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ON HERMITIAN MODULAR FORMS OF SMALL WEIGHT
OVER IMAGINARY QUADRATIC FIELDS
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Abstract

In this paper, we prove that an Hermitian modular form with small weight over the
quadratic field with class number one is a linear combination of theta series associated
with Hermitian quadratic forms.

Introduction

Resnikoff and Freitag proved that a Siegel modular form with small weight
is a singular form. Shimura [8] generalized these results for more general
modular forms. In [5], Freitag proved that a singular Siegel modular form
is a linear combination of theta series.

The purpose of this note is to discuss analogous results in the case of
Hermitian modular forms over the quadratic fields. By virture of [8], we can see
that Hermitian modular forms with small weight are singular forms. Using this
theorem and the results in [4], we deduce that an Hermitian modular form with
small weight over the quadratic field with class number one is a linear com-
bination of theta series. We mention that we can not remove the condition that
the quadratic field is class number one.

§1. Notation and preliminaries

We denote by Z, Q, R and C the ring of rational integers, the field of
rational numbers, the field of real numbers and the field of complex numbers.
For a ring 4, we denote by A, the set of all n x m matrices with entries in 4
and, we put A} = A" (resp. A" = M,(4)). Let K = Q(v/—D) be the imaginary
quadratic field of discriminant —D and O the ring of integers in K. Put
GL,(D) ={ge M,(D)|det g e O}, where O means the group of all invertible
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elements in O. Let F%(K) be the Hermitian modular group of degree s over
K, ie.,

(1.1) rg(@{M(é1 ﬁ)eMzs(D)‘M«(;? E())M((jg Eo)}

where M* =' (M) and E; means the unity of GLy(D). Let 3g be the complex
Hermitian half space of degree s, i.e.,

8 1 _ 7x
(1.2) 35 = {ZeMS(C) ’ 72\/__1(2 AN 0}.
We define an action of I'g(K) on 3¢ by
(1.3) Z— M{Z) = (AZ + B)(CZ+ D)

A B
for all Ze 3§ and M = (C D) e ['¢(K). A holomorphic function F on 3g

is called an Hermitian modular form of weight y and of degree s over K, if the
following condition is satisfied

(1.4) F(M{Z)) = det(CZ + D)'F(Z).

We denote by M(I'g(K),y) the space of such all forms F(Z) (cf. [1, 2, 3, 4]).
Here we introduce theta series (cf. [7]). Let H be a positive Hermitian

matrix of degree y and let £ stand for a lattice in C! considered as a real vector

space. Then we define the theta series on Jg associated with H and £ by

(1.5) @®¢(Z,H) = (vol 2)1/2 Z exp(nv—1 tr(ZN*HN)) for all Ze 3%

Neg
By [7], we obtain
(1.6) Oy(—Z ' H ") = (det(~vV~1Z))"(det H)’©@¢(Z, H)
where 2={Ne¢e C/|[tr(NN)eZ for all Ne 2}. We take £=9O/. Since
- 2
L= £ we see that
v—D
1 4
o(Z,H) = o| Z,=H ).
©u(2, H) v01(9)®L< 'D )
Therefore

(1.7) O <—Zl,%H1) = (=V—=1)"(det Z)"(det H)* vol(2)@«(Z, H).

Suppose that @¢(Z, H) is an Hermitian modular form of weight y and of degree s.
Then we see that

Ou(—Z 7' H) = (—V—1)"(det Z)"O¢(Z, H),
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which yields that

(1.8) [N <Z,%H1> = (vol ©)(det H)'®¢(Z, H).

Put Z=X++v—-1Y with X and Y Hermitian, and compute the limit as the
eigenvalue of Y approach infinity (and X remains in some compact set). Then,
by [4, (8)], we see that

(1.9) det H =27D772,

We refer to [4, (23)] for the existence of Hermitian matrices satisfying (1.9).
Consider an Hermitian matrix H = (h;) of degree y such that

2
1‘16—1\4-5:37 h,-,-e2D 1<i<y).
5 M(O) (1=i<y)
We call H an even integral Hermitian matrix of degree y. The following
proposition is proved in [4].

