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NONSMOOTH CRITICAL POINT THEORY AND NONLINEAR

ELLIPTIC EQUATIONS AT RESONANCE

NlKOLAOS C . KOUROGENIS AND NlKOLAOS S. PAPAGEORGIOU

Abstract

In this paper we complete two tasks. First we extend the nonsmooth critical point
theory of Chang to the case where the energy functional satisfies only the weaker
nonsmooth Cerami condition and we also relax the boundary conditions. Then we
study semilinear and quasilinear equations (involving the /?-Laplacian). Using a
variational approach we establish the existence of one and of multiple solutions. In
the simple existence theorems, we allow the right hand side to be discontinuous. In that
case in order to have an existence theory, we pass to a multivalued approximation of
the original problem by, roughly speaking, filling in the gaps at the discontinuity points.

1. Introduction

The purpose of this paper is twofold. First, we want to extend the non-
smooth critical point theory of Chang [7], by replacing the compactness and the
boundary conditions. Second, we want to study nonlinear elliptic problems at
resonance and establish the existence of solutions and of multiple solutions.

Chang [7], in order to study equations with discontinuities, developed an
extension of the classical smooth critical point theory, to nonsmooth locally
Lipschitz functionals. The theory of Chang was based on the subdifferential of
locally Lipschitz functionals due to Clarke [8]. Using this subdifferential, Chang
proposed a generalization of the well-known "Palais-Smale condition" ((PS)-
condition) and through it obtained various minimax principles concerning the
existence and characterization of critical points for locally Lipschitz functions.
As is the case with the "smooth" theory, we can extend the theory of Chang
in two directions. One is to weaken the (PS)-condition, and use a nonsmooth
counterpart of the Cerami condition (C-condition; see Cerami [6]). It was shown
by Bartolo-Benci-Fortunato [4], that in the smooth case, we can have a defor-
mation theorem and through it minimax principles about critical points using
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only the weaker C-condition. The other possible generalization, is to relax the
boundary conditions, namely allow certain inequalities in the minimax principles
to be non-strict. Such generalizations are already well known in the context of
the "smooth" theory (see for example Ghoussoub [9]). In this work we present
extensions of the theory of Chang in both the aforementioned directions (see
section 3).

The second task of this paper is to study nonlinear elliptic problems at
resonance. In sections 4 and 5 we consider equations driven by the /7-Laplacian
operator (p > 2) and in section 6 we deal with semilinear equations (p = 2).
Moreover, in sections 4 and 6, the right hand side nonlinearity f(z, ) is in
general discontinuous. On the other hand, in section 5 the nonlinearity / ( z , ) is
continuous, but we prove the existence of at least two nontrivial solutions based
on an abstract multiplicity result under splitting due to Brezis-Nirenberg [5]. In
our work the resonance is simple, namely we have that the potential function
F(z,x) = JQ

X f{z,r)dr goes to ±oo as \x\ —> +oo. In this respect our work is sim-
ilar to that of Ahmad-Lazer-Paul [3] and Rabinowitz [21, Theorem 4.12, p. 25].
Both works deal with semilinear equations and have continuous nonlinearities.
Strongly resonant problems (i.e., F(z,x) having finite limits as x—>+oo), were
studied by Thews [23], Bartolo-Benci-Fortunato [4], Ward [25] (for semilinear
problems with continuous nonlinearity) and Kourogenis-Papageorgiou [17] (for
quasilinear problems with discontinuous nonlinearity). Multiplicity results for
semilinear resonant problems with continuous right hand side, were obtained
by Solimini [22], Ahmad [2], Goncalves-Miyagaki [10], [11] and Landesman-
Robinson-Rumbos [18]. For quasilinear problems involving the /?-Laplacian,
existence and multiplicity results were obtained by the authors in a series of papers
Kourogenis-Papageorgiou [14], [15], [16], [17]. Our work here complements and
partially extends these works. In particular Theorems 10 and 11, extend the
existence result of Kourogenis-Papageorgiou [14], where the growth and asym-
ptotic conditions on f(z, ) are more restrictive. Also, our Theorem 12 com-
pared to the results of Ahmad-Lazer-Paul [3] and Rabinowitz [24], allows a more
general growth condition on the nonlinearity / , which in the aforementioned
works was assumed to be independent of z e Z, continuous and bounded.

In the next section for the convenience of the reader, we recall some basic
definitions and facts from the critical point theory (smooth and nonsmooth) and
the Brezis-Nirenberg abstract multiplicity result. In section 3 we develop the
extensions of the theory of Chang and finally in sections 4, 5 and 6 we study
resonant elliptic problems. In sections 4 and 5 the equations are quasilinear
involving the /7-Laplacian, while in section 6 the problem is semilinear.
Moreover, in sections 4 and 6 the nonlinearity is discontinuous and in section 5
we prove a multiplicity theorem.

