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ON MEROMORPHIC FUNCTIONS SHARING A ONE-POINT
SET AND THREE TWO-POINT SETS CM

MANABU SHIROSAKI

Abstract

We show that if two meromorphic functions sharing a one-point set and three two-
point sets CM, then one of them is a Mobius transform of the other.

1. Introduction

For nonconstant meromorphic functions f and g on C and a finite set S
in C=CU{x}, we say that f and g share S CM (counting multiplicities)
if £=1(S)=¢""(S) and if for each zpe f~!(S) two functions f — f(zp) and
g — g(z0) have the same multiplicity of zero at zy, where the notations /' — oo and
g — oo mean 1/f and 1/g, respectively. Also, if f~1(S) =g~ !(S), then we say
that f and g share S IM (ignoring multiplicities). In particular if S is a one-
point set {a}, then we say also that f and g share « CM or IM.

In [N], R. Nevanlinna showed the following theorem:

THEOREM A. Let f and g be two distinct nonconstant meromorphic functions
on C and let ay,..., a4 be four distinct points in C. If f and g share ay, ..., a,
CM, then f is a Mobius transform of g, ie., f = (ag+b)/(cg+d) for some
complex numbers a, b, ¢, d with ad —bc # 0, and there exists a permutation o
of {1,2,3,4} such that a,3y and ags) are Picard exceptional values of f and g and
the cross ratio (1), Ag(2), d(3), dg(4)) = — 1.

In [T] Tohge considered two meromorphic functions sharing 1, —1, oo and
a two-point set containing none of them and Theorem 4 in [T] induces the
following

THEOREM B. Let Sy, S>, S3 be one-point sets in C and let Sy be a two-point

set in C. Assume that Sy, S, S3, S4 are pairwise disjoint. If two nonconstant
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meromorphic functions f and g on C share S|, S, S3, Sy CM, then f is a Mdbius
transform of g.

Also, Theorem 1.2 in [ST] and its proof induce

TueoreM C. Let Sy, S, be one-point sets in C and let S3, Sy be two two-
point sets in C. Assume that S\, S», S3, S4 are pairwise disjoint. If two non-
constant meromorphic functions f and g on C share Sy, S», S, Sy CM, then f is a
Mobius transform of g.

In this paper we consider two meromorphic functions on C sharing a one-

point set and three two-point sets in C CM.

TuroreMm 1.1, Let Sy be a one-point set in C and let Sy, S», S3 be three two-
point sets in C. Suppose that Sy, Sy, Sy and S3 are pairwise disjoint. If two
nonconstant meromorphic functions f and g on C share Sy,...,S3 CM, then f is a
Mébius transform of g.

We give a conjecure.

_CONJECTURE.  Let Si,...,Sy be pairwise disjoint one-point or two-point sets
in C. If two nonconstant meromorphic functions f and g share Si,...,Ss CM,
then there exists a Mobius transformation T such that f =T og.

This conjecture is true for the cases that the number of one-point sets are
four, three and two, and now Theorem 1.1 shows that it is true for the case that
the number is one-point sets is one. The remaining problem is the case that the
number of one-point sets is zero.

We assume that the reader is familiar with the standard notations and results
of the value distribution theory (see, for example, [H]). In particular, we express
by S(r,f) quantities such that lim,_.., ¢ S(r,f)/T(r,f) =0, where E is a
subset of (0,c0) with finite linear measure and it is variable in each case.

We close the section by giving a generalization of Theorem A, which is a
constant target version of Theorem 1 of [LY].

LemMma 1.2. Let f and g be two nonconstant meromorphic functions on C.
Let ay, ... a4 be four distinct points in C and let by, ..., by be four distinct points
in C. If f—a; and g—b; share zero CM (j=1,...,4), then [ is a Mobius
transform of g¢.

2. Representations of rank N and some lemmas

In this section we introduce the definition of representations of rank N. Let
G be a torsion-free abelian multiplicative group, and consider a g-tuple A4 =
(ai,...,a;) of elements ¢; in G.
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DEeriNITION 2.1, Let N be a positive integer. We call integers g, represen-
tations of rank N of g; if

q
(2.1) H aja/ =

J=1

<
\.Q\.,

~.
I

and

<

(22) Z C/,Lt/ /,Lt/

Jj=1

. . ;o q PR
are equivalent for any integers ¢, ¢ with 3 7, g <N and } 7, [ < N.

