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A FINITE GENERATING SET FOR THE LEVEL 2 MAPPING

CLASS GROUP OF A NONORIENTABLE SURFACE

BŁażej Szepietowski

Abstract

We obtain a finite set of generators for the level 2 mapping class group of a closed

nonorientable surface of genus gb 3. This set consists of isotopy classes of Lickorish’s

Y-homeomorphisms also called crosscap slides.

1. Introduction

For a closed surface F the mapping class group MðF Þ is the group of isotopy
classes of all, orientation preserving if F is orientable, homeomorphisms h : F ! F .
This is the orbifold fundamental group of the moduli space of Riemenn surfaces
homeomorphic to F if F is orientable, or Klein surfaces if F is nonorientable
(Klein surface is a compact topological surface with a dianalytic structure, see
[1]). Every finite index subgroup of MðFÞ is the orbifold fundamental group of
some finite orbifold cover of the moduli space. An important family of such
subgroups is obtained as follows. For an integer m > 1 define GmðFÞ to be the
subgroup of MðFÞ consisting of the isotopy classes of homeomorphisms inducing
the identity on H1ðF ;ZmÞ, where Zm ¼ Z=mZ. The group GmðFÞ is called level
m mapping class group and the corresponding finite cover of the moduli space is
known as the moduli space of curves with level m structures. For orientable F
these groups have been studied extensively, see [6, 7]. More recently, Putman
[15] and Sato [16] computed independently the abelianization of GmðFÞ for m odd
and genus gb 3. Sato also computed the abelianization of G2ðFÞ.

In this paper we are interested in the case of a closed nonorientable surface,
which will be denoted as N or Ng, where g is the genus (thus Ng is homeomorphic to
the connected sum of g projective planes). Lickorish defined in [12] a homeo-
morphism of N that he called Y-homeomorphism and proved in [12, 13] thatMðNgÞ
is generated by Dehn twists and one isotopy class of Y-homeomorphisms for gb 2.
Y-homeomorphisms were called crosscap slides in [10, 14] and also in this paper we
use this name. Chillingworth found in [3] a finite set of generators for MðNgÞ.
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The action of MðFÞ on H1ðF ;ZÞ preserves the algebraic intersection pairing.
For orientable F this is a symplectic form and we have a representation of MðF Þ
into the symplectic group, which is well known to be surjective and whose ker-
nel is known as the Torelli group. On a nonorientable surface N however, the
algebraic intersection pairing is only defined modulo 2 and therefore it is very
natural to study the action of MðNÞ on H1ðN;Z2Þ and its kernel G2ðNÞ. It was
proved by McCarthy and Pinkall [14] and by Gadgil and Pancholi [4] that all
automorphisms of H1ðNg;ZÞ or H1ðNg;Z2Þ preserving the Z2-valued intersection
form are induced by homeomorphisms. In [18] we proved that for gb 2 the
group G2ðNgÞ is equal to the normal closure in MðNgÞ of one crosscap slide.
This result found its application in the work of S. Hirose [8] who proved that
a homeomorphsim of a closed nonorientable surface N standardly embedded in
the 4-sphere is extendable to a homeomorphism of the 4-sphere if and only if it
preserves the Guillou-Marin quadratic form on H1ðN;Z2Þ.

Since MðNgÞ is finitely generated, therefore so is G2ðNgÞ and it is a very
natural problem to find an explicit finite generating set for G2ðNgÞ. This is our

motivation for this paper, in which we obtain such set consisting of ðg� 1Þ2 þ g
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crosscap slides for gb 3. Since there is an epimorphism from G2ðNgÞ onto

Z
ðg�1Þ2
2 , exhibited in Section 4, thus ðg� 1Þ2 is a lower bound for the number of

generators of G2ðNgÞ. We prove that our generating set is minimal with respect
to the number of elements for g ¼ 3 and g ¼ 4 by showing that G2ðN3Þ is iso-
morphic to the level 2 congruence subgroup of GLð2;ZÞ and that the abelia-
nization of G2ðN4Þ is isomorphic to Z10

2 .
Having a finite set of generators of G2ðNÞ, the next natural problem is to

compute its first homology group H1ðG2ðNÞ;ZÞ. It follows from our work that

this group is isomorphic to Zd
2 for some d satisfying ðg� 1Þ2 a da ðg� 1Þ2 þ g
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(see the proof of Theorem 4.3) but it appears to be a di‰cult problem to
find the exact value of d. The computations of H1ðGmðFÞ;ZÞ for orientable F
in [15, 16] use Johnson’s work on the Torelli group. Unfortunately no similar
results are known for a nonorientable surface. For example it is a completely
open problem to find generators for the Torelli subgroup of MðNÞ consisting of
the isotopy classes of homeomorphisms inducing the identity on H1ðN;ZÞ.
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2. Preliminaries

Let N ¼ Ng be a closed nonorientable surface of genus g and MðNÞ its
mapping class group. For f;c A MðNÞ the composition fc means that c is
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applied first. By abuse of notation we will use the same symbol to denote a
homeomorphism and its isotopy class.