2. Mathematical preliminaries

The nonsmooth critical point theory of Chang [7] is based on the sub-
differential theory of locally Lipschitz functions due to Clarke [8]. So let X be a
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Banach space and X* its topological dual. A function φ : X —> R is said to be
"locally Lipschitz", if for every x e l , there exists a neighbourhood U of x and
a constant fc>0 depending on U such that |^(z) - φ(y)\ < k\\z - y\\ for all
z, y e U. For such a function we define "generalized directional derivative"
φ°(x;h) at x e I in the direction h e X by

0 [X] n) = lim .
x'-+x A

The function h —> φ°(x;h) is sublinear, continuous. So by the Hahn-Banach
theorem we know that φ°(x; ) is the support function of a nonempty, convex and
w*-compact set

dφ(x) = {x* e X* : (x*,λ) < / ( x A) for all h e X}.

The set dφ{x) is called "the generalized or Clarke subdifferential" of φ at x.
If φ, φ : X —> R are locally Lipschitz functions, then <3(̂  + i/OC*) — Sφ(x) + dφ(x),
while for any A e /? we have d(λφ)(x) = λdφ(x). Moreover, if φ : X —> R is also
convex, then this subdifferential coincides with the subdiflferential in the sense of
convex analysis. If φ is strictly differentiate (in particular if φ e Cι(X,R)), then
dφ(x) = {φ(x)} A point x e l i s a "critical point" of φ if Oedφ(x). For
details and additional results we refer to the monograph of Clarke [8].

It is well known that the smooth critical point theory, uses a compactness-
type condition, known as the "Palais-Smale condition" (PS-condition for short).
So if φ : X —• R is a C 1 function and c e /?, we say that φ satisfies the Palais-
Smale condition at level c (the (PS)c-condition for short), if for every sequence

{χn}n>\ — X s u c n t n a t Φ(χn) "^^) c and φ'{x) n^cc

 > 0, has a strongly convergent
subsequence. If this is true for every c e R, then we say that φ( ) satisfies the
PS-condition. In the nonsmooth setting with φ : X -» R locally Lipschitz, this
condition takes the form that every sequence {xn}n>\ ^ X such that φ(xn)

 n^cc>
c and m(xn)

 n~*0O

> o, has a strongly convergent subsequence. Here m(x) =
inf{||x*|| : x* e dφ(x)} and the infimum is actually obtained, because dφ(x) is w*-
compact and the norm || || is w*-lower semicontinuous. If φ e CX(X,R), then
since dφ(x) = {φ'(x)}, we see that the above nonsmooth notion is an extension of
the original smooth one.

A weaker form of the (PS)-condition was introduced by Cerami [6], who re-
quired that every sequence {xn}n>\ ^X such that φ(xn)^c and (l + II^ID^^Xw) —•
0 as n —> oo, has a strongly convergent subsequence. It was proved by Bartolo-
Benci-Fortunato [4], that this weaker condition suffices to have a deformation
theorem and using that derive minimax principles. In the next section we do the
same thing in the nonsmooth setting for the theory of Chang [7], using the non-
smooth version of Cerami's condition, which says that every sequence {xn}n>\ ^X
such that φ(xn) "~̂ °°> c and (1 + ||XΛ | |)W(Λ:Λ) n^co

> o, has a strongly convergent
subsequence. In what follows we write (C)c-condition (or simply C-condition if
it holds for every level c e R), for the Cerami condition at level c.
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As we already mentioned in the introduction, our multiplicity theorem in
section 5 will be based on an abstract multiplicity result in the presence of splitting
due to Brezis-Nirenberg [5]. Here we recall the exact statement of this result:

THEOREM 1. IfX is a Banach space, X = Y® V with dim Y < oo, R : X —> R
is a C 1 -functional satisfying the Palais-Smale condition ((PS)-condition) such that
for some r > 0 the following hold

(i) R(x) > 0 for xeV, \\x\\ < r,
(ϋ) R(x)<0for XEY, \\x\\<r,
(iii) R is bounded below and infx R < 0,

then R( ) has at least two nonzero critical points.

Next consider the following nonlinear eigenvalue problem. Here Z <= RN is
a bounded domain with a C1-boundary Γ:

ί -div(\\Dx(z)\Γ2Dx(z)) = λ\x(z)Γ2x(z) a.e. on Z 1

The least real number λ for which (1) has a nontrivial solution is called
the first eigenvalue of the negative ^-Laplacian —Apx = —di\(\\Dx\\p~2Dx) with
Dirichlet boundary conditions (i.e. (—Δ^, WO'P(Z))) and it is denoted by λ\.
This first eigenvalue λ\ is positive, isolated and simple (i.e. the associated eigen-
functions are constant multiples of each other). Moreover, we have the following
variational characterization of λ\ > 0 via the Rayleigh quotient, namely

(2) λ\= min xe
IMI;

This minimum is realized at the normalized eigenfunction u\ (recall that λ\ is
simple). Note that if u\ minimizes the Rayleigh quotient, then so does \u\\ and
so we infer that the first eigenfunction u\ does not change sign on Z. Moreover,
we can show that u\ (z) Φ 0 a.e. on Z and so we may assume that u\ (z) > 0
a.e. on Z (note that by the nonlinear elliptic regularity theory u\ e C^(Z), 0 <
β < 1; see Tolksdorf [24]). For details on these facts, we refer to Lindqvist [20].

