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Abstract

Let F ¼ ðF1;F2; . . . ;FmÞ : Cn ! Cm be a polynomial dominant mapping with

n > m. In this paper we give the relations between the bifurcation set of F and

the set of values where F is not M-tame as well as the set of generalized critical values

of F . We also construct explicitly a proper subset of Cm in terms of the Newton

polyhedrons of F1;F2; . . . ;Fm and show that it contains the bifurcation set of F . In the

case m ¼ n� 1 we show that F is a locally Cy-trivial fibration if and only if it is a

locally C 0-trivial fibration.

1. Introduction

Let F ¼ ðF1;F2; . . . ;FmÞ : Cn ! Cm be a polynomial dominant mapping with
n > m. It is well-known that the mapping F is a locally Cy-trivial fibration
outside a bifurcation set BðF Þ (see [21]). In general, the set BðFÞ is larger than
K0ðFÞ—the set of critical values of F . It contains also the set ByðF Þ of critical
values at infinity. Roughly speaking, the set ByðFÞ consists of points at which F
is not a locally Cy-trivial fibration at infinity (i.e., outside a compact set).

It is a natural question to ask how the set BðFÞ can be computed. The
answer was given for polynomial functions in two variables (see, for example
[8], [7], [10]) where the bifurcation set is determined in terms of the topological
properties of the fibers (Euler characteristic, transversal crossing with balls, . . .)
and for polynomials which have only isolated singularities at infinity ([19]).

The aim of this paper is to generalize the results in [16] where the
author proved that the bifurcation set of polynomial functions is contained
in some explicit subsets of C for the case of polynomial maps from Cn to
Cm.

In order to state the main theorems, let us introduce the following
notion.
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Definition 1.1. Let t A Cm arbitrary. The map F is called to be M-tame
at t if there does not exist a sequence fpkgyk¼1 such that

kpkk !y; F ðpkÞ ! t and rank
JðF ÞðpkÞ

pk

� �
am;

where JðFÞ is the Jacobi matrix of F . We denote by MyðF Þ the set of t A Cm at
which F is not M-tame. Let MðF Þ :¼ K0ðFÞUMyðFÞ.

When m ¼ 1 the notion of M-tame was introduced by A. Nemethi and
A. Zaharia (see [16] and [17]).

The function n from set of linear maps A : Cn ! Cm to the complex numbers
is defined as follows (see [20]):

nðAÞ ¼ inf
fo ACm:kok¼1g

kAok:

The set of asymptotic critical values at infinity of F is defined by (see [13] and
[20])

KyðF Þ :¼ ft A Cm j there exists a sequence xl !y such that

F ðxlÞ ! t and kxlk � nðdFðxlÞÞ ! 0g:

Let KðFÞ :¼ K0ðF ÞUKyðFÞ. We say that KðFÞ is the set of generalized critical
values of F .

It is proven in [16] that

Theorem 1.2 (See [16]). Let f : Cn ! C be a polynomial function. Then

Bð f ÞJMð f Þ:

In Section 2 of this paper, we prove the following theorem.

Theorem 1.3. Let F : Cn ! Cm be a polynomial map. Then

BðFÞJMðFÞJKðF Þ:

In Section 3, we introduce the notion of Newton non-degenerate polynomial
mappings and a proper subset SðFÞ of Cm which is constructed explicitly in
terms of the Newton polyhedrons of coordinate polynomials F1;F2; . . . ;Fm. Our
second main theorem (Theorem 3.4) shows that if the polynomial map F is
Newton non-degenerate then BðF ÞJSðFÞ. This is an extension of Theorem 2 in
[16].

In the last section, we prove that for polynomial maps F : Cn ! Cn�1 the
problem of computing bifurcation values is, in some sense, a topological problem.
More precisely, we show that if F is a locally C 0-trivial fibration then it is a
locally Cy-trivial fibration (Theorem 4.3).
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2. M-tameness and generalized critical values at infinity

In this section, we will prove that the bifurcation set of a polynomial map is
contained in the set of values at which the map is not M-tame, as well as the set
of generalized critical values of the map.