2.1. Curves and Dehn twists. By a simple closed curve in N we mean an
embedding g : S1 ! N. Note that g has an orientation; the curve with the
opposite orientation but same image will be denoted by g�1. By abuse of
notation, we will usually identify a simple closed curve with its oriented image
and also with its isotopy class. According to whether a regular neighborhood
of g is an annulus or a Möbius strip, we call g respectively two- or one-sided.

Given a two-sided simple closed curve g, Tg denotes a Dehn twist about g.
On a nonorientable surface it is impossible to distinguish between right and left
twists, so the direction of a twist Tg has to be specified for each curve g. In this
paper it is usually indicated by arrows in a figure. Equivalently we may choose
an orientation of a regular neighborhood of g. Then Tg denotes the right Dehn
twist with respect to the chosen orientation. Unless we specify which of the two
twists we mean, Tg denotes any of the two possible twists.

2.2. Crosscap slide. Suppose that a and b are two simple closed curves in
N, such that a is one-sided, b is two-sided and they intersect in one point. Let
KHN be a regular neighborhood of aU b, which is homeomorphic to the Klein
bottle with a hole. This is shown in Figure 1, where the shaded discs represent
crosscaps; this means that their interiors should be removed, and then antipodal
points in each resulting boundary component should be identified. Let MHK
be a regular neighborhood of a, which is a Möbius strip. We denote by Ya;b

the crosscap slide, or Y-homeomorphism equal to the identity on NnK and which
may be described as the result of pushing M once along b keeping the boundary
of K fixed. Figure 1 illustrates the e¤ect of Ya;b on an arc connecting two points
in the boundary of K . For a more rigorous definition see [12]. Up to isotopy,
Ya;b does not depend on the choice of the regular neighbourhood K . The
following properties of crosscap slides follow directly from its definition.

Ya�1;b ¼ Ya;bð2:1Þ
Ya;b�1 ¼ Y �1

a;bð2:2Þ
hYa;bh

�1 ¼ YhðaÞ;hðbÞð2:3Þ
for all h A MðNÞ.

Figure 1. Crosscap slide.
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Every crosscap slide induces an identity on H1ðN;Z2Þ, hence it belongs to
G2ðNÞ.

Theorem 2.1 ([18]). For gb 2 the level 2 mapping class group G2ðNgÞ is
generated by crosscap slides.

2.3. Crosscap pushing map. In this subsection we recall from [18] the
definition of the crosscap pushing map which will be an important tool in what
follows.

Fix x0 A Ng and define MðNg; x0Þ to be the group of isotopy classes of all
homeomorphisms of h : Ng ! Ng such that hðx0Þ ¼ x0. Let U ¼ fz A C j jzja 1g
and fix an embedding e : U ! Ng such that eð0Þ ¼ x0. The surface Ngþ1 may be
obtained by removing from Ng the interior of eðUÞ and then identifying eðzÞ with
eð�zÞ for z A S1 ¼ qU . We define a blowup homomorphism

j : MðNg; x0Þ ! MðNgþ1Þ
as follows. Represent h A MðNg; x0Þ by a homeomorphism h : Ng ! Ng such

that h is equal to the identity on eðUÞ or hðxÞ ¼ eðe�1ðxÞÞ for x A eðUÞ. Such h
commutes with the identification leading to Ngþ1 and thus induces an element
jðhÞ A MðNgþ1Þ. We refer the reader to [18] for a proof that j is well defined.

Forgetting the distinguished point x0 induces a homomorphism

MðNg; x0Þ ! MðNgÞ;
which fits into the Birman exact sequence (see [10])

p1ðNg; x0Þ !
j
MðNg; x0Þ ! MðNgÞ ! 1:

The homomorphism j is called point pushing map. If g is a loop in Ng based at
x0 and ½g� A p1ðNg; x0Þ is its homotopy class, then jð½g�Þ may be described as the
e¤ect of pushing x0 once along g. In order for j to be a homomorphism, a
product ½g� � ½d� in p1ðNg; x0Þ means go along d first and then along g.