The Ljusternik-Schnirelmann theory gives, in addition to λ\, a whole strictly
increasing sequence of positive numbers λ\ < A2 < h < * < h < for which
there exist nontrivial solutions for problem (1). In other words the spectrum
σ(—Ap) of (—AP,WQ'P(Z)) contains at least these points {^}^>i Nothing is
known about the possible existence of other points in σ(—Ap) c [λi,oo) ^ R+.
However, if Y = <wi> = Ru\ and V a topological complement (i.e., W^P(Z) =
Y ® V), then because λ\ is isolated, we have

:veV,vφO(3) A* - inf

If p = 2, then Γ = λ2 the second eigenvalue of (-Δ, W^P(Z)).
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3. Abstract nonsmooth critical point theory

In this section we extend Chang's theory to the case where the locally
Lipschitz functional satisfies the nonsmooth C-condition and the boundary condi-
tions are relaxed. So throughout this section X is a reflexive Banach space and
φ : X —> R a locally Lipschitz functional. For each c e R we set

Kc = {xeX:Oedφ(x),φ(x) = c}

and

φc = {xeX:φ(x) <c}.

Recalling that Grdφ = {(x,x*) e X x X* : x* e dφ(x)} is sequentially closed
in I x I J (here X* denotes the space X* furnished with the weak topology), we
see at once that if φ( ) satisfies the nonsmooth C-condition, then Kc is compact.
We start with two auxiliary results which are analogous to Lemmata 3.2 and 3.3
of Chang [7]. In what follows for δ > 0, {Kc)δ = {xeX : d{x,Kc) < δ}.

LEMMA 2. If φ : X —* R satisfies the nonsmooth (C)c-condition, then for each
δ > 0 there exist γ > 0 and 0 < ε such that

(1 + ||JC||)/W(ΛΓ) > γ for all x e (Kc)δ and c - ε < φ(x) < c + ε.

Proof Suppose not. Then for yn,εn [ 0, we can find xn e {Kc)δ, φ(xn) —> c
such that (1 -h ||x«||)m(xw) -» 0. By virtue of the nonsmooth (C)c-condition, we
may assume that xn —> x in X. Therefore we have φ(x) = c. Moreover, from
Chang [7, p. 105] we know that m(x) < Hm m(xn) = 0 => m(x) = 0 and so x e Kc,
a contradiction (recall that for any n > 1, xne (Kc)

c

δ). This proves the lemma.
Q.E.D.

The second lemma gives us a locally Lipschitz vector field which will play
the role of a pseudo-gradient vector field of the smooth case.

LEMMA 3. If φ : X —* R satisfies the nonsmooth (C)c-condition, δ > 0 is given
and y, ε > 0 are as in Lemma 2, then there exists a locally Lipschitz vector field
v:{xeX : \φ(x) - c\ < ε} Π {Kc)

c

δ -> X such that

\Hx)\\<{\ + \\x\\)

and

(x*,v(x)) > y- for all x* e dφ(x).

Proof We follow the proof of Lemma 3.3 of Chang [7] with the necessary
modifications.

Let x E X and let x* e δφ(x) such that m(x) = \\x*\\. We have 5(0, ||x*||) Π
dφ(x) = 0 (where 5(0, ||x*||) = {z* e X" : ||z*|| < ||x*||}). So by the separation
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theorem, we can find u e X with ||w|| = 1 such that (z*, ύ) < (x*, u) < (y*,u) for
all z* G £(0, ||x*||) and all j * e dφ(x). Recall that sup[(z*, u) : z* e B(0, \\χ*\\)] =
\\x*\\. Hence we obtain y/(2(l + |WD) < | |**| | < (y\u) for all y* e dφ(x). Ex-
ploiting the fact that the multifunction v —> dφ(v) is upper semicontinuous from X
into X*, for each x e {x e X : \φ(x) — c\ < ε, x e {Kc)

c

δ} we can find θ > 0 such
that for all y e B(x, θ) = {y e X : \\y - x\\ < θ} and all y* e dφ(y) we have
γ/2(l + \\y\\) <(y\u). Then {B(x,θ)} is a cover of the set {x e X:
\φ(x) — c\ < ε, x e {Kc)

c

δ}. By paracompactness we can find a locally Lipschitz
finite refinement {Uΐ}ιeI. Let {ζt}lGl be a locally Lipschitz partition of unity
subordinate to {Uj}ιeI and let v(x) = (1 + | | x | | ) / 6 / ^ (x)w/. Evidently v : {x e X :
|^(x) — c| < ε, x e {Kc)l} —> JT is locally Lipschitz and

while

(y*,v(χ)) = (1 + N|)Σί,W(/,«,) > f Q.E.D.

The next theorem (deformation theorem) is the key tool for the nonsmooth
critical point theory. It extends Theorem 3.1 of Chang [7].

