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ON HERMITIAN MODULAR FORMS OF SMALL WEIGHT

OVER IMAGINARY QUADRATIC FIELDS
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Abstract

In this paper, we prove that an Hermitian modular form with small weight over the

quadratic field with class number one is a linear combination of theta series associated

with Hermitian quadratic forms.

Introduction

Resniko¤ and Freitag proved that a Siegel modular form with small weight
is a singular form. Shimura [8] generalized these results for more general
modular forms. In [5], Freitag proved that a singular Siegel modular form
is a linear combination of theta series.

The purpose of this note is to discuss analogous results in the case of
Hermitian modular forms over the quadratic fields. By virture of [8], we can see
that Hermitian modular forms with small weight are singular forms. Using this
theorem and the results in [4], we deduce that an Hermitian modular form with
small weight over the quadratic field with class number one is a linear com-
bination of theta series. We mention that we can not remove the condition that
the quadratic field is class number one.

§1. Notation and preliminaries

We denote by Z, Q, R and C the ring of rational integers, the field of
rational numbers, the field of real numbers and the field of complex numbers.
For a ring A, we denote by An

m the set of all n�m matrices with entries in A
and, we put An

1 ¼ An (resp. An
n ¼ MnðAÞ). Let K ¼ Qð

ffiffiffiffiffiffiffiffi
�D

p
Þ be the imaginary

quadratic field of discriminant �D and O the ring of integers in K . Put
GLnðOÞ ¼ fg A MnðOÞ j det g A O�g, where O� means the group of all invertible
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elements in O. Let G s
HðKÞ be the Hermitian modular group of degree s over

K, i.e.,

G s
HðKÞ ¼ M ¼ A B

C D

� �
A M2sðOÞ

����M � 0 Es

�Es 0

� �
M ¼ 0 Es

�Es 0

� �� �
;ð1:1Þ

where M � ¼ t ðMÞ and Es means the unity of GLsðOÞ. Let Z s
H be the complex

Hermitian half space of degree s, i.e.,

Zs
H ¼ Z A MsðCÞ

���� 1

2
ffiffiffiffiffiffiffi
�1

p ðZ � Z �Þ > 0

� �
:ð1:2Þ

We define an action of G s
HðKÞ on Zs

H by

Z 7! MhZi ¼ ðAZ þ BÞðCZ þDÞ�1ð1:3Þ

for all Z A Zs
H and M ¼ A B

C D

� �
A Gs

HðKÞ. A holomorphic function F on Z s
H

is called an Hermitian modular form of weight g and of degree s over K , if the
following condition is satisfied

FðMhZiÞ ¼ detðCZ þDÞgFðZÞ:ð1:4Þ

We denote by MðG s
HðKÞ; gÞ the space of such all forms FðZÞ (cf. [1, 2, 3, 4]).

Here we introduce theta series (cf. [7]). Let H be a positive Hermitian
matrix of degree g and let L stand for a lattice in Cg

s considered as a real vector
space. Then we define the theta series on Zs

H associated with H and L by

YLðZ;HÞ ¼ ðvol LÞ1=2
X
N AL

expðp
ffiffiffiffiffiffiffi
�1

p
trðZN �HNÞÞ for all Z A Z s

H :ð1:5Þ

By [7], we obtain

YL̂Lð�Z�1;H�1Þ ¼ ðdetð�
ffiffiffiffiffiffiffi
�1

p
ZÞÞgðdet HÞsYLðZ;HÞð1:6Þ

where L̂L ¼ fN̂N A Cg
s j trðN̂NNÞ A Z for all N A L:g. We take L ¼ Og

s . Since

L̂L ¼ 2ffiffiffiffiffiffiffiffi
�D

p L, we see that

YL̂LðZ;HÞ ¼ 1

volðLÞYL Z;
4

D
H

� �
:

Therefore

YL �Z�1;
4

D
H�1

� �
¼ ð�

ffiffiffiffiffiffiffi
�1

p
Þgsðdet ZÞgðdet HÞs volðLÞYLðZ;HÞ:ð1:7Þ

Suppose that YLðZ;HÞ is an Hermitian modular form of weight g and of degree s.
Then we see that

YLð�Z�1;HÞ ¼ ð�
ffiffiffiffiffiffiffi
�1

p
Þgsðdet ZÞgYLðZ;HÞ;
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which yields that

YL Z;
4

D
H�1

� �
¼ ðvol LÞðdet HÞsYLðZ;HÞ:ð1:8Þ

Put Z ¼ X þ
ffiffiffiffiffiffiffi
�1

p
Y with X and Y Hermitian, and compute the limit as the

eigenvalue of Y approach infinity (and X remains in some compact set). Then,
by [4, (8)], we see that

det H ¼ 2gD�g=2:ð1:9Þ

We refer to [4, (23)] for the existence of Hermitian matrices satisfying (1.9).
Consider an Hermitian matrix H ¼ ðhijÞ of degree g such that

H A
2ffiffiffiffiffiffiffiffi
�D

p MgðOÞ; hii A 2O ð1a ia gÞ:

We call H an even integral Hermitian matrix of degree g. The following
proposition is proved in [4].

Proposition 1. Let H be a positive even integral Hermitian matrix of degree
g of determinant 2gD�g=2. Then 4 divides g and the theta series

YðZ;HÞ ¼
X
N AO g

s

expðp
ffiffiffiffiffiffiffi
�1

p
trðZN �HNÞÞð1:10Þ

belongs to MðGs
HðKÞ; gÞ.