We define a crosscap pushing map to be the composition

c ¼ j � j : p1ðNg; x0Þ ! MðNgþ1Þ:
Let a be the image in Ngþ1 of eðqUÞ. Then a is a one-sided simple closed
curve. Every simple loop g based at x0 is homotopic to a loop g 0 which
intersects eðUÞ in two antipodal points. If b is the image in Ngþ1 of g 0nintðeðUÞÞ
then b is a simple closed curve, which intersects a in one-point, and which is two-
sided if and only if g is one-sided. The following lemma follows from the
description of the point pushing map for nonorientable surfaces [10, Lemma 2.2
and Lemma 2.3] and the definition of a crosscap slide.

Lemma 2.2. Suppose that g is a simple loop in Ng based at x0 intersecting
eðqUÞ in two antipodal points. Let a and b be the images in Ngþ1 of eðqUÞ and
gnintðeðUÞÞ respectively. If g is one-sided, then

cð½g�Þ ¼ Ya;b:
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If g is two-sided, then

cð½g�Þ ¼ ðTd1T
�1
d2

Þe;
where d1 and d2 are boundary curves of a regular neighbourhood M of aU b, the
twists are right with respect to some orientation of Mna and e is 1 or �1 depending
on the orientation of b.

2.4. Generalized crosscap slide. Lemma 2.2 suggests the following gener-
alization of the definition of a crosscap slide. Let a and b be one-sided curves
intersecting in one point and let M, d1 and d2 be as in Lemma 2.2. The
neighborhood M is shown in Figure 2 as an octagon whose two pairs of opposite
sides should be identified according to arrows on the sides. The other two pairs
of opposite sides are the boundary curves d1, d2. The curve a divides the
octagon into halves. Let Td1 , Td2 be right with respect to the standard orien-
tation of the bottom half (the arrows in Figure 2 indicate the directions of Td1

and T�1
d2

). Then, for b oriented as in Figure 2 we define

Ya;b ¼ Td1T
�1
d2

:

For the opposite orientation of b we set Ya;b ¼ T�1
d1

Td2 . For such generalized
definition the properties (2.1), (2.2) and (2.3) remain valid.

3. Generators of the level 2 mapping class group

Let us represent Ng as a 2-sphere with g crosscaps. This means that
interiors of g small pairwise disjoint discs should be removed from the sphere,
and then antipodal points in each of the resulting boundary components should
be identified. Let us arrange the crosscaps as shown on Figure 3 and number
them from 1 to g. For each nonempty subset I J f1; . . . ; gg let aI be the simple
closed curve shown on Figure 3. For I ¼ fi1; . . . ; ikg let jI j ¼ k. Note that aI
is two-sided if and only if jI j is even. In such case TaI will be Dehn twist about
aI in the direction indicated by arrows on Figure 3. We will write ai instead of
afig for i A f1; . . . ; gg.

It is well know that MðN1Þ is trivial and MðN2ÞGZ2 � Z2 ([12]). It follows
easily from the structure of MðN2Þ that G2ðN2Þ has order two and it is generated
by a crosscap slide.

Figure 2. Ya; b for two one-sided curves.
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Theorem 3.1. For gb 4 the mapping class group MðNgÞ is generated by the
following elements.

� Y ¼ Yag�1;afg�1; gg ,
� Ai ¼ Tafi; iþ1g for i ¼ 1; . . . ; g� 1,
� B ¼ Taf1; 2; 3; 4g .

The group MðN3Þ is generated by Y , A1, A2.

Proof. Let A denote the set of elements listed in Theorem 3.1 and let H be
the subgroup of MðNgÞ generated by A. Let B be the set of Dehn twists about
the curves af1;...;2ig for 6a 2ia g. Chillingworth proved in [3] that MðNgÞ is
generated by AUB. This generating set is explicitly given on page 427 of [3],
where xi, mi and y correspond to our afi; iþ1g, afi;...;2ig and Yag�1;afg�1; gg respectively,
whereas in Theorem on page 426 it is displayed on a di¤erent model of Ng. In
order to show H ¼ MðNgÞ it su‰ces to prove BHH. We are assuming gb 6,
for otherwise B ¼ j.

Suppose that g is odd and let N 0 be the surface obtained from Ng by
removing an open regular neighborhood of the curve d ¼ af1;...;gg. Thus N 0 is an
orientable surface with one boundary component and by a theorem of Humphries
[9] its mapping class group is generated by Ai for i ¼ 1; . . . ; g� 1 and B. It
follows that Tg A H for every two-sided simple closed curve g in Ng such that
gV d ¼ j. Since B consist entirely of such twists, thus BHH.