THEOREM 4. If φ : X —> R satisfies the nonsmooth (C)c-condition, then for
every εo > 0, every neighborhood U of Kc {if Kc — 0, we take U = 0), there exist
0 < ε < εo and η : [0,1] x X -» X continuous such that for all (/, x) e [0,1] x X we
have

(a) \\η{t,x)-X\\<Le{\ + \\x\\)v,
(b) \φ(x) - c\ > ε0 =Φ η(t, x) = x;
(c) #}χn^c"£Uf/;
(d) φ(η(t,x))<φ(x);
(e) ^(i,x) Φ x => Φ(η(t,x)) < Φ(x).

Proof. By virtue of the compactness of Kc, we can find δ > 0 such that
(Kc)3δ — ̂  ^y virtue of Lemma 2, we can find γ > 0 and 0 < έ < εo such that
γ<(l + \\x\\)m(x) for all x e {Kc)

c

δ and c - ε < φ(x) <c + έ. Consider the fol-
lowing two closed sets in X:

Q={xeX: \φ(x) - c\ > ε} U (Kc)δ

and

Evidently C\ Π C2 = 0 and so we can find ξ : X -+ [0,1] a locally Lipschitz
function such that ξ\c = 0 and ξ\c = 1. Using the vector field ι (x) obtained in

Lemma 3, we define L.X^X by
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j / \ _ f —ξ(x)v(x) if \φ(x) — c\ < ε and x e (Kc)l

1 0 otherwise.

Clearly L( ) is locally Lipschitz. Also we have for xe {xeX : \φ(x) — c\<ε,

(4) \\L(x)\\=ξ(x)\\v(x)\\<(\ + \\x\\)

and

(5) (x*,L(x)) = -ξ(x)(x*,v(x)) < -ξ(x)7-.

For every fixed x e X, we consider the following Banach space-valued Cauchy
problem:

ίjtη(x;t) = L(η(x;ή) a.e. on [0,1]

\η(x;0) = x.

Since L is locally Lipschitz, p r o b l e m (6) has a unique solution η(x; ) . W e
have

(7) \\η(x;t)-x\\ < ί \\L(η(x;s))\\ds
Jo

< (1 4- ||^(x;5)||)ifa (see (4))
Jo

Jo

By GronwalΓs inequality, we have

and so (a) is proved. Also if \φ(x) — c\ > ε, then ζ(x) = 0 and so η(x; t) = x.
So we have proved (b).

Next let h(ή = φ(η(x\ ή). We know that h : [0,1] -> X is locally Lipschitz,
hence differentiable almost everywhere. Moreover, we have (see Chang [7,
p. 106])

ti{t) <max \(x*,—η(x;ή) : x* e dφ(η(x; ή)\ a.e. on Γ,

= max[(x*, L(η(x; ή)) : x* e dφ(η(x; ή)] a.e. on T

=^ h'(t) = < 2 ~

10 otherwise

=> A( ) is nonincreasing.
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Therefore we infer that for all teT and all xe X, φ{η(x; ή) < φ(x). This
proves (d). Also if \φ(x) — c\ < ε and x e (Kc)$, we have

φ(x) - φ(η(x; *)) = - [ ' h\s) ds > ξ(x) \ > 0
Jo λ

=> φ(η(x;ή) < φ(x) if η(x t) φ x, which proves (e).

It remains to show conclusion (c) of the theorem. Let p > 0 such that
(JQ£j ^ B(0,p). Choose 0 < ε < ε such that

(8) 4ε < γ and 4ε(l + p)e < δy.

We proceed by contradiction. Let x e φc+ε and suppose that φ(η(x;ή) >
c — ε and η(x; 1) e Uc. We have

(9) c - ε < φ{η(x] ή) < c + ε for all t e [0,1].

Also it can not happen that η({x} x [0,1]) Π (Kc)^ = 0. Indeed, if this
intersection is empty, from (5) and the properties of ξ(-), we have

\
Jo

But x e φc+ε. So combining this with (9), we obtain

φ(x)-φ(η(x;l))<2ε

=Φ> γ < 4ε

which contradicts the choice of ε > 0 (see (8)). Therefore we can find 0 < t\ <
t2 < 1 such that

d(η(x; tχ),Kc) = 2δ, d(η(x; /2),Kc) = 3δ

and

2δ < d(η{x; t),Kc) < 3δ for all h < t < t2.

Using once again (5), we have

ht2-ti)< f h/(s)ds = φ(η(x;tι)) - φ(η(x;t2)) < 2ε

4ε
=> h-tχ<—.

y
Using this last inequality and arguing as in the proof of (a), we obtain

< P \\L(η(x;S))\\ώ

which contradicts the choice of ε > 0 (see (8)). This proves (c) and so the proof
of the theorem is complete. Q.E.D.
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Using this theorem we can derive useful minimax principles for critical points
in the nonsmooth setting. We start by introducing a basic notion of critical
point theory.

DEFINITION. Let A, C c X. We say that " C links A", if A Π C = 0 and C
is not contractible in X\A.

Remark. It is a well-known consequence of degree theory, that if X is finite
dimensional and U is an open bounded neighborhood of x, then dU (= the
boundary of U) is not contractible in X\{x}.

The next abstract minimax principle, will generate as byproducts the non-
smooth "Mountain Pass Theorem", "Saddle Point Theorem" and "Linking
Theorem", under the nonsmooth C-condition.