Proof of Theorem 1.3. Let t0 ¼ ðt01 ; t02 ; . . . ; t0mÞ be a regular value of F such
that t0 B MyðF Þ. We will show that F defines a trivial fibration in some neigh-
bourhood of t0.

Indeed, since F is M-tame at t0 there exist a closed ball B, centered at the
origin, in Cn and a neighbourhood D of t0 such that

rank
JðFÞðxÞ

x

� �
> m; x A F �1ðDÞnB:

Hence, for each i ¼ 1; . . . ;m, we can construct in F �1ðDÞnB a smooth vector field
vi such that

hvi; xi ¼ 0

hvi; grad Fii ¼ 1

hvi; grad Fji ¼ 0; j0 i;

where by grad j of a function j we mean the vector
qj

qx1
; . . . ;

qj

qxn

� �
. By

integrating those vector fields we obtain a di¤eomorphism trivializing the
restriction

FjF �1ðDÞ : F
�1ðDÞ ! D:

Thus

BðF ÞJMyðF ÞUK0ðFÞ ¼MðFÞ:
Now, let t0 A MyðFÞ be an arbitrary regular value of F . To complete the

proof, it su‰ces to show that t0 A KyðF Þ. Because F is not M-tame at t0, there
exists a sequence fpkgyk¼1 HCn such that

kpkk !y; F ðpkÞ ! t0 and rank
JðFÞðpkÞ

pk

� �
am:

Then, since t0 is a regular value of F there is a sequence fskgyk¼1 HCm

satisfying

pk ¼
Xm
i¼1

sk; i � grad FiðpkÞ;

where sk ¼ ðsk;1; sk;2; . . . ; sk;mÞ: Therefore, according to the Curve Selection
Lemma (see [15], [17]), there exist analytic curves jðsÞ in Cn and lðsÞ ¼
ðl1ðsÞ; l2ðsÞ; . . . ; lmðsÞÞ in Cm such that
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(a1) lims!0kjðsÞk ¼y;
(a2) lims!0 FðjðsÞÞ ¼ t0;
(a3) jðsÞ ¼

Pm
i¼1 liðsÞ grad FiðjðsÞÞ:

We have

nðdFðjÞÞ ¼ min
kok¼1

Xm
i¼1

oi grad FiðjÞ
�����

�����:
So

kjk2

klk ¼ kjk �
Xm
i¼1

li

klk � grad FiðjÞ
�����

�����b kjk � nðdFðjÞÞ:ð1Þ

On the other hand, we have the following estimation

dkjk2

2 ds

�����
����� ¼ jRehj; j 0ija jhj; j 0ij
¼

Xm
i¼1

li grad FiðjÞ; j 0
* +�����

�����
¼ l;

dFðjÞ
ds

� �����
����a klk � dFðjÞ

ds

����
����:

If FðjðsÞÞ1 t0 then kjðsÞk is constant, which contradicts condition (a1). Hence
condition (a2) implies that we may express F ðjðsÞÞ as follows:

FðjðsÞÞ ¼ t0 þ csr þ terms of higher exponents;

where c A Cmnfð0; . . . ; 0Þg and r > 0: In particular, we get

ord
dFðjÞ
ds

����
����

� �
¼ r� 1:

Hence

ordðkjk2Þ � ordðklkÞb r > 0:ð2Þ
It follows from (1) and (2) that

lim
s!0
kjk � nðdF ðjÞÞ ¼ 0:

Combining this with (a1) and (a2) we obtain t0 A KyðFÞ. r

Remark 2.1. (i) Theorem 1.3 was proved in [4] for mixed functions and in
[5] for real maps. (ii) It follows from Theorem 1.3 that BðFÞJKðFÞ. This fact
was proved in [20], [6] and [11]. However, the equality does not occur in
general, see [9], Proposition 3.2. The following example show that the M-
tameness is indeed better in controlling the topology of the map at infinity than
the generalized critical values.
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Example 2.2. Let