For the existence of representations of rank N, see [S].

For two entire functions o and f without zeros we say that they are
equivalent if o/f is constant. Then we denote o ~ . This relation “equivalent”
is an equivalence relation.

We introduce following Borel’s Lemma, whose proof can be found, for
example, on p. 186 of [La].

LemMma 2.2. If entire functions og,0q,...,0, without zeros satisfy
ag o+ 4oy =0,

then for each j=0,1,... n there exists some k(# j) such that oj ~ oy, and the
sum of all elements of each equivalence class in {ag,...,0,} is zero.

Now we investigate the torsion-free abelian multiplicative group G = &/%,
where & is the abelian group of entire functions without zeros and % is the
subgroup of all non-zero constant functions. We represent by [o] the element
of /% with the representative e &. Let aj,...,0, be elements in &. Take
representations x; of rank N of [o]. For oc—]_[q 1o we define its index
Ind( ) by Z] 1 &t;.  The indices depend only on [ q,l oc;’] under the condition

1. lg] < N. Trivially Ind(1) = 0, and hence Ind(oc) =0 and the constantness
of o are equivalent, and Ind( ) = Ind(«') is equivalent to that «/o’ is constant,
where o =[], o’ and o' =[], oc;’ with 37 Jgj| <N and >7 l|g’|<N

We use the following Lemma in the proof of Theorem 1 1 which is an

application of Lemma 2.2 (for the proof see [ST, Lemma 2.3]).

Lemma 2.3. Assume that there is a relation ¥(ui,...,0,) =0 where
Y(Xi,...,X,) e C[Xy,...,X,] is a nonconstant polynomial of degree at most N
of X‘?"",Xfl' Then each term an‘ --X;:’ of W(Xi,...,X,) has another term
bX,! - X, such that o' oy’ and ocl -ag" have the same indices, where a and b
are non-zero constants.
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3. A Lemma from the theory of general resultants

59

For the proof of Theorem 1.1 a result from the theorey of general resultants

is represented in this section.

We give it by proceeding as in [CLO, Chapter 3].

Let d be a positive integer and let F), F>, F3 be three homogeneous poly-

nomials of degree d of X, Y, Z. Denote

Lemma 3.1.

All the partial derivatives

trivial common zero of Fi, F>, F;.

Proof.
0F,
oX
OF,
oX
0F;
oX

X

(3.1) XJ=|x

X

and

o
1), 4
o,
1), 4
)
1.4

F

(3.2) YJ=d 25

F

By Euler’s relation

their Jacobian determinant by J:

of oR Ok

oX oY oz

oF, 0F, 0F

oxX oYy oz|

0F; 0F; 0F

X oY oz

aJ aJ are zero at each non
oxX’ oY’ oz i

5F1 8F1 F 6Fl aFl

oY 0Z Yoy oz
O R, . o O

oY o0z oY 0z
0F3 6F3 0F3 6F3

oY 0Z oY o0z

on o O,

kY4 ox oy !

0B gy g0 0B P

kY4 X oY

) o R,

kY4 ox oy °

are obtained. Let P = (Xp, Yo, Zy) be a non-trivial common zero of F;, F, and

F;.
and (3.2).

differentiating (3.1) by X, Y, Z we get

F

J+X6—J:dJ+d

oX P

F

0*Fy
0XoY

0*F,
0XoY

0*F;
0XoY

oF,
oz
oF,
oz
0F;
oz

+d

F

F

F

Yy, Zy is not zero.

oF,

~

D

)
S

)

Y
0F3

~

D

Since F;(P) =0 for j=1,2,3, all XJ, YJ and ZJ have zero at P by (3.1)
Hence J(P) = 0 because at least one of Xj,