THEOREM 5. If A, C c X are nonempty, A is closed, C links A, Tc is the set
of all contractions of C, φ : X —> R satisfies the nonsmooth (C)c-condition with

c = inf sup φ o h < oo and sup φ < inf φ,
heTc [0,l]xC C A

then c > ΊΠΪA φ and c is a critical value of φ. Moreover, ifc — inf A φ, then there
exists x e A such that x e Kc.

Proof Since by hypothesis C links A, for every h e Γc we have λ([0,1] x C)
Π A Φ 0. So we infer that c > mϊA φ.

First we assume that inf^ φ < c. Suppose that Kc = 0. Let U — 0 and let
ε > 0 and η : [0,1] x X —> X be as in Theorem 4. Also from the definition of c,
we can find heTc such that

(10) φ{h(t,x))<c + ε for all re [0,1], xeC.

Let H : [0,1] x C -• X be defined by

(2ί,x) if 0 < ί < i
, 2

(l,A(2ί- 1,JC)) if - < t < \ .

It is easy to check that H eΓc and for every xe C we have

φ(H(t,x)) = φ(η(2t,x)) < φ(x) < sup φ < c for 0 < t < - (see Theorem 4(d))
c 2

and φ(H(t,x)) = φ(η(l,h(2t - l,x))) < c - ε < c for 1/2 < ί < 1 (see Theorem

4(c) and recall that h(t,x) e φc+ε for all t e [0,1], xeC; see (10)). So we have
contradicted the definition of c. This proves the nonemptiness of Kc when c >
infA φ. Next assume that c = inf^ φ. We need to show that Kc Π A Φ 0. Sup-
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pose the contrary and let U be a neighborhood of Kc with Uf)A = 0. Let ε > 0
and η : [0,1] x X —> X be as in Theorem 4. As before let heTc such that

ί, *)) < c + ε for all (*, x) e [0,1] x C. Then we define H : [0,1] x C -> Z by

if 0 < ί < ^

i 2

l,x)) if - < ί < l .

Again we can easily verify that H eTc From Theorem 4, we know that
for all 0 < t < 1/2 and all x e C , we have

η(2t,x) = x or ψ(η(2t,x)) < φ(x) < inΐ φ = c
A

=> η(2t,x) e Ac for all 0 < t < - and all xeC.

For all 1/2 < t < 1 and all x e C , we have from Theorem 4(c)

while

(φc~ε UU)ΠA = φ.

So /ί is a contraction of C in I \ ^ , a contradiction. This proves the
theorem. Q.E.D.

As a first consequence of this minimax theorem, we derive an extended
version of the nonsmooth "Mountain Pass Theorem" (see Chang [7, Theorem
3.4]).

THEOREM 6. If there exist x\ e X and r>0 such that | | x i | | > r ,
max[^(0),^(xi)] < mϊ[φ{x) : ||x|| = r] and φ : X —» R satisfies the nonsmooth (C)c-
condition with c = infyermax^fo,!] φ(y(ή) where Γ = {γ e C([0,1],^) : γ(0) — 0,
y(l) — x\) then c > mf[φ(x) : ||x|| = r] and c is a critical value of φ. Moreover,
if c — inf[φ(x) : ||JC|| = r], there exists a critical point x of φ with φ(x) = c and

Proof We will apply Theorem 5 with A = {xeX : \\x\\=r} and C = {0,x\}.
Clearly C links A and c < oo. Let y e Γ and define

l̂ xi li Λ: = x\.

Then heTc (see Theorem 5). So

(11) inf sup φ(h(t,x)) < φ{h(t,x)) < c.
heΓc [0,l]xC
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On the other hand, if h e Γc, then

( *(2ί,0)

belongs to Γ and so

(12) inf sup φ{h{t,x))>c.

hGΓc [0,1]xC

From (11) and (12), we have

c = inf sup φ(h(t,x))
heYc [0,l]xC

and so we can apply Theorem 5 and finish the proof. Q.E.D.

Remark. In addition to assuming the weaker nonsmooth (C)c-condition
(while Chang [7] assumes that φ satisfies the nonsmooth PS-condition), here we
have proved the nonsmooth mountain pass theorem under relaxed boundary
conditions, i.e. it can happen that max[^(0),^(xi)] = inf[^(x) : ||x|| = r) (in Chang
[7] the left hand side is strictly smaller than the right hand side). Also the choice
of 0 as the second point in C was done only for convenience. In fact we can
replace 0 by any X2 e X, provided that the hypothesis | |xi| | > r is replaced by the
condition \\x2 — x\ 11 > r.

The next important consequence of Theorem 5, is an extended version of the
nonsmooth "Saddle Point Theorem" (see Chang [7, Theorem 3.3]).