F ¼ ðxy� 1; y2zÞ : C3 ! C2:

It is easy to check that K0ðFÞ ¼ fð�1; 0Þg and BðFÞ ¼ K0ðFÞ, (see [9]).
To compute MyðFÞ, we see that

rank
JðF ÞðpÞ

p

� �
a 2ð3Þ

if and only if y ¼ 0 or xx� yyþ 2zz ¼ 0; where p ¼ ðx; y; zÞ. The first case
implies ð�1; 0Þ A MyðF Þ: In the second case, let ðt1; t2Þ :¼ FðpÞ, one can assume
that y0 0, we obtain

x ¼ t1 þ 1

y
; z ¼ t2

y2
;

where ðyyÞ3 � ðt1 þ 1Þðt1 þ 1Þyy� 2t2t2 ¼ 0: Then, we can easily check that
there exists a sequence of point ðx; y; zÞ going to infinity and satisfying (3) only
when ðt1; t2Þ tends to ð�1; 0Þ:

Thus My ¼ fð�1; 0Þg. It means BðF Þ ¼ K0ðFÞUMyðF Þ: Nevertheless, it
was shown in [9] that the set of asymptotic critical values KyðFÞ contains at least
ð0; 0Þ B BðF Þ:

We know from [20, 11] that the set KðFÞ of generalized critical values of a
polynomial map F is an algebraic set, but it is not easy to find a defining equa-
tion for such a set. In the later example, we give a defining equation for BðF Þ,
MðF Þ and KðF Þ where they are all equal. First of all, we recall the notion of
Ga¤ney number which can be used to determine the asymptotic critical values.

Definition 2.3 (See [6]). Let A : Cn ! Cm be a linear mapping (nbm).
Let a ¼ ½aij � be the matrix of A. Let MI , where I ¼ ði1; . . . ; imÞ, denote an
ðm�mÞ minor of a given by columns indexed by I . Let MJð jÞ denote an
ðm� 1�m� 1Þ minor given by columns indexed by J and by deleting the jth
row (if m ¼ 1 we put MJð jÞ ¼ 1). Then by the Ga¤ney number of A we mean
the number

gðAÞ ¼ ð
P

I jMI j2Þ1=2

ð
P

J; j jMJð jÞj2Þ1=2
:

(If this number is not defined we put gðAÞ ¼ 0:)

It deduces from [11, Propositions 2.2 and 2.3] or [13, Remark 4.1] that

Proposition 2.4. Let F : Cn ! Cm be a polynomial mapping. Then

KyðF Þ :¼ ft A Cm j there exists a sequence xl !y such that

FðxlÞ ! t and kxlk � gðdF ðxlÞÞ ! 0g:
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Example 2.5. Let

F ¼ ðxyþ 1; ðxyzþ 1Þðxyzþ z� 1ÞÞ : C3 ! C2:

For t1 0 1 we have

F �1ðt1; t2Þ ¼ fððt1 � 1Þ=y; y; ziÞ j y A C�; i ¼ 1; 2g;
where zi satisfies

t1ðt1 � 1Þz2i þ zi � ð1þ t2Þ ¼ 0;ð4Þ
see [9]. Note that if t1ðt1 � 1Þ ! 0 then either z1 or z2 goes to infinity.