Now suppose that g is even and let N 0 be the surface obtained from Ng

by removing an open regular neighborhood of dU ag, where d ¼ af1;...;gg. Again
N 0 is an orientable surface with one boundary component and we can use the
theorem of Humphries to deduce that Tg A H for every two-sided simple closed
curve g in Ng such that gV ðdU agÞ ¼ j. This proves that all elements of B
except D ¼ Td are in H. It remains to prove D A H. We borrow an argument
from [8]. Consider the curves e ¼ af1;...;g�4g, g1 ¼ af1;...;g�2g, g2 ¼ afg�3;g�2;g�1;gg,
g3 ¼ af1;...;g�4;g�1;gg, and let E, Ci for i ¼ 1; 2; 3 be the corresponding Dehn
twists. Note that the curves d, e, afg�3;g�2g and afg�1;gg bound a four-holed
sphere and we have the following lantern relation DEAg�3Ag�1 ¼ C1C2C3.
Clearly Ag�3;Ag�1 A H and since eV ðdU agÞ ¼ g1 V ðdU agÞ ¼ j thus E;C1 A H.
It can be easily checked that Ag�1Ag�2Ag�3Ag�4ðg2Þ ¼ afg�4;g�3;g�2;g�1g and

Ag�1Ag�2ðg3Þ ¼ af1;...;g�4;g�2;g�1g. Since these curves are disjoint from dU ag the

Figure 3. The curve aI for I ¼ fi1; i2; . . . ; ikg.
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corresponding twists are in H. It follows that C2;C3 A H and the lantern
relation gives D A H. r

The following theorem is the main result of this paper.

Theorem 3.2. For gb 4 the level 2 mapping class group G2ðNgÞ is generated
by the following elements.

(1) Yai ;afi; jg for i A f1; . . . ; g� 1g, j A f1; . . . ; gg and i0 j,
(2) Yafi; j; kg;afi; j; k; lg for i < j < k < l.

The group G2ðN3Þ is generated by the elements (1).

Let G be the subgroup of MðNgÞ generated by the elements (1), (2) from
Theorem 3.2. Our goal is to prove that G ¼ G2ðNgÞ. Since by [18, Lemma 3.6]
G2ðNgÞ is generated by crosscap slides conjugate to Ya1;af1; 2g it su‰ces to prove
that G is normal in MðNgÞ. First we need to prove some lemmas.

Lemma 3.3. Suppose that a and b are two simple closed curves such that a is
one-sided, b is two-sided and they intersect in one point. Then

T 2
b ¼ YTbðaÞ;bY

�1
a;b :

Proof. Since Ya;b preserves the curve b and reverses orientation of its
neighbourhood, we have Ya;bTbY

�1
a;b ¼ T�1

b . On the other hand, by (2.3) we
have TbYa;bT

�1
b ¼ YTbðaÞ;b, therefore,

T 2
b ¼ TbYa;bT

�1
b Y �1

a;b ¼ YTbðaÞ;bY
�1
a;b : r

Lemma 3.4. Suppose that a and b are one-sided simple closed curves inter-
secting in one point. Let d be one of the boundary curves of a regular neighbour-
hood of aU b. Then

T 2
d ¼ Y e1

a;bY
e2
b;a;

where ei is 1 or �1 for i ¼ 1; 2.

Proof. Let d ¼ d1 and d2 be the boundary curves of a regular neighbour-
hood M of aU b and suppose that Td1 and Td2 are right twists with respect to
some orientation of Mna, so that Ya;b ¼ ðTd1T

�1
d2

Þe1 (note that this is the gen-
eralized crosscap slide defined in Subsection 2.4). Observe that with respect to
any orientation of Mnb one of the twists Tdi is right, while the other one is
left. Hence Yb;a ¼ ðTd1Td2Þ

e2 and the lemma follows. r

Lemma 3.5. For i A f1; . . . ; gg and for every simple closed curve b intersecting
ai in one point we have Yai ;b A G. Moreover, Yai ;b can be written as a product of
generators of type (1).
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Proof. Let G 0 be the subgroup of G generated by the elements (1). First
we assume i < g. Let N 0 be the surface of genus g� 1 obtained from Ng by
replacing the i-th crosscap by a disc U with basepoint x0. As Ng may be seen as
being obtained from N 0 by the blowup construction, we have the corresponding
crosscap pushing map

c : p1ðN 0; x0Þ ! MðNgÞ:
Note that Yai ;b is in the image of c (see Lemma 2.2). The group p1ðN 0; x0Þ is
generated by homotopy classes of simple loops ½gj� such that cð½gj �Þ ¼ Yai ;afi; jg for
j A f1; . . . ; i � 1; i þ 1; . . . ; gg (in fact ½gj� can be taken to be standard generators
of the fundamental group). It follows that cðp1ðN 0; x0ÞÞJG 0 and Yai ;b A G 0.