THEOREM 7. If X = Y © V, with dim Y < oo, there exists r > 0 such that

(x) : x e F , ||x|| = r] < wf[φ(x) : x e V]

and φ: X —• R satisfies the nonsmooth (C)c-conditίon where c =
infy e Γ max X G £ φ(γ(x)) with Γ = {γeC(E,X) : γleE = identity}, E={xe Y : | | * | |< r }
and dE = {x e Y : ||x|| = r}, then c > mϊγ φ and c is a critical value of φ.
Moreover, if c — inf y φ, then

Proof In this case we will apply Theorem 5 with A = V and C = dE.
Clearly from the compactness of E (recall that by hypothesis Y is finite dimen-
sional), we have that c < oo. Let P : X —• Y be the projection operator (see Hu-
Papageorgiou [12, Propositions IV.7.8 and IV.7.9, pp. 502-503]). First we show
that with the aforementioned choices, C links A. Suppose not and let A be a
contraction of C in X\V. Let H(t,x) = Ph(t,x), which is a contraction of C in
7\{0}, a contradiction (see the remark following the definition of linking). So
indeed C links A.
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Next let γeΓ and define h(t,x) = γ((l - ήx). Evidently h e Γ c . So we
have

(13) inf sup φ(h(t,x))<φ(h(t,x))<c.
heYc [0,l]xC

Also if h e Γc and h{\,x) = z\ for all x e C, then we define

h{t,x) i f ( ί , * ) e [ 0 , l ] x C

which is continuous from ([0,1] x C) U ({1} x E) into X. Let θ : E ->
([0,1] x C) U ({1} x £) be a homeomorphism such that 0(C) = {0} x C. Then
we see that £ o θ e Γ and so

(14) c< inf sup φ(h(t,x)).
heVc [o,l]χC

From (13) and (14) it follows that c = inf/jGrc sup[O j l] x C φ(h(t,x)) and so we
can apply Theorem 5 and finish the proof. Q.E.D.

Remark. In this theorem too in addition to assuming a weaker compactness
condition that Chang [7] (namely the nonsmooth (C)c-condition), we also use
a relaxed boundary condition, namely we do not require that swp[φ(y) : y e Y,
\\y\\=r] be strictly smaller than inf^^. In our formulation equality is also
possible.

The next theorem is not in Chang [7] and is a nonsmooth generalization of
the well-known "Linking Theorem" of Rabinowitz [21, Theorem 5.3, p. 28] with
relaxed boundary condition.

THEOREM 8. If X = Y 0 V with dim Y < oo, with 0 < r < R and e e V with
\\e\\ = 1 such that

(x) : x e dQ] < inί[φ(x) : x e dB(0, r) Π V]

where Q = {x = y + te : y e F, t > 0, \\x\\ < R} and dQ is its boundary in
Y © Re, and φ : X —> R satisfies the nonsmooth (C)c-condition where c =
infyer niax^eg φ(γ(x)) with Γ = {γ e C(β, Â ) : η = identity}, then c > inf[φ(x) :
x e δB(0, r) Π V] and c is a critical value. Moreover, if c — inf [^(x) :
x e dB(0, r)ΠV], then Kc Π (dB(0, r)ΠV) Φ 0.

Proof Because Q is compact, it is clear that c < oo. Let P\ : X —> 7 and
P2 : X ^ V be the projection operators on F a n d F and let ̂ ί = 3 5 ( 0 , r ) Π F and
C = 3β. If h(t,x) is a contraction of C in Z \ ^ , then H(t,x) = Pxh(t,x) +
\\P2h{t,x)\\e is a contraction of C in (F©/te)\{re} which is not possible (see
the remark following the definition of linking). Moreover, as in the proof of
Theorem 7, we can verify that c = mfhGrc

 suP[o,i]χC Φ°h> So we can apply
Theorem 5 to finish the proof. Q.E.D.
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We conclude this section with a result which is a direct consequence of
Corallary 2.3 of Zhong [26] and extends Theorem 3.5 of Chang [7].

THEOREM 9. If φ : X —> R satisfies the nonsmooth C-conditίon and is bounded
below, then there exists xe X such that φ{x) = infχ φ = c {and so xe Kc).

4. Equations at resonance with discontinuities

Let ZeRN be a bounded domain with a C1+α-boundary Γ (0 < α < 1).
We consider the following quasilinear elliptic resonant problem:

Γ -άiv{\\Dx{zψ-2Dx{z)) - λλ\x{z)r-2x{z) = f(z,x(z)) a.e. on Z j

\ JC!Γ = 0, 2<p< oo. J

We do not assume that /(z, ) is continuous. It is well-known then that (15)
need not have a solution. Then we replace (15) by a multivalued equation which
approximates it and is obtained by, roughly speaking, filling in the gaps at the
discontinuity points of /(z, ). For the resulting elliptic inclusion, we can develop
an existence theory based on the abstract results of section 3. So we introduce
the following two functions:

fΛz,x) = limγ/ _ f{z,x') = lim essinf f(z,x')
(5|0 \x'-x\<δ

and

/2(z,x) = limx/_,x/(z, x') = lim ess sup f{z,xr).
Ji° \x'-x\<δ

Let /(z, x) = { j e i ? : /j (z, x) < j < /2(z, x)} and consider the following
multivalued approximation of (15):

Γ -div(||Dx(z)|r-2Z)χ(z)) - λ,\x{z)r2x(z) ef(z,x(z)) a.e. on Z )

\x\Γ =0,2<p< oo. J

In the sequel we will be dealing with (16). By a solution of (16), we
mean a function x e W^'P(Z) such that

and

-div(\\Dx{z)\\p~2Dx{z)) - λι\x(z)\p-2x(z) = u(z) a.e. on Z,

with u e Lι(Z) and

/i(z,x(z)) < φ ) < f2(z,x{z)) a.e. on Z.