By

0*Fy
0XoZ

0*F,
0XoZ

0*F;
0XoZ
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0’F, OF, oF, *F
Fi — — F =
oY?2 oZ oY 0YoZ
oJ 0*F, OF oF, 0°F
X —alp OB B gl g 052 2 |,
Y By 3z B 3y avez
0°Fy OF; OFy;  0%F;
F, — — F =
oY? oz 0Z 0YdZ
F O’F @ F, @ O’Fy
0YoZ oZ oY 022
oJ 0*F, OF oF, 0°F
X—=dF 2 P2yd|p, 2 2020
0z 2 Yoz oz 2 Y 0z2
0*Fy  OF; oF; 0°Fs
Fs it} F, — —=2
0YoZ oZ oY 072
oJ oJ oJ oJ oJ oJ
H X X ==, X—= 1l P Y Y, Y —
ence o Yoy Xaz are all zero at P, and so are e Yay Yoz
oJ _oJ _aoJ oJ oJ oJ
7 Z- . Z-= by th A lusion all —, —, —
v Yoy Yaz by the same way s a conclusion a X Y 27 are zero
at each common zero of Fi, F», Fs. O

COROLLARY 3.2. Let
Pi(z) = apX? +apY? + apnZ® + aupXY + asYZ + ajZX (j=1,2,3)

be three quadratic homogeneous polynomials and let J be their Jacobian matrix.
Suppose

oJ

s anX? v apY? + apZ® + auXY + ays YZ + awZX
A _ asi X*? Y? z? XY YZ zZX
Y 51 +as YY" +as34” +asy + ass + asg )
oI > )

7 agi X+ ap Y+ a3 Z” + apa XY + ags YZ + assZX .

If there exists a non-trivial common zero of Py, P, and P3, then the determinant
|ajk|1£j,kS6 is zero.

4. Proof of Theorem 1.1

Now we start the proof of Theorem 1.1. For the conclusion we may
assume that Sp = {oo}, and we set

Si={z2"+az+b =0} (j=1,23).

Put Pj(z) =z>+a@z+b. By assumption we have af —4b; #0 and Ry :=
R(P;, Pi) = (b — b))* — (ax — a;)(ajbx — axh;) # 0 (j # k), where R(P;, Px) is the
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resultant of P; and Py, and there exist entire functions «; without zeros such that

Pi(f) = oiPi(9) (j=1,2,3).
We deny the conclusion and assume
(NM) there exists no Mdbius transformation 7' such that f =T og.

ProposITION 4.1.  Each o; is not constant.

Proof.  Assume that o; is a constant ¢ for some j=1,2,3, and we may
assume that j=1. Then

2 +af+b :c(gz+a1g+b1).

If ¢ =1, then this leads f'=g¢g or f+ ¢+ a; =0, which contradicts (NM). If
c¢#1, then f(z) and g(z) are different values except &, 5, and oo for each
zeC. So f—n; and g —¢; share zero CM for j=2,3, and f —¢; and g — 7,
share zero CM for j=2,3. By Lemma 1.2, f is a Mobius transform of g,
which is a contradiction. O

ProOPOSITION 4.2, Each oj/oy is not constant for 1 < j <k <3.

Proof. Assume that o;/oy is a constant ¢ for some distinct j and k, and we
may assume that oy /ap =c¢. Then
fP+af+b 7ng+alg+b1
fPHaf+b g t+ag+b

If ¢ =1, then we get

(9= Nilar — a2) fg + (b1 = b2)(f + g) + (a2by — a1b2)} = 0,

which yields a contradiction to (NM) immediately. Hence ¢ # 1, and this
implies that f —#; and g — &; share zero CM and that f — &; and g — #3 share
zero CM. Also we see that f and g have no poles. Hence there exit entire
functions f,, f, without zeros such that

(4.1) S=&G=pg—m), [f—n=Ppg—-E&).
By simple calculation we have
r= (13 — &)1Br + 3Py — E3po g:’73/31 -G — Gt
i ) ’ B =B 7

and by substituting these into f2+ajf + by = a;(9> +ajg + b;) we obtain

(n3 — 53)2/3%/))5 + Pi(n3)B7 + P1(E)B5 + (3 — E3)(2n5 + a1)Bia
— (13 — &) (28 + a) B3 — {283 + ar(E3 +13) + 261 151 B,

= o [P1(13)B7 + P1(E)B3 + (3 — &) — {285 + ar(&5 + n3) + 2b1} 51 o
+ (13 = &) (23 +an)py — (13 — &3)(283 + a1)B,]-
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Note that any of (75 — &)%, P1(&3), Pi(n3) are not zero. Take representations
U, vi, va of rank 4 of o], [f,], [f]- Since B, p, and f5,/B, are not constant by
(NM), we have v; #0, v, #0 and v; # v,. We may assume that v; < v,, and
it is enough to consider the two cases (I) 0 < v; < v, and (II) v; <0 < ,, by
replacing indices or representations in other cases.