Now suppose i ¼ g. It su‰ces to show that Yag;af j; gg A G 0 for j A f1; . . . ;
g� 1g, the rest of the proof follows as above. Note that Taf j; gg ðajÞ ¼ a�1

g . By
Lemma 3.3 and (2.1) we have

Yag;af j; gg ¼ T 2
af j; gg

Yaj ;af j; gg

and hence it su‰ces to show that T 2
af j; gg

A G 0. We assume j ¼ g� 1. Let M be

the surface obtained by cutting Ng along afg�1;gg. Thus M is a nonorientable
surface of genus g� 2 with two boundary components. For n A f1; . . . ; g� 1g
there exist pairwise disjoint two-sided simple closed curves dn in M such that
qM ¼ d1 U dg�1 and dk U dkþ1 ¼ qMk, where Mk is a genus one subsurface con-
taining ak for k A f1; . . . ; g� 2g. Choose an orientation of Mnða1 U � � �U ag�2Þ
and let Tdn be the right Dehn twist with respect to that orientation for n A
f1; . . . ; g� 1g. For k A f1; . . . ; g� 2g there exists a one-sided simple curve bk in
Mk intersecting ak in one point and such that Yak ;bk ¼ TdkT

�1
dkþ1

, see Figure 4.
We have

Ya1;b1Ya2;b2 � � �Yag�2;bg�2
¼ Td1T

�1
dg�1

;

and after recovering Ng by gluing together the boundary curves of M we obtain

Ya1;b1Ya2;b2 � � �Yag�2;bg�2
¼ TG2

afg�1; gg
:

This completes the proof because Yak ;bk A G 0 for k A f1; . . . ; g� 2g by earlier part
of the proof. Similarly, we can show T 2

af j; gg
A G 0 for other j. r

Lemma 3.6. For every I J f1; . . . ; gg such that jI j ¼ 2 or jI j ¼ 4 we have
T 2
aI
A G.

Figure 4. The surface M and curves from the proof of Lemma 3.5.
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Proof. Suppose that I ¼ fi; jg where i < j. Observe that Tafi; jg ðaiÞ ¼ a�1
j .

By Lemma 3.3 and (2.1) we have T 2
afi; jg

¼ Yaj ;afi; jgY
�1
ai ;afi; jg

A G.

Suppose that I ¼ fi; j; k; lg where i < j < k < l and let J ¼ fi; j; kg. Ob-
serve that TaI ðaJÞ ¼ a�1

l . By Lemma 3.3 and (2.1) we have T 2
aI
¼ Yal ;aI Y

�1
aJ ;aI

.

Since Yal ;aI A G by Lemma 3.5, and YaJ ;aI A G by the definition of G, also
T 2
aI
A G. r

Lemma 3.7. For every I ¼ fi; j; kg, where 1a i < j < ka g, and for every
two-sided simple closed curve b intersecting aI in one point we have YaI ;b A G.

Proof. Note that b actually exists only for gb 4. Indeed, if g ¼ 3 then the
surface obtained from Ng by cutting along aI is orientable, and every curve
intersecting aI in one point must be one-sided. Therefore we are assuming
gb 4.

Let H be the subgroup of MðNÞ generated by YaI ;ai , YaI ;ak and YaI ;aJ for
every J such that jJj ¼ 4 and I H J. We claim that HJG. Consider a regular
neighborhood of aI U ai. One of its boundary curves is af j;kg and by Lemma 3.4
we have

T 2
af j; kg

¼ Y e1
aI ;ai

Y e2
ai ;aI

;

where el is 1 or �1 for l ¼ 1; 2. Since Yai ;aI A G by Lemma 3.5 and T 2
af j; kg

A G

by Lemma 3.6, also YaI ;ai A G. By a similar argument YaI ;ak A G. Let J ¼
I U flg for l B fi; j; kg and note that TG1

aJ
ðaI Þ ¼ a�1

l . By Lemma 3.3 and (2.1) we
have

TG2
aJ

¼ Yal ;aJY
�1
aI ;aJ

;

and since Yal ;aJ A G by Lemma 3.5 and T 2
aJ

A G by Lemma 3.6, also YaI ;aJ A G
and the claim is proved.

