

Now, let F = (F,F,...,F,):C"— C" be a polynomial mapping. As-
sume that F;(0,0,...,0) =0. In the following definition, we generalize the
notion of Newton non-degeneracy for polynomial maps (see [18] for the local
case).

DerNITION 3.2. We denote by I'_(F) the following set:
T_(F):=T_(F) x - xT_(Fp).

The dual space of R” can be canonically identified with R” itself by the Euclidean
inner product. By a covector we mean the integral dual vector. We use column
vectors to show the dual vectors. For a given covector P = (py,...,p,)", for
each = (f,,...,5,) e R", P(p) is defined by fP =3, f;pi. Denote A(P;F)
= (A(P; F1),...,A(P; F,)), where A(P; F;) is the face of the polyhedron I'_(F;) on
which the restriction P| ) attains its minimum. We define I'.o(F) to be the
set of m-tuples A(P;F) in I'_(F) with (0,...,0) ¢ A(P; F).

The map F is called Newton non-degenerate (or non-degenerate for short) if

{a: rank(J((F1)a,» (F2)a,s- -5 (Fin), ) (@) <m}N(C)" =0
for any m-tuples (A}, Ay, ..., A,) in Ty (F).
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For each A = (A1, As,...,Ay), where A; € B(F;) for all i=1,...,m, set
Zo(Fa) = {((F1)a, (2°), (F2)a, (%), - (F)a, (2°)) | 2 € (C*)" and
rank(J((F1)a,, (F2)a,s -+ (Fu)a,)(2°)) < m}.

m

Put

3. (F) = U 3! (Fa).
AeB(F\)XB(Fr)x-xB(Fy)

One notes that X, (F) < C™ is a semi-algebraic subset of dimension less than m.

THEOREM 3.3. Let F = (F1,F,,...,F,) : C" — C" be a non-degenerate poly-
nomial map. Then

Mw(F) EZW(F)U U{l: (ll,lz,...,lm) eC™: [,‘ZF,‘<O,O,...,O>}.
i=1

Proof. Without loss of generality, we may assume that F;(0,0,...,0) =0
for all i=1,...,m. Let 1= (1),...,1%) € M..(F) such that 0 # 0 for all i =
1,...,m. We need to prove that * e X, (F).

Indeed, since t° € M, (F), according to the Curve Selection Lemma, there
exist analytic curves ¢(s) in C" and A(s) = (41(s), 22(5),. .., 4n(s)) in C™, such
that

(b1) lim,_oflp(s)| = o0,

(b2) lim,_¢ F(p(s)) =

(b3) ()—Z”: Ai(s )gradF( (5))-

Set I:={i|p; #0}. Because (bl) then I # (. For each iel we ex-
press

0;(s) = a;s™ + terms of higher exponents,

where a; # 0, o; € Z and min;c; o; < 0. Similarly, let J := {j|4; # 0}. Because
(b3) we have J # 0. For each jeJ, we also express

Ai(8) = e;s” + terms of higher exponents,

where ¢; € C\{0}.

Since tjo #0 for all j=1,...,m, it follows from (b2) that Fj(p(s)) # 0 for
all s small enough. Hence, the restr1ct1on of Fj on C’ is non-trivial. Therefore
T (F)NR! #0. (Here C’ ={x=(x,.. x,,)eC |x;i=0,iel}; R is de-
fined 51m11arly) Let d; be the minimum of the linear function P:=),_; 0
on T_(F,)NR!. Let A] ={peT_(F)NR'|P(p) =d;}. Then, for iel, we
may rewrite (b3) as follows:

(5) Zef? (a)s%HP—% 4o = @™ 4
1
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where a = (a;) € (C*)". Note that the set A; = R’ contains exponents =
(By,---,B,) of monomials of (F}), where f; = 0 for i¢ 1. It follows that (F}),
does not depend on variables x; with i¢l

Denote

[ 7 1 . L — ) — .

I{ze[‘r}g}l(d]+pj ;) ot,}
and

J’:{jechij-+pj=r;1€ip(dz+pz)}-

We see that i ¢ I’ if and only if

0(Fj)y,
(6) ej———(a) =0.
j; axi
Moreover, if i eI’ then
3 O(Fj)y, _
ef 6X (Cl) =daj
jel! i

We consider the following possibilities.

Casg 1: The set I' is non-empty. Then, for all jeJ we have
Fi(p(s)) = (Fj)a, (a)s + terms of higher exponents.

If (Fj), ( ) # 0 then d; >0, unless Fj(¢p(s)) — oo as s — 0, contradicts to (b2).
However if d; > 0 then F( (s)) — 0 and therefore tO =0=F;(0,0,...,0), con-
tradicts to the hypothesis. Thus, we always have

d; - (Fj)A,(a) =0.

According to the Euler relation, we get

0(F)
0=d Z(xlal Ox A
iel i
Then
ZZM@ (a)
jelJiel Xi
a(
= Z oiaiej———- +Zocla, Ze, 6 .
iel’ jelJ’ i¢l jelJ! xl

Consider this equation with (6) we obtain the following
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. d
Furthermore, we observe that for all iel’ then oc,-:mln/:h,,,m%
. . d
and according to (5), for all i€/ then min,_;__ . % < o;. Therefore, all

numbers o; with i eI’ are equal and non-zero. This, together with the above
equation yields

It means, from (5), that
Z a;a; = 0.
iel’

This is impossible due to a; # 0 for all ie .