(I) The case where 0 < v; < v;. Then the term with the maximal index in
the lefthand side is only [1’12[)’5 and the term with the maximal index in the
righthand side is only oclﬂz Note that any of their coefficients are not zero.

Hence we have (75 — &)* B3 = Pi(&3)on 5 by Lemma 2.2 and Lemma 2.3. By
con51der1ng the terms with the minimal index in each side we get also P, (;73)ﬂ1

= (13— &) m. Therefore 7 /m = P1(&)/(n3 — &) = (13 — &)*/Pi(n;)  and
hence

4.2) (f—&)? Pilg) _ Pi(&) _ (- 53)2.

(g-n)° Pi() (13- &)° Pi(n3)

If f~'(n;) =971 (&) is empty, then f —#; and g — &; are entire functions
without zeros. Deform the first equation of (4.1) as

(f =m3) + (13— &) = Bi{(g — &) + (& —m3) )

Since f, g and f are not constant, by Lemma 2.2 we have

f=m =& —m), n3—E=pi(9—E).

However we get a contradiction (f —#3)/(n; — &) = (& —113)/(9 — &3) to (NM).

Hence there ex1sts a point z such that f ( ) =13, g(z) = &, so we get by (4.2)
Pi(n3) = (13 63) = P1(&;), which leads a; = a;. We take the Mobius trans-
formation To( )=-z—a3 and put h=Tyog=—g —as. Then h and f share
o0, &, 3 CM since h™'(&) =g~ () = f71(&), h () = 97 (&) = /" (),
and they share S; CM since A~1(S)) = h Y (ENUR (i) =g~ (7)) Ug™' (&) =
g~'(S1). Hence by Theorem B, there exists a Mdbius transformation 7 such
that f = T oh, so we get a contradiction to (NM).

(IT) The case where v; < 0 < v,. Then the term with the maximail index in
the lefthand side is only ﬂ2 and the term with the maximal index in the right-
hand side is only o;$3. Hence 5 ~ w153, so o, is a constant, which contradicts
Propostion 3.1.

We complete the proof. O

Now, put
F=X?—o;Y? +b(1 —o)Z* + ¢ XZ — ajo;, YZ  (j =1,2,3).

Then
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0F;

- ); =2X +a;Z,

OF;

a_Yj = —ZOC]'Y — CleCjZ,
0F,

ﬁ = 2bj(1 — OC]')Z + an — (leCj Y,

and the Jacobian matrix

2X+alZ 20(1Y+Cl10(12 2b1(1 70!1)Z+H1X7611061Y
J=—|2X4+arZ 20 + arurZ 2b2(1 — OCQ)Z—FGQX —aronY
2X +a3Z 203Y + az3”Z 2b3(1 — ocg)Z—|—a3X—a3cx3Y

= —8D1XYZ — 4D, X*Y +4D3XY? — 4Dy XZ?
—2DsX%Z —4DgYZ? +2D,Y*Z — 2D3Z°,

where
1 o1 bl(l — O(l)
Di=|1 w b(l—o)
1 o3 b3(1 — 063)

= (b1 — bz)oqocz + (bz — b3)0€2063 + (b3 — bl)(x30(1
+ (by — b3)ay + (b3 — by)o + (b1 — b2)oss,

o da

D, = oy ay|=(ar —az)oy + (a3 — ar)o + (a1 — az)us,
o3  as
o1 dpog

oy a0 | = (ar — ar)aon + (a3 — az)onos + (ar — az)ozoy,

>

(%)

I
e e e e e e

o3 d3zog
aog b1<1 — O(l)
D4 = arln b2(1 — O(z)
aso3 b3(1 — 063)
= (a2b1 — albz)oqocz + (613[72 - azb3)a2fx3 + (Cllb3 — a3b1)oc3oc1

+ai(by — b3)oy + ax(bs — br)on + az(by — ba)os,
1 apop  dap
Ds=|1 @moy a|=ai(ay—az)oq + ax(az — ar)oun + az(ay — az)os,
1 azoy as
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ay o b](l — O!])
Ds=|ay oy by(l —ar)
azy o3 b3(1 — 053)