§2. Main theorem

The purpose of this section is to investigate the space MðG s
HðKÞ; gÞ where

s > g. If s > g and 4 does not divide g, then MðG s
HðKÞ; gÞ ¼ 0 (cf. [4, Theorem

3]). We deduce the following theorem.

Theorem 2. Suppose that K is class number one and s > 4k. Then
MðG s

HðKÞ; 4kÞ is spanned by theta series of the type discribed in Proposition 1.

Proof. Let FðZÞ be an element of MðG s
HðKÞ; 4kÞ. Then FðZÞ has a

Fourier expansion of the form

FðZÞ ¼
X

H ALðsÞ
aðHÞ expðp

ffiffiffiffiffiffiffi
�1

p
trðHZÞÞ;ð2:1Þ

where LðsÞ ¼ fH jH is even integral Hermitian matrix of degree s and Hb 0g.
From [8], we see that FðZÞ is a singular form. Using this and the property that
FðU �ZUÞ ¼ FðZÞ for every U A GLsðOÞ, we obtain that

aðHÞ0 0 ) det H ¼ 0 and U �HU A LðsÞ for every U A GLsðOÞ:ð2:2Þ
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First we prove the following assertion: Suppose that FðZÞ is a non-zero element
of MðGs

HðKÞ; 4kÞ. Then there exists a matrix H0 A Lð4kÞ such that

a
0 0

0 H0

� �� �
0 0 and det H0 ¼ 24kD�2kð2:3Þ

To verify this fact, let r be the maximal rank of those H for which aðHÞ0 0.
Then 0 < r < s; any H of rank r with aðHÞ0 0 can be represented as

H ¼ U � 0 0

0 H0

� �
U

with H0 A LðrÞ, H0 > 0 and U A GLsðOÞ because of class number one of K and
(2.2). Choose H and U such that det H0 becomes minimal under these con-
ditions and fix H0 from now on. Then

a
0 0

0 H0

� �� �
0 0:ð2:4Þ

We consider the restriction F onto Z
s�r
H � Z

r
H ,

F
w 0

0 z

� �� �
¼

X
H1 ALðrÞ;H1b0

aH1
ðwÞ expðp

ffiffiffiffiffiffiffi
�1

p
trðH1zÞÞð2:5Þ

for all z A Z
r
H , w A Z

s�r
H . We see that

aH1
ðwÞ ¼

X
H

aðHÞ expðp
ffiffiffiffiffiffiffi
�1

p
trðH2wÞÞ

belongs to MðGs�r
H ðKÞ; 4kÞ, where the summation is taken over all positive

semi-definite matrices H ¼ H2 t2

t�2 H1

� �
in LðsÞ. If a

H2 t2

t�2 H0

� �� �
0 0, then

H2 t2

t�2 H0

� �
is of rank r because of the maximal condition for the rank.

Therefore

H2 t2

t�2 H0

� �
¼ V � 0 0

0 H 0

� �
Vð2:6Þ

with V A GLsðOÞ, H 0 A LðrÞ and H 0 > 0, which implies that det H 0 a det H0.
We obtain det H 0 ¼ det H0 because of the minimal condition for det H0. Hence
we have H0 ¼ ðV 0Þ�H 0V 0 for some V 0 A GLrðOÞ and

aH0
ðwÞ ¼ a

0 0

0 H0

� �� �X
H

expðp
ffiffiffiffiffiffiffi
�1

p
trðH2wÞÞ;
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where H ¼
H2 t2

t�2 H0

� �
runs over LðsÞ such that Hb 0, which is represented

as H ¼ W � 0 0

0 H0

� �
W with W A GLsðOÞ. We can check that this condition is

equivalent to

H ¼
Es�r 0

g Er

� ��
0 0

0 H0

� �
Es�r 0

g Er

� �
;ð2:7Þ

where g runs over the matrices in Or
s�r. Hence

aH0
ðwÞ ¼ a

0 0

0 H0

� �� � X
g AO r

s�r

expðp
ffiffiffiffiffiffiffi
�1

p
trðwg�H0gÞÞð2:8Þ

belongs to MðG s�r
H ðKÞ; 4kÞ. Comparing the weight, we see that r ¼ 4k. More-

over, by virtue of (1.9), we see that det H0 ¼ 24kD�2k. Therefore, we have the
first assertion.

Next we prove our theorem. Take a complete set H1; . . . ;Hl of represen-
tatives of the classes of all positive Hermitian matrices of degree 4k which are
even integral and of determinant 24kD�2k (cf. [6]). We put

F �ðZÞ ¼ FðZÞ �
Xl

i¼1

ciYðZ;HiÞ ¼
X

H ALðsÞ;Hb0

a�ðHÞ expðp
ffiffiffiffiffiffiffi
�1

p
trðHZÞÞ:ð2:9Þ

We obtain

a� 0 0

0 Hi

� �� �
¼ a

0 0

0 Hi

� �� �
� ciaðHi;HiÞ

for i ¼ 1; 2; . . . ; l, where aðHi;HiÞ is the number of units of Hi. Now, ci can be
determined by

a� 0 0

0 Hi

� �� �
¼ 0ð2:10Þ

for i ¼ 1; 2; . . . ; l. Applying the above arguments for a singular form F �ðZÞ,
we obtain F �ðZÞ1 0. Hence we deduce that

F ðZÞ ¼
Xl

i¼1

ciYðZ;HiÞ:ð2:11Þ

This completes our proof of the theorem.
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