Now it su‰ces to show that YaI ;b A H. Choose n A f1; . . . ; ggnfi; j; kg and
observe that for J ¼ I U fng we have T e

aJ
ðaI Þ ¼ a�1

n , where e ¼G1. Let

Y ¼ T e
aJ
YaI ;bT

�e
aJ

¼ Yan;T e
aJ
ðbÞ; H 0 ¼ T e

aJ
HT�e

aJ
:

We need to show that Y A H 0. Let N 0 be the surface of genus g� 1 obtained
from Ng by replacing the n-th crosscap by a disc U with basepoint x0. We have
the crosscap pushing map

c : p1ðN 0; x0Þ ! MðNgÞ:

Since Y A cðp1ðN 0; x0ÞÞ it su‰ces to show that cðp1ðN 0; x0ÞÞJH 0 and for that
it is enough to check that p1ðN 0; x0Þ is generated by loops mapped by c on
generators of H 0. Let us assume n ¼ 1. The proof is similar for other n. In
this case we have H 0 ¼ D�1HD for D ¼ Taf1; i; j; kg . For s A f2; . . . ; gg let xs be

the standard generators of p1ðN 0; x0Þ such that cðxsÞ ¼ Ya1;af1; sg . The group H 0

is generated by
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D�1YaI ;aiD ¼ Ya1;a
�1
f1; j; kg

¼ cððxjxkÞ�1Þ;

D�1YaI ;akD ¼ Ya1;a
�1
f1; i; jg

¼ cððxixjÞ�1Þ;

D�1YaI ;af1; i; j; kgD ¼ Ya1;af1; i; j; kg ¼ cðxixjxkÞ;

D�1YaI ;afl; i; j; kgD ¼ cððxixjxkÞ�1
xlxixjxkÞ for 1 < l < i;

D�1YaI ;afi; l; j; kgD ¼ cðxixlx�1
i Þ for i < l < j;

D�1YaI ;afi; j; l; kgD ¼ cðx�1
k xlxkÞ for j < l < k;

D�1YaI ;afi; j; k; lgD ¼ cðxixjxkxlðxixjxkÞ�1Þ for k < la g:

It is easy to check that each xs can be expressed as a product of elements which
are mapped by c on the generators of H 0. It follows that cðp1ðN 0; x0ÞÞJH 0

and the lemma is proved. r

Lemma 3.8. Let I ¼ fi1; . . . ; i5g and J ¼ fi1; . . . ; i5; i6g, where 1a i1 < � � � <
i5 < i6 a g. Then YaI ;aJ A G.

Proof. Note that TaJ ðafi1; i2; i3gÞ ¼ a�1
fi4; i5; i6g. By Lemma 3.3 and (2.1) we

have

T 2
aJ

¼ Yafi4 ; i5 ; i6g;aJ
Y �1

afi1 ; i2 ; i3g;aJ
:

On the other hand, since TaJ ðaI Þ ¼ a�1
i6
, we also have

T 2
aJ

¼ Yai6 ;aJ
Y �1

aI ;aJ
:

Hence

YaI ;aJ ¼ Yafi1 ; i2 ; i3g;aJ
Y �1

afi4 ; i5 ; i6g;aJ
Yai6 ;aJ

A G

by Lemmas 3.5 and 3.7. r

Proof of Theorem 3.2. As we explained before Lemma 3.3, we have to
prove that G is normal in MðNgÞ. By Theorem 3.1 it su‰ces to check for
every generator x of G that AixA

�1
i A G or A�1

i xAi A G for i A f1; . . . ; gg and
BxB�1 A G or B�1xB A G. Note that AixA

�1
i A G if and only if A�1

i xAi A G
since A2

i A G by Lemma 3.6, and analogously for B.
For i A f1; . . . ; gg we have A�1

i�1ðaiÞ ¼ a�1
i�1, AiðaiÞ ¼ a�1

iþ1 and AkðaiÞ ¼ ai
for k0 i � 1; i. It follows that for all i0 j and k the generator Yai ;afi; jg is
conjugated by Ak or A�1

k to Yal ;b for some l and some b. Since the last element
is in G by Lemma 3.5, we have proved that AixA

�1
i A G for every i A f1; . . . ; gg

and every generator x of type (1).
If gb 4 then BðaiÞ ¼ ai for i > 4, while for i A f1; 2; 3; 4g we have

BG1ðaiÞ ¼ a�1
I , where I ¼ f1; 2; 3; 4gnfig. It follows by Lemma 3.5 or by

Lemma 3.7 that BxB�1 A G for every generator x of type (1).
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Suppose that I ¼ fi; j; kg and J ¼ fi; j; k; lg, where i < j < k < l. It can
be checked that for i > 1 we have Ai�1ðaI Þ ¼ Yai ;afi�1; ig ðafi�1; j;kgÞ and Ai�1ðaJÞ ¼
Yai ;afi�1; ig ðafi�1; j;k; lgÞ. It follows that

Ai�1YaI ;aJA
�1
i�1 ¼ Yai ;afi�1; igYafi�1; j; kg;afi�1; j; k; lgY

�1
ai ;afi�1; ig

A G:

By similar arguments one can check that AnYaI ;aJA
�1
n A G for n A f1; . . . ; g� 1g.