One can show that

K0ðF Þ ¼ fðu; vÞ j u ¼ 1; v A CgU fðu; vÞ j 4uðu� 1Þðvþ 1Þ þ 1 ¼ 0g
and

BðFÞ ¼ fðu; vÞ j uðu� 1Þ ¼ 0gU fðu; vÞ j 4uðu� 1Þðvþ 1Þ þ 1 ¼ 0g:
Let consider ða; bÞ A KyðFÞ. By the definition of asymptotic critical values

and Proposition 2.4, there exists a sequence fðxk; yk; zkÞg going to infinity such
that

ðtk1 ; tk2 Þ :¼ F ðxk; yk; zkÞ ! ða; bÞ
and

kðxk; yk; zkÞk � gðdFðxk; yk; zkÞÞ ! 0:

By a computation we obtain

gðdF ðxk; yk; zkÞÞ2

¼ j2tk1 ðtk1 � 1Þzk þ 1j2ðjxkj2 þ jykj2Þ
jxkj2 þ jykj2 þ j2tk1 ðtk1 � 1Þzk þ 1j2 þ jzkj4ðjxkj2 þ jykj2Þj2tk1 � 1j2

:

Put Ak ¼ j2tk1 ðtk1 � 1Þzk þ 1j2 and Bk ¼ jxkj2 þ jykj2: There are three cases.

Case 1: Ak !y: It implies from (4) that

Ak ¼
2ðtk2 þ 1Þ

zk
� 1

����
����2:

Therefore zk ! 0, and then Bk ¼ jxkj2 þ jykj2 !y: This follows that

kðxk; yk; zkÞk2 � gðdFðxk; yk; zkÞÞ2 ¼
kðxk; yk; zkÞk2

1

Ak

þ 1

Bk

þ jzkj
4 � j2tk1 � 1j2

Ak

!y;

a contradiction.

Case 2: Ak 6!y and zk !y. It is obvious that tk1 ðtk1 þ 1Þ ! 0. In
particular ða; bÞ A BðF Þ:
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Case 3: Ak 6!y and zk 6!y. In this case, we see that Bk !y and the
sequence fjzkjg is bounded from above by some positive constant c. We have

kðxk; yk; zkÞk2 � gðdF ðxk; yk; zkÞÞ2 b
kðxk; yk; zkÞk2 � Ak

1þ Ak

Bk

þ jcj4 � j2tk1 � 1j2
:

Since kðxk; yk; zkÞk � gðdF ðxk; yk; zkÞÞ ! 0 and ðxk; yk; zkÞ !y as k !y we

get Ak ! 0. Combining this with the fact Ak ¼
2ðtk2 þ 1Þ

z
� 1

����
����2 gives us zk !

2ðbþ 1Þ. Therefore

Ak ¼ j2tk1 ðtk1 � 1Þzk þ 1j2 ! j4aða� 1Þðbþ 1Þ þ 1j2:
That means 4aða� 1Þðbþ 1Þ þ 1 ¼ 0, in other words ða; bÞ A BðFÞ.

Thus, we have shown that KðF ÞJBðFÞ. Moreover, according to Theorem
1.3 that

BðFÞJMðFÞJKðF Þ:
Then

BðF Þ ¼MðFÞ ¼ KðFÞ:

3. Newton polyhedrons

In this section, we will generalize the notion of Newton non-degeneracy of
polynomial functions for polynomial maps and give an estimation for the bifur-
cation set BðFÞ of F in terms of Fi’s Newton polyhedrons.

Firstly, let us recall some notations and definitions, see [12], [16]. Let
f : Cn ! C be a polynomial function. We express f as follows:

f ðzÞ :¼
X

a AZ n
b0

aaz
a;

where Zb0 denotes the set of non-negative integers. The support suppð f Þ is
defined to be fa j aa 0 0g: We denote G�ð f Þ to be the convex hull of the set
f0gU suppð f Þ: The Newton boundary at infinity Gyð f Þ is by definition the union
of the closed faces of the polyhedron G�ð f Þ which do not contain the origin.
Here and below, by face we shall understand face of any dimension. For each
closed face D of Gyð f Þ we denote by fD the polynomial

P
a AD aaz

a:
The polynomial f is called Newton non-degenerate if for each face

D A Gyð f Þ; the system of equations

qfD

qz1
¼ qfD

qz2
¼ � � � ¼ qfD

qzn
¼ 0

has no solutions in ðC�Þn: The polynomial f is called convenient if the inter-
section of suppð f Þ with each coordinate axis is non-empty.