In this section we prove an existence theorem for problem (16) under general
growth conditions on the discontinuous nonlinearity f(z,x), extending this way
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an earlier existence theorem by the authors [14]. The precise hypotheses on
/(z,x) are the following:

H(f)ι: f : Z x R —> R is a Borel measurable function such that
(i) / i , / 2 are both JV-measurable functions (i.e. for every x.Z^R mea-

surable function, z —> fi(z,x(z)), / = 1,2, are measurable);
(ii) there exist a\ e U° (Z) and c\ > 0 such that for almost all z e Z and all

XGR

(iii) for some 0<μ<p we have hm^x^OD(f(z,x)x — pF(z,x))/\x\μ>0 uni-
formly for almost all zeZ (recall that F(z,x) = ^ f(zyr)dr, the potential
function corresponding to / ) ;

(iv) limx^o (pF(z,x))/\x\p < —λ\ uniformly for almost all z e Z ;
(v) there exists ξφO such that \zF(z,ξu\(z)) dz > 0.

Remark. Hypothesis i/(/)1(iii) is a generalization of the well-known
Ambrosetti-Rabinowitz condition introduced to deal with semilinear (i.e., p = 2),
superquadratic problems (see Rabinowitz [21, p. 9]). Indeed according to that
condition 0 < kF(z,x) < xf(z,x) for almost all z e Z, all \x\ > M and for some
k > 2. This implies that F(z,x) > βx\x\k — β2 a.e. on Z for some /?α,/?2 r> 0 (see
Rabinowitz [21, Remark 2.13, p. 9]). Hence we have (f(z,x)x-2F(z,x))/
\x\μ >(k- 2){F(z,x)/\x\μ) >(k- 2)βι\x\k~μ - (k - 2)β2{l/\x\μ). So hypothesis
H(f)ι(m) is satisfied provided μ < k. Hypothesis H(f){\\) is needed in order to
get the linking necessary to apply the "Mountain Pass Theorem" (Theorem 6).
Analogous conditions were used by Rabinowitz [21] (for the nonresonant problem,
see hypothesis (/?3), p. 9) and by Goncalves-Miyagaki [10], [11] (hypotheses
(04) in [10] and hypothesis (H)o in [11]).

We have the following existence result.

THEOREM 10. If hypotheses H{f)x hold, then problem (16) has at least one
nontrivial solution.

Proof. Let φ:W^p(Z)-*R be defined as

φ{x) = - \\Dx\\p

p - ^ ||*||; - f F(z, x(z)) dz.

We know that φ( ) is locally Lipschitz (see Chang [7, p. 111]). In what
follows let ψ : W^P{Z) -> R be defined by φ{x) = \zF(z,x{z))dz.

CLAIM 1. φ{ ) satisfies the nonsmooth Q-condition.

Let {xn}n>ι ^ WQ'P(Z) be a sequence such that \φ(xn)\ < M for all n > 1

and (1 + ||jcrt||)w(xΛ) ^̂ °°> 0. Let x* e dφ{xn) such that m{xn) = ||x*||, n > 1, we
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know that

x* = A(xn) - λ\\xn\
p~2xn - un

with A : WQ'P(Z) -> W~ι>q(Z) the nonlinear operator defined by

,y} = f \\Dx(z)\r\Dx{z),Dy{z))RNdzf
Jz

for all y e WQ'P(Z) and un e dφ(xn), n > 1. From Chang [7] we know that un e

L«(Z) and fx(z,xn(z)) <un(z) <f2(z,xn(z)) a.e. on Z. We have

(17) |<JC*,JCΛ>| < εn and \φ(xn)\ < M, /i > 1, with εn I 0,

=̂> -εn <-\\Dxn\\P + λiWxnW? + \ un(z)xn(z)dz<εn

and

(18) -/>M < I I ^ H ; - M\\xn\\p

p - [ pF(z,x(z))dz < pM.
J Z

Adding (17) and (18), we obtain

(19) -en-pM< f (un(z)xn(z)-pF(z,xn(z)))dz<εn+pM.
Jz

By virtue of hypothesis H(f)x(in), given ε > 0, we can find M\ — M\(έ) > 0
such that for almost all zeZ and all \x\ > M\, we have

(20) f{z,x)x - pF(z,x) >(β- ε)\x\μ, (β - ε > 0).

On the other hand by virtue of hypothesis H(f)ι(iϊ), for almost all z e Z and
all |JC| < M\ we have

(21) \f(z,x)x-pF(z,x)\ < a2(z) with a2 eL°°(Z).