= a3(b1 — bz)aldz + a; (bz — b3)0€20(3 + az(b3 — b])O(3O(1
+ (a3b2 - Clzb3)0€1 + (a1b3 - a3b1)<x2 + (Clzbl — albz)a3,

ap o Ao
Dy =|ay oy aoy|=as(ay —ay)ouun + ai(as — ay)uos + a(a; — az)ozu,
as o3 a3
ay a1 b](l—OC])
Dg = \|dy dyl bz(l — 0(2)
azy  dszog b3(1 — 063)

az(arby — arby)oy o + ay(azby — arbz)onoz + ar(a1by — azby )ozo

+ al(a3b2 — a2b3)oc1 + az(alb3 - a3b1)oc2 + a3(a2b1 — albz)ot3.

Moreover, for later, we put

1 ai b1
Dy=|1 a, by|= (a2b3 — a3b2) + (Cl3b1 — a1b3) + (a1b2 — azbl),
1 as b3
1 b1(1 — 061) a
Dy =11 bz(l — 062) a | = (613 — az)blocl + (a1 — a3)b2a2 + (az — al)b3oc3 — l)()7
1 b3(1 — 063) as
a bi(l—on) aruy
D= |02 by(l —) @
o3 b3(1 — OC3) asos

= Doojonos + (a1 — az)bsaon + (az — az)bioaas + (az — ay)broso .

So we have

aJ

o —8DYZ — 8D, XY +4D3Y? — 4D, Z* — 4DsXZ,

3y = ~8DIXZ —4D2X? +8D3XY —4DeZ? +4D;YZ,

aJ 2 2 2
57 = ~8DIXY —8DuXZ —2DsX? — 8D YZ +2D7Y? — 6Ds Z°.

Set



1 —0 b] (1 — O!]) 0 ay
1 —0 bz(l — O!z) 0 ay
R* _l 1 —03 b3(1 —O(3) 0 as
64| 0 4Dy —4D, —8D, —4Ds
—-4D, 0 —4Ds 8D; 8D,
—2Ds 2D4 —6Dg —8D; —8Dy
1 o bl(l — 061) 0 a) aog
1 2% bz(l — 062) 0 ay axoly
B 1 o3 b3(1 — OC3) 0 as aso3
| 0 Ds Dy -D, Ds -2D
D, 0 Dg Ds 2D, D7
Ds Dq 3Dy —2Dy 4Dy —4Dqg
1 o1 bl(l - 061) —D2 D5 —2D1
=11 o2 bz(l - (Xz) D3 2D1 D7
1 o3 b3(l - OC3) 72D1 4D4 74D6
1 o1 di D4 —Dz —2D1
+1 o a Dy D; D
1 o3  az 3Dg 7201 74D6
1 o aioy Dy —D;, Ds
-1 0y Ao D6 D3 2D1
1 o3 AdAzos 3D8 —2D1 4D4
1 bl(l — 061) ag D3 —Dz —2D1
—11 bz(l — OQ) ar | - 0 D3 D7
1 b3(1 — 063) as D7 —2D1 —4D6
1 bl(l — OC]) apong D3 —D2 D5
+ 1 bz(l - 062) arop | - 0 D3 2D1
1 b3(1 — 9(3) azos D7 72D1 4D4
1 ay  ayog D3 D4 7D2
+11 a aoml|-| 0 Dg D3
1 asz  azos D7 3D8 —2D1
o b](l — 061) ai 0 —D2 —2D1
=+ 1o b2(1 — 062) a |- | Dy Ds Dy
o3 b3(1 - OC3) as D5 —2D1 —4D6
o b](l — 061) apoq —D2 D5
— | 0 b2(1 — OCQ) aroly | - Dz D3 2D1
o3 b3(1 — OC3) aszos D5 —2D1 4D4
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—dapo
—ax0
—aszus
—8Dy
4D,
—8Ds
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o ay apd 0 D4 —D2
—|o2 a @mu|-|Dy D¢  Ds
a3 dz  dzoz D5 3Dg —2D1
b](l—(xl) ay a1 0 D3 —Dz
+ bz(l*dg) ay dyoy |- D2 0 D3
b3(1—OC3) as  asos D5 D7 —2D1