Let suppð f Þ be the convex hull in Rn of the set suppð f Þ: A closed face D of
suppð f Þ is called bad if
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(i) the a‰ne subvariety of dimension ¼ dimðDÞ spanned by D contains the
origin, and

(ii) there exists a hyperplane HHRn with equation a1a1 þ a2a2 þ � � � þ anan
¼ 0, where a1; a2; . . . ; an are the coordinates in Rn; such that
(iia) there exist i and j with ai � aj < 0; and
(iib) H V suppð f Þ ¼ D:

More geometrically, the condition (iia) says that the hyperplane H intersects the
region of Rn whose coordinates are all positive. We denote by B the set of bad
faces of suppð f Þ: For D A B, we define

S 00ð fDÞ :¼ f fDðz0Þ j z0 A ðC�Þ
n and grad fDðz0Þ ¼ 0g:

Let

Syð f Þ :¼ 6
D AB

S 00ð fDÞ:

It is clear that S 00ð fDÞHK0ð fDÞ: This, together with an algebraic version of
Sard’s theorem (see [1]), yields that Syð f Þ is a finite set.

The following result gives an estimation for the bifurcation set Bð f Þ of f in
terms of its Newton boundary at infinity.

Theorem 3.1 ([12], [2], [16]). Let f : Cn ! C be a Newton non-degenerate
polynomial function. Then the following statements hold:

(i) If f is convenient, then Bð f Þ ¼ K0ð f Þ:
(ii) If f is not convenient, then Bð f ÞJK0ð f ÞUSyð f ÞU f f ð0Þg:

Now, let F ¼ ðF1;F2; . . . ;FmÞ : Cn ! Cm be a polynomial mapping. As-
sume that Fið0; 0; . . . ; 0Þ ¼ 0. In the following definition, we generalize the
notion of Newton non-degeneracy for polynomial maps (see [18] for the local
case).

Definition 3.2. We denote by G�ðFÞ the following set:

G�ðFÞ :¼ G�ðF1Þ � � � � � G�ðFmÞ:

The dual space of Rn can be canonically identified with Rn itself by the Euclidean
inner product. By a covector we mean the integral dual vector. We use column
vectors to show the dual vectors. For a given covector P ¼ ðp1; . . . ; pnÞ t, for
each b ¼ ðb1; . . . ; bnÞ A Rn, PðbÞ is defined by bP ¼

Pn
i¼1 bi pi. Denote DðP;F Þ

¼ ðDðP;F1Þ; . . . ;DðP;FmÞÞ; where DðP;FiÞ is the face of the polyhedron G�ðFiÞ on
which the restriction PjG�ðFiÞ attains its minimum. We define GyðFÞ to be the

set of m-tuples DðP;FÞ in G�ðFÞ with ð0; . . . ; 0Þ B DðP;F Þ.
The map F is called Newton non-degenerate (or non-degenerate for short) if

fa : rankðJððF1ÞD1
; ðF2ÞD2

; . . . ; ðFmÞDm
ÞðaÞ < mgV ðC�Þn ¼ j

for any m-tuples ðD1;D2; . . . ;DmÞ in GyðF Þ.
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For each D ¼ ðD1;D2; . . . ;DmÞ, where Di A BðFiÞ for all i ¼ 1; . . . ;m, set

S 00ðFDÞ :¼ fððF1ÞD1
ðz0Þ; ðF2ÞD2

ðz0Þ; . . . ; ðFmÞDm
ðz0ÞÞ j z0 A ðC�Þn and

rankðJððF1ÞD1
; ðF2ÞD2

; . . . ; ðFmÞDm
Þðz0ÞÞ < mg:

Put

SyðFÞ :¼ 6
D ABðF1Þ�BðF2Þ�����BðFmÞ

S 00ðFDÞ:

One notes that SyðFÞHCm is a semi-algebraic subset of dimension less than m.