CaSE 2: The set I' is empty. For all i=1,...,n we have
0(Fj)y,
¢ ~(a) =0
/; axi

In other words
> e grad(F), (a) = 0.
jeJ!
Since ¢; # 0 for all jeJ' the above equality implies
rank(J((F1)y,» (), (Fa)a, ) (@) <

Because F is non-degenerate, by the definition of the Newton non-degeneracy,
we have 0 e A; for every j=1,...,m, ie., A; is a bad face and d;=0. As a
consequence, we get

Fi(p(s)) = (Fj)a,(a) + terms of positive exponents.
So 1) = (Fj)a(a). Tt means € T, (F). O
Denote by %(F) the following set:

m

S(F) = Ko(F)UZ,,(F)U J{r = (t1,...,tm) € C" | 1; = F(0,0,...,0)}.
i=1

THEOREM 3.4. Let F = (Fi,F»,...,Fy) : C" — C™ be a non-degenerate poly-
nomial map. Then

B(F) < X(F).
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Proof. The proof is straightforward from Theorem 1.3 and Theorem 3.3.
]

Remark 3.5. (i) A version of Theorem 3.4 was performed for mixed
functions in [4]. (ii) After this paper was accepted for publication, we found
out that Theorem 3.4 is proved in [3] for more general cases.

4. Case of one dimensional

In this section, we consider the polynomial maps F from C" to C"~! whose
fibers are one complex dimensional. We show that for those maps, the problem
of determining the bifurcation values is actually a topological problem. More
precisely, we prove that if F is a locally C’-trivial fibration then it is a locally
C®-trivial fibration. We start with the following.

THEOREM 4.1. Let F: M — N be a smooth map between smooth manifolds
where dimg M = dimg N + 2. Let ty be a reqular value of F. Assume that F is
a locally C°-trivial fibration at to. Then F is a locally C*-trivial fibration at t,.

Before proving the theorem, let us recall some definitions and results. A
homotopy of a continuous map /: X — Y between topological spaces is a con-
tinuous map H : X x [0;1] — Y, such that H(x,0) = i(x) for every x e X.

Let E, B be topological spaces and 7 : E — B be a continuous map. We
call 7 a fibration or equivalently, we say that it has the homotopy lifting property,
if for every continuous map /&: X — E whose source X is a polytope, every
homotopy of mo/h lifts to a homotopy of A.

The key result we use in this section is the following.

LemmA 4.2 (See [14], Corollary 32). Let n: E — B be a (surjective, smooth)
submersion-fibration, where E and B are smooth manifolds such that dimg E =
dimg B+ 2. Then = is a locally C*-trivial fibration.

Proof of Theorem 4.1. Tt follows from the hypothesis that there exist a
neighborhood D of # and a homeomorphism ® : F~!'(D) — F~!(t) x D such
that the following diagram

F'YD) —2 F'(ty) x D

D

commutes.

Since ® is a homeomorphism and projections are fibrations then, the restric-
tion Fjp-1(p) is also a fibration. According to Lemma 4.2, the restriction Fiz-1(p)
is a C*-trivial fibration.
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THEOREM 4.3. Let F : C" — C"! be a polynomial map and ty be a regular
value of F.  Then ty ¢ B..(F) if and only if F is a locally C°-trivial fibration at t.

Proof.  Since t; is a regular value of F then there exists a neighbourhood
D of 1y such that the restriction Fjz-1(p) is a submersion. The proof is then a
consequence of Theorem 4.1. O

THEOREM 4.4. Let ty € N be a regular value of F. Then it is regular at
infinity if and only if there exists a small ball D centered at t;, such that the
inclusion of each fiber F~'(t) into F~'(D) is a weak homotopy equivalence, for all
teD.

Before proving the theorem, we recall the followings.

DErFINITION 4.5 ([14]). Two homotopies
HH :Xx[0;1] =Y

are said to have the same germ if they coincide in a neighborhood of the subspace
X x {0}.

DEFINITION 4.6 ([14]). Let n: E — B be a continuous map, where E, B are
topological spaces. We call = a homotopic submersion, or equivalently say that it
has the germi-of-homotopy lifting property, if for every continuous map /: X — E
whose source X is a polytope, every germ-of-homotopy of z o A lifts to a germ-of-
homotopy of A.

Lemma 4.7 (See [14], Corollary 13). Let n: E — B be a surjective homotopic
submersion. If the inclusion of each fiber into E is a weak homotopy equivalence.
Then w is a fibration.

Proof of Theorem 4.4. 1f t, is regular at infinity then there is a small ball D
centered at #y, such that the restriction Fz-1(p) is trivial. It is easy to prove that
the inclusion of each fiber F~!(¢) into F~!(D) is a weak homotopy equivalence,
for all 1€ D.

Let us assume that there is a ball D centered at 7y, such that the inclusion
of each fiber F~!(¢) into F~!(D) is a weak homotopy equivalence for all € D
and the restriction Fig-1(p) is surjective. It deduces from Lemma 4.7 that
F:F7Y(D)— D is a fibration. By applying Lemma 4.2 we obtain that F is
differentially trivial at . O
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