= —8D} + 16D*DyDs — 16D?D3D4 — 2D3DsD7 + 10D, D3Ds Dy

+ 10D DyD4D7 — 8D3D3D4Dg — TD3D7Ds + 14Dy D, D3 Dg — 8D3 D}
+7D3DsDg — 8D3D; + 4D3DsDg + D, D3 Dy — 4Dy D3D7Dg + D3DyDsD;
— DyDsDgD7 + 4D D, DsDyg + D3D3Dyg — 4D3 Dy Dy

Since (X,Y,Z) = (f(z),9(z),1) is a common zero of Py, P, P; for each ze C
except poles of f or g, we have R* =0 by Corollary 3.2.

Now we apply the results in §2 to the torsion-free abelian multiplicative
group G =&/€. Let u,, 1y, 1y be representations of rank 8 of [oy], [o2], [o3].
Then w; # 0 since o; are not constant by Proposition 4.1, and g; # py (j # k)
since o; + o (j # k) by Proposition 4.2.

For afafal, we call Jj+k+1its total exponent.

The expansion of R* is a linear combination of some of ofukal,
0<j,k <4, 4<j+k+1<8 In the expansion of R* the maximal total
exponent is 8§ and the minimal total exponent is 4. The terms of total exponent
8 are produced only from —8D} — 16D?D3D, — 8D3D} = —8(D} + D3Dy)’, and
the part of total exponent 4 in the factor D? + D3Dy is

{(by — by)ayoz + (by — b3)otaes + (b3 — by )azon }2
+{(ay — ay)ooy + (a3 — ax) oo + (@) — az)ozo }
x {(azb) — ar1by) ooy + (ashy — axbs)onos + (a1bs — azby)ozon }
= Rlzoc]zocg + Rzgoc%oc% + R310€§OC12
+{2(by = b2) (b2 — b3) + (a2 — a1)(azby — azbs)
+ (a3 — @) (axby — arby) yoyo303
+{2(by — b3)(b3 — b1) + (a3 — az)(a1b3 — azby)
3)(ashy — a2b3)}oqoczoc3
+ {2(173 b1)(ba — b1) + (a1 — a3)(aab) — a1b2)
+ (ay — a)(a1by — asby) }ojonos.

The terms of total exponent 4 are produced only from —8D} + 16D D3Dg —
8D}D} = —8(D} — DyDs)?, and the part of total exponent 2 in the factor
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Dlz — D2D6 1s

{(by — b3)ay + (b3 — b))y + (b1 — ba)oz}*
—{(az — a3)oy + (a3 — ay)on + (@) — az)az}
x {(asby — azb3)oy + (a1bs — azby ) + (a2by — ayby)as}
= R23oc12 + R31£X§ + Rlzoc%
+{2(b2 = b3)(b3 — b1) + (a2 — a3)(a1b3 — azby)
+ (a3 — a1)(azby — azbs3) }o oz
+{2(b3 — b1)(b1 — b2) + (a3 — a1)(axby — a1by)

)
(

+ (a1 — az)(a1bs — azby) }onos
(

+{2(b1 — b2) (b2 — b3) + (a1 — a2)(azby — azb3)

(az — ag)(azbl — albg)}oc3ac1

Without loss of generality we may assume that g, < g, < u3, and it is
enough to consider two cases (I) 0 < y; < 1, < pz and (II) 4y <0 < u, < 3 by
taking —g; for w; if necessary.

(I) The case where 0 < g <u, <pz. In this case ju; +ku, +1lu; <
4(py + u5) for integers j, k, [ with 0 < j k,/ <4, 4<j+k+/<8, and the
equality holds only for (j,k,/) = (0,4,4). Hence only the term —8R§3oc§oc§‘ has
the maximal index 4(u, + u3), which contradict Lemma 2.3.

(II) The case where u; <0 < u, < p3. In this case ju; + kpy + luy = 4y,
for integers j, k, [ with 0 < j kI <4, 4 < j+ k+ [ <8, and the equality holds
only for (j,k,1) = (4,0,0). Hence —8R3;0f is the unique term with the minimal
index 4u,;, which is a contradiction to Lemma 2.3.

So we have denied all cases, and the assumption (NM) is inconsistent, which
completes the proof.
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