Theorem 3.3. Let F ¼ ðF1;F2; . . . ;FmÞ : Cn ! Cm be a non-degenerate poly-
nomial map. Then

MyðFÞJSyðF ÞU 6
m

i¼1
ft ¼ ðt1; t2; . . . ; tmÞ A Cm : ti ¼ Fið0; 0; . . . ; 0Þg:

Proof. Without loss of generality, we may assume that Fið0; 0; . . . ; 0Þ ¼ 0
for all i ¼ 1; . . . ;m. Let t0 ¼ ðt01 ; . . . ; t0mÞ A MyðFÞ such that t0i 0 0 for all i ¼
1; . . . ;m. We need to prove that t0 A SyðFÞ.

Indeed, since t0 A MyðFÞ, according to the Curve Selection Lemma, there
exist analytic curves jðsÞ in Cn and lðsÞ ¼ ðl1ðsÞ; l2ðsÞ; . . . ; lmðsÞÞ in Cm, such
that

(b1) lims!0kjðsÞk ¼y;
(b2) lims!0 F ðjðsÞÞ ¼ t0;
(b3) jðsÞ ¼

Pm
i¼1 liðsÞ grad FiðjðsÞÞ:

Set I :¼ fi j ji 2 0g: Because (b1) then I 0j: For each i A I we ex-
press

jiðsÞ ¼ ais
ai þ terms of higher exponents;

where ai 0 0, ai A Z and mini A I ai < 0: Similarly, let J :¼ f j j lj 2 0g: Because
(b3) we have J0j: For each j A J, we also express

ljðsÞ ¼ ejs
rj þ terms of higher exponents;

where ej A Cnf0g:
Since t0j 0 0 for all j ¼ 1; . . . ;m, it follows from (b2) that FjðjðsÞÞ0 0 for

all s small enough. Hence, the restriction of Fj on CI is non-trivial. Therefore
GyðFjÞVRI 0j: (Here CI :¼ fx ¼ ðx1; . . . ; xnÞ A Cn j xi ¼ 0; i A Ig; RI is de-
fined similarly). Let dj be the minimum of the linear function P :¼

P
i A I biai

on G�ðFjÞVR I : Let Dj :¼ fb A G�ðFjÞVR I jPðbÞ ¼ djg. Then, for i A I , we
may rewrite (b3) as follows:X

j A J

ej
qðFjÞDj

qxi
ðaÞsdjþrj�ai þ � � � ¼ ais

ai þ � � � ;ð5Þ
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where a ¼ ðaiÞ A ðC�ÞI . Note that the set Dj HRI contains exponents b ¼
ðb1; . . . ; bnÞ of monomials of ðFjÞDj

where bi ¼ 0 for i B I . It follows that ðFjÞDj

does not depend on variables xi with i B I .
Denote

I 0 ¼ i A I

���� min
j A J
ðdj þ rj � aiÞ ¼ ai

� �
and

J 0 ¼ j A J j dj þ rj ¼ min
l A J
ðdl þ rlÞ

� �
:

We see that i B I 0 if and only ifX
j A J 0

ej
qðFjÞDj

qxi
ðaÞ ¼ 0:ð6Þ

Moreover, if i A I 0 then X
j A J 0

ej
qðFjÞDj

qxi
ðaÞ ¼ ai:

We consider the following possibilities.

Case 1: The set I 0 is non-empty. Then, for all j A J we have

FjðjðsÞÞ ¼ ðFjÞDj
ðaÞsdj þ terms of higher exponents:

If ðFjÞDj
ðaÞ0 0 then dj b 0, unless FjðjðsÞÞ !y as s! 0, contradicts to (b2).