If i > 4 then BðaI Þ ¼ aI , while for ka 4 we have BG1ðaI Þ ¼ a�1
m , where

fmg ¼ f1; 2; 3; 4gnI . In both cases we have BYaI ;aJB
�1 A G. If i ¼ 1, j ¼ 2 and

k > 4, then for Y1 ¼ Ya3;af2; 3g , Y2 ¼ Ya4;af2; 4g it can be checked that Y1Y2ðaI Þ
and Y1Y2ðaJÞ are disjoint from af1;2;3;4g. It follows that

BY1Y2YaI ;aJY
�1
2 Y �1

1 B�1 ¼ Y1Y2YaI ;aJY
�1
2 Y �1

1 A G:

From earlier part of the proof we know that BY1Y2B
�1 A G, hence BYaI ;aJB

�1 A G.
A similar argument, using di¤erent Y1, Y2, can be applied to other I such that
jI V f1; 2; 3; 4gj ¼ 2. It remains to consider the cases where ia 4 and j > 4. If
i ¼ 1 then it cen be checked that B�1ðaI Þ ¼ Y �1

a1;af1; 2g
ðaI 0 Þ, where I 0 ¼ f2; 3; 4; j; kg,

and B�1ðaJÞ ¼ Y �1
a1;af1; 2g

ðaJ 0 Þ, where J 0 ¼ I 0 U flg. Since YaI 0 ;aJ 0 A G by Lemma
3.8, we have

B�1YaI ;aJB ¼ Y �1
a1;af1; 2g

YaI 0 ;aJ 0Ya1;af1; 2g A G:

If i ¼ 2 then for Y1 ¼ Ya1;af1; 2g and Y2 ¼ Ya2;af1; 2g we have B�1Y �1
1 ðaI Þ ¼

Y �1
1 Y2ðaI 0 Þ, where I 0 ¼ f1; 3; 4; j; kg, and B�1Y �1

1 ðaJÞ ¼ Y �1
1 Y2ðaJ 0 Þ, where J 0 ¼

I 0 U flg. Since YaI 0 ;aJ 0 A G by Lemma 3.8 we have

B�1Y �1
1 YaI ;aJY1B ¼ Y �1

1 Y2YaI 0 ;aJ 0Y
�1
2 Y1 A G;

and since B�1Y1B A G by earlier part of the proof, also B�1YaI ;aJB A G. The
proof is similar for i ¼ 3 and i ¼ 4. r

Remark 3.9. By the proof of Lemma 3.6 for i < j < k < l we have

T 2
afi; j; k; lg

¼ Yal ;afi; j; k; lgY
�1
afi; j; kg;afi; j; k; lg

;

and by Lemma 3.5 Yal ;afi; j; k; lg can be written as a product of the generators of

type (1). It follows that each generator of type (2) Yafi; j; kg;afi; j; k; lg can be replaced
by T 2

afi; j; k; lg
in Theorem 3.2.

Remark 3.10. There are ðg� 1Þ2 generators of type (1) and
g

4

� �
generators

of type (2). In particular we have 4 generators for G2ðN3Þ and 10 generators
for G2ðN4Þ. We will show in the next section that these are minimal numbers
of generators for these groups. We do not expect that Theorem 3.2 provides
minimal number of generators for G2ðNgÞ for g > 4.
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4. Low genus cases

For i A f1; . . . ; gg let ci denote the homology class of the curve ai in
H1ðNg;ZÞ. Then H1ðNg;ZÞ has the following presentation as a Z-module:

H1ðNg;ZÞ ¼ hc1; . . . ; cg j 2ðc1 þ � � � þ cgÞ ¼ 0i:

Consider the quotient Rg ¼ H1ðNg;ZÞ=hci, where c ¼ c1 þ � � � þ cg is the unique
homology class of order 2. It is immediate from the above presentation that Rg

is the free Z-module with basis given by the images of c1; . . . ; cg�1 in Rg. Let
us fix this basis and identify AutðRgÞ with GLðg� 1;ZÞ. Every automorphism
of H1ðNg;ZÞ preserves c, and thus induces an automorphism of Rg. Thus the
action of MðNgÞ on H1ðNg;ZÞ induces a homomorphism

r : MðNgÞ ! GLðg� 1;ZÞ:
In general r is neither surjective nor injective. However, it was shown in [14,
Section 2], that the group of automorphisms of H1ðNg;ZÞ which act trivially
on H1ðNg;Z2Þ is isomorphic to the full group of automorphisms of Rg which
act trivially on Rg nZ2. Consequently, the restriction of r to G2ðNgÞ yields a
surjection

h : G2ðNgÞ ! GL2ðg� 1;ZÞ;
where GL2ðn;ZÞ is the level 2 congruence subgroup of GLðn;ZÞ.