PrOPOSITION 1. Let H be a positive even integral Hermitian matrix of degree
vy of determinant 2'D~"%.  Then 4 divides y and the theta series

(1.10) O(Z,H)= Y exp(zV~1tr(ZN"HN))
NeO!

belongs to M(I'g(K),7y).

§2. Main theorem

The purpose of this section is to investigate the space M(I'g(K),y) where
s>y. If s>y and 4 does not divide y, then M(I'§(K),y) =0 (cf. [4, Theorem
3]). We deduce the following theorem.

THEOREM 2. Suppose that K is class number one and s> 4k. Then
M(T'g(K),4k) is spanned by theta series of the type discribed in Proposition 1.

Proof. Let F(Z) be an element of M(I'g(K),4k). Then F(Z) has a
Fourier expansion of the form

2.1) F(Z)= > a(H)exp(nV-1 tr(HZ)),
HelL(s)

where L(s) = {H | H is even integral Hermitian matrix of degree s and H > 0}.
From (8], we see that F(Z) is a singular form. Using this and the property that
F(U*ZU) = F(Z) for every U € GLy(D), we obtain that

(22) a(H)#0=det H=0 and U'HU € L(s) for every Ue GL(D).
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First we prove the following assertion: Suppose that F(Z) is a non-zero element
of M(I'g(K),4k). Then there exists a matrix Ho € L(4k) such that

0 0
2. Hy=2%Dp™*
(2.3) a((o H()))#O and det Hy

To verify this fact, let p be the maximal rank of those H for which a(H) # 0.
Then 0 < p <s; any H of rank p with a(H) # 0 can be represented as

(0 0
H=U U
0 Hy

with Hy € L(p), Hy > 0 and U € GLy(D) because of class number one of K and
(2.2). Choose H and U such that det Hy becomes minimal under these con-
ditions and fix H, from now on. Then

(24) ((g 3)) £0.

We consider the restriction F onto 3%7” X 3g,

(2.5) F((’g 2))— S (w) exp(aV/—1 tr(H,z))

HyeL(p), H =0

for all z e Sg, we 3;’). We see that

o, (w) =Y a(H) exp(nV/~1 tr(Hyw))

H

belongs to M(I'g”(K),4k), where the summation is taken over all positive
H, 1t Hy, ¢

semi-definite matrices H = *2 > ) in L(s). If a *2 2 # 0, then
t; H, 12 Hy

H, t ) . |
( 1*2 I-; > is of rank p because of the maximal condition for the rank.
2 0

Therefore

H, © 0 0
2.6 =V V
2 (e )= ( w)

with V e GLy(D), H' € L(p) and H’ > 0, which implies that det H' < det Hy.
We obtain det H' = det Hy because of the minimal condition for det Hy,. Hence
we have Hy = (V')"H'V' for some V'e GL,(D) and

oz, (W) = a(<8 13())) ; exp(nv/—1 tr(Haw)),
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H, b
l; Hy

0 0
0 H > W with W e GL,(D). We can check that this condition is
0

where H = < ) runs over L(s) such that H >0, which is represented

asH:W*(

equivalent to

E;_ 0\/0 0 E;_ 0
N A [ !
(2.7) (g E, 0 Hy g E,

where g runs over the matrices in Df_p. Hence

(23) ) =a( () X expley Tl tog)

’
g€,

belongs to M (Fg” (K),4k). Comparing the weight, we see that p = 4k. More-
over, by virtue of (1.9), we see that det Hy = 2D, Therefore, we have the
first assertion.

Next we prove our theorem. Take a complete set Hy,..., H, of represen-
tatives of the classes of all positive Hermitian matrices of degree 4k which are
even integral and of determinant 2* D=2 (cf. [6]). We put

(2.9) F*(Z):F(Z)—Z{ciG)(Z,Hi): > a'(H)exp(nV-1 tr(HZ)).
i=1

HelL(s),H=0

(0 1)) =(o n))-eotmm

fori=1,2,...,/, where o(H;, H;) is the number of units of H;. Now, ¢; can be
determined by

(2.10) a*(<8 3{))—0

for i=1,2,...,/. Applying the above arguments for a singular form F*(Z),
we obtain F*(Z) =0. Hence we deduce that

We obtain

‘

(2.11) F(Z) =) c¢®(Z, H).
i1

This completes our proof of the theorem.
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