However, if dj > 0 then FjðjðsÞÞ ! 0 and therefore t0j ¼ 0 ¼ Fjð0; 0; . . . ; 0Þ, con-
tradicts to the hypothesis. Thus, we always have

dj � ðFjÞDj
ðaÞ ¼ 0:

According to the Euler relation, we get

0 ¼ dj � ðFjÞDj
ðaÞ ¼

X
i A I

aiai
qðFjÞDj

qxi
ðaÞ:

Then

0 ¼
X
j A J 0

X
i A I

aiaiej
qðFjÞDj

qxi
ðaÞ

¼
X

i A I 0; j A J 0
aiaiej

qðFjÞDj

qxi
ðaÞ þ

X
i B I 0

aiai
X
j A J 0

ej
qðFjÞDj

qxi
ðaÞ

 !
:

Consider this equation with (6) we obtain the followingX
i A I 0; j A J 0

aiaiej
qðFjÞDj

qxi
ðaÞ ¼ 0:
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Furthermore, we observe that for all i A I 0 then ai ¼ minl¼1;...;m
dl þ rl

2
and according to (5), for all i A I then minl¼1;...;m

dl þ rl
2

a ai. Therefore, all

numbers ai with i A I 0 are equal and non-zero. This, together with the above
equation yields X

i A I 0; j A J 0
aiej

qðFjÞDj

qxi
ðaÞ ¼ 0:

It means, from (5), that X
i A I 0

aiai ¼ 0:

This is impossible due to ai 0 0 for all i A I .

Case 2: The set I 0 is empty. For all i ¼ 1; . . . ; n we haveX
j A J 0

ej
qðFjÞDj

qxi
ðaÞ ¼ 0:

In other words X
j A J 0

ej gradðFjÞDj
ðaÞ ¼ 0:

Since ej 0 0 for all j A J 0 the above equality implies

rankðJððF1ÞD1
; ðF2ÞD2

; . . . ; ðFmÞDm
ÞðaÞÞ < m:

Because F is non-degenerate, by the definition of the Newton non-degeneracy,
we have 0 A Dj for every j ¼ 1; . . . ;m, i.e., Dj is a bad face and dj ¼ 0. As a
consequence, we get

FjðjðsÞÞ ¼ ðFjÞDj
ðaÞ þ terms of positive exponents:

So t0j ¼ ðFjÞDj
ðaÞ. It means t0 A SyðFÞ: r

Denote by SðF Þ the following set:

SðFÞ :¼ K0ðF ÞUSyðFÞU 6
m

i¼1
ft ¼ ðt1; . . . ; tmÞ A Cm j ti ¼ Fið0; 0; . . . ; 0Þg:

Theorem 3.4. Let F ¼ ðF1;F2; . . . ;FmÞ : Cn ! Cm be a non-degenerate poly-
nomial map. Then

BðFÞJSðF Þ:
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Proof. The proof is straightforward from Theorem 1.3 and Theorem 3.3.
r

Remark 3.5. (i) A version of Theorem 3.4 was performed for mixed
functions in [4]. (ii) After this paper was accepted for publication, we found
out that Theorem 3.4 is proved in [3] for more general cases.

4. Case of one dimensional

In this section, we consider the polynomial maps F from Cn to Cn�1 whose
fibers are one complex dimensional. We show that for those maps, the problem
of determining the bifurcation values is actually a topological problem. More
precisely, we prove that if F is a locally C0-trivial fibration then it is a locally
Cy-trivial fibration. We start with the following.

Theorem 4.1. Let F : M ! N be a smooth map between smooth manifolds
where dimR M ¼ dimR N þ 2: Let t0 be a regular value of F. Assume that F is
a locally C0-trivial fibration at t0. Then F is a locally Cy-trivial fibration at t0.

Before proving the theorem, let us recall some definitions and results. A
homotopy of a continuous map h : X ! Y between topological spaces is a con-
tinuous map H : X � ½0; 1� ! Y , such that Hðx; 0Þ ¼ hðxÞ for every x A X .