Birman and Chillingworth obtained in [2, Theorem 3] a finite presentation
for MðN3Þ from which it is immediate that this group is isomorphic to GLð2;ZÞ.
It turns out that such isomorphism can also be deduced from the action on
H1ðN3;ZÞ, as shows the following Theorem proved in [5].

Theorem 4.1. The map r : MðN3Þ ! GLð2;ZÞ is an isomorphism.

The following corollary is an immediate consequence of Theorem 4.1.

Corollary 4.2. The map h : G2ðN3Þ ! GL2ð2;ZÞ is an isomorphism.

Let MatnðZ2Þ denote the additive group of n� n matrices with entries in
Z2. This is an abelian group isomorphic to Zn2

2 . Let us define an epimor-
phism f : GL2ðn;ZÞ ! MatnðZ2Þ. Let X be any matrix in GL2ðn;ZÞ. Write
X ¼ I þ 2A, where I is the identity matrix and define f ðX Þ ¼ A mod 2. To see
that this is a homomorphism take Y ¼ I þ 2B. Then

f ðXY Þ ¼ f ðI þ 2ðAþ BÞ þ 4ABÞ ¼ Aþ B mod 2:

Let Ei; j be the elementary n� n matrix with 1 at position ði; jÞ and 0’s elsewhere.
Since for each pair ði; jÞ the matrix I � 2Ei; j is in GL2ðn;ZÞ, thus f is onto.
The map f was defined in [11] to determine abelianizations of congruence
subgroups of SLðn;ZÞ. Now let g > 1 and consider the composition

f � h : G2ðNgÞ ! Matg�1ðZ2Þ:

12 bŁażej szepietowski



Since f � h is surjective, we see that G2ðNgÞ cannot be generated by less than
ðg� 1Þ2 elements. In particular Theorem 3.2 provides the minimal number of
generators for G2ðN3Þ. It follows from the next theorem that this is also the case
for g ¼ 4.

Theorem 4.3. The group H1ðG2ðN4Þ;ZÞ is isomorphic to Z10
2 .

Proof. By [18, Theorem 3.7] G2ðNgÞ is generated by involutions. It follows
that H1ðG2ðN4Þ;ZÞAZd

2 for some integer d. From Theorem 3.2 we have da 10
and the existence of f � h gives db 9. Let

h : H1ðG2ðN4Þ;ZÞ ! Mat3ðZ2Þ

be the map induced by f � h. To prove d ¼ 10 it su‰ces to show that ker h
is not trivial. Let B ¼ Taf1; 2; 3; 4g and observe that B2 induces the identity on
H1ðN4;ZÞ, hence it belongs to ker h. We claim that B2 is not in the commutator
subgroup ½G2ðN4Þ;G2ðN4Þ�, hence it represents a nontrivial element of ker h. To
prove this claim we need to refer to the presentation of MðN4Þ given in [17]. It
follows from this presentation that there exists an epimorphism y : MðN4Þ ! Z2

such that yðBÞ ¼ 1 and yðxÞ ¼ 0 for every generator x di¤erent from B. In
particular yðYÞ ¼ 0, where Y ¼ Ya3;af3; 4g . Since G2ðN4Þ is the normal closure of
Y we have G2ðN4ÞH ker y. It is a routine to obtain from the presentation of
MðN4Þ a presentation for the index 2 subgroup ker y and check that B2 sur-
vives in its abelianization, that is B2 B ½ker y; ker y�. Since G2ðN4ÞH ker y also
B2 B ½G2ðN4Þ;G2ðN4Þ�. r

References

[ 1 ] N. L. Alling and N. Greenleaf, Foundations of the theory of Klein surfaces, Lect. notes

in math. 219, Springer-Verlag, 1971.

[ 2 ] J. S. Birman and D. R. J. Chillingworth, On the homeotopy group of a non-orientable

surface, Proc. Camb. Phil. Soc. 71 (1972), 437–448.

[ 3 ] D. R. J. Chillingworth, A finite set of generators for the homeotopy group of a non-

orientable surface, Proc. Camb. Phil. Soc. 65 (1969), 409–430.

[ 4 ] S. Gadgil and D. Pancholi, Homeomorphisms and the homology of non-orientable sur-

faces, Proc. Indian Acad. Sci. Math. Sci. 115 (2005), 251–257.
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Błażej Szepietowski

Institute of Mathematics
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