Let E, B be topological spaces and p : E ! B be a continuous map. We
call p a fibration or equivalently, we say that it has the homotopy lifting property,
if for every continuous map h : X ! E whose source X is a polytope, every
homotopy of p � h lifts to a homotopy of h.

The key result we use in this section is the following.

Lemma 4.2 (See [14], Corollary 32). Let p : E ! B be a (surjective, smooth)
submersion-fibration, where E and B are smooth manifolds such that dimR E ¼
dimR Bþ 2. Then p is a locally Cy-trivial fibration.

Proof of Theorem 4.1. It follows from the hypothesis that there exist a
neighborhood D of t0 and a homeomorphism F : F �1ðDÞ ! F �1ðt0Þ �D such
that the following diagram

F �1ðDÞ 			!F F �1ðt0Þ �D

F

???ypr2

D

 						
					

commutes.
Since F is a homeomorphism and projections are fibrations then, the restric-

tion FjF �1ðDÞ is also a fibration. According to Lemma 4.2, the restriction FjF �1ðDÞ
is a Cy-trivial fibration. r
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Theorem 4.3. Let F : Cn ! Cn�1 be a polynomial map and t0 be a regular
value of F . Then t0 B ByðF Þ if and only if F is a locally C0-trivial fibration at t0.

Proof. Since t0 is a regular value of F then there exists a neighbourhood
D of t0 such that the restriction FjF �1ðDÞ is a submersion. The proof is then a
consequence of Theorem 4.1. r

Theorem 4.4. Let t0 A N be a regular value of F . Then it is regular at
infinity if and only if there exists a small ball D centered at t0, such that the
inclusion of each fiber F �1ðtÞ into F �1ðDÞ is a weak homotopy equivalence, for all
t A D.

Before proving the theorem, we recall the followings.

Definition 4.5 ([14]). Two homotopies

H;H 0 : X � ½0; 1� ! Y

are said to have the same germ if they coincide in a neighborhood of the subspace
X � f0g.

Definition 4.6 ([14]). Let p : E ! B be a continuous map, where E, B are
topological spaces. We call p a homotopic submersion, or equivalently say that it
has the germ-of-homotopy lifting property, if for every continuous map h : X ! E
whose source X is a polytope, every germ-of-homotopy of p � h lifts to a germ-of-
homotopy of h.

Lemma 4.7 (See [14], Corollary 13). Let p : E ! B be a surjective homotopic
submersion. If the inclusion of each fiber into E is a weak homotopy equivalence.
Then p is a fibration.

Proof of Theorem 4.4. If t0 is regular at infinity then there is a small ball D
centered at t0, such that the restriction FjF �1ðDÞ is trivial. It is easy to prove that
the inclusion of each fiber F �1ðtÞ into F �1ðDÞ is a weak homotopy equivalence,
for all t A D.

Let us assume that there is a ball D centered at t0, such that the inclusion
of each fiber F �1ðtÞ into F �1ðDÞ is a weak homotopy equivalence for all t A D
and the restriction FjF �1ðDÞ is surjective. It deduces from Lemma 4.7 that
F : F �1ðDÞ ! D is a fibration. By applying Lemma 4.2 we obtain that F is
di¤erentially trivial at t0. r
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mann, Paris, 1997.

[19] A. Parusinski, On the bifurcation set of a complex polynomial with isolated singularities at

infinity, Compositio Math. 97 (1995), 369–384.

[20] P. J. Rabier, Ehresmann’s Fibration and Palais-Smale conditions for morphisms of Finsler

manifolds, Annals of Math. 146 (1997), 647–691.

[21] R. Thom, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. 75 (1969), 240–284.

Tat Thang Nguyen

Institute of Mathematics

18 Hoang Quoc Viet road

10307 Hanoi

Vietnam

E-mail: ntthang@math.ac.vn

90 tat thang nguyen