Therefore from (20) and (21) we have that for almost all z e Z and all z e R

/(z,x)x - pF(z,x) >(β- ε)\x\μ - 52(z), a2 e L*{Z).

Thus going back to inequality (19), we obtain

(β - ε)\\xn\ζ < βx for some βλ > 0

=» {xn}n>ι ^Lμ(Z) is bounded.

N e x t f r o m h y p o t h e s i s H ( f ) 1 ( i ϊ ) , w e s e e t h a t f o r a l m o s t a l l z e Z a n d a l l
x e R w e h a v e

F(z,x)<a3(z)+η\x\q with a3 e U»{Z\η > 0

with p < q < min[p*,p((N + μ)/N),μ + p\. Since μ < q < /?*, we can find 0 <
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W-ι>«(Z)), we have

(A(xn),xn -x}-λι \xn(z)\p~2xn{z)(xn - x){z)dz
Jz

- un(z){xn - x)(z) dz < εn\\xn - x\\x

Jz

with εn I 0. Since WQ'P(Z) is embedded compactly in LP(Z) (Sobolev embedding
theorem), we have that xn ^% x in LP{Z) and so

f
JZ

and

f Un(
Jz

Therefore we obtain

Km(A(xn),xn-x><0.

But we know (see for example Kourogenis-Papageorgiou [14]) that A is
monotone, demicontinuous, hence maximal monotone and of course pseudo-
monotone (see Hu-Papageorgiou [12]). Thus we have

),xn)^ (A(x),x}

=> \\Dxn\\p ^ \\Dx\\p.

We already know that Dxn^Dx in L?(Z,RN). Since LP{Z,RN) is
uniformly convex, we infer that Dxn —• Dx in ^ ( Z , / ? ^ ) and so xn —> x in
WQ'P(Z) which proves the claim.

CLAIM 2. There exist βs,β9>0 such that φ(x) > βs\\x\\p - β9\\x\\v with
p < v < p*.

By virtue of hypothesis H(f)λ(iv), given ε > 0 we can find δ > 0 such that
for almost all z e Z and all \x\ < δ we have

F(z,x)<-(-λι+ε)\x\p.
P

Also from hypothesis H(f)ι(iϊ), we have

\F(z,x)\ < a4(z) +η'\x\p a.e. on Z

with #4 G U°{Z), η' > 0. Therefore we can find σ > 0 large enough so that for
p < v < p* we have
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F(z,x) < -(-λι + ε)\x\p + σ\x\v a.e. on Z, for all x e R.
P

Therefore for every xe W^P{Z) we have

φ(x) = i \\Dx\\p

p - ^ \\x\\p

p - J z F(z, x(z)) dz

Choose ε > 0 so that ε<λ\. So from Poincare's inequality and since
WQ'P(Z) is embedded continuously in LV(Z) (recall that v < p*), we can find
βs,β9>0 such that

φ(x) > βs\\x\\p -β9\\x\\v for all xeW^p(Z).

This proves the claim.

Using Claim 2 we can find r > 0 small enough such that

inf [φ(χ) : ||x|| = r] > 0.

On the other hand ^(0) = 0 and by hypothesis H^f)^) for the particular
ξϊO, we have < ; J z

JzF(z,^wi(z))rfz < 0 (see (2)). So Claim 1 permits the use of Theorem 6 which
gives us x e W^P{Z) such that

φ(x) > 0 (hence x φ 0) and 0 e £ty(x).

From the inclusion we have that

A{x) - λλ\x\p-2x - u = §

with ued\j/(x), hence /i(z,x(z)) < u(z) < f\{z,x{z)) a.e. on Z. For every ^ G
C^(Z) we have

(24) f \\Dx{z)\\p-\Dx{z),DΘ{z))R»dz
Jz

\x(z)\p-2x(z)θ(z)dz- f W(z)^(z)^z = 0
Jz

} = λι [ |x(z)|/7-2x(z)6>(z)^z+f u(z)θ(z)dz.
JZ JZ

From the representation theorem for the elements in W~ι'q(Z) (see Adams
[1]), we see that άi\{\\Dx\\p~2Dx) e W~λ^{Z). Note that C$>{Z) is dense in
W^P(Z) and JV~ι^(Z) = W^P(Z)\ So from (24) it follows that
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ί -dϊv(\\Dx(z)\Γ2Dx(z)) - M\x(z)r2*(z) = Λz,x(z)) a.e. on Z j

\xlr=0, 2<p<cc j

and hence xe W^P(Z) is a nontrivial solution of (2). Q.E.D.

5. Multiple solutions for problems at resonance

In this section we consider quasilinear problems at resonance with Car-
atheodory right hand side. So we deal with problem (15). Using Theorem 1,
we prove the existence of at least two nontrivial solutions. Recall that a function
f.ZxR^R is a Caratheodory function if for all x e R, z—*f(z,x) is
measurable and for almost all z e Z, x —• /(z, x) is continuous. Recall that
a Caratheodory function is jointly measurable, hence N-measurable (see Hu-
Papageorgiou [12, Proposition II.1.6, p. 142]). The hypotheses on the non-
linearity f(z,x) are the following:

H(f)2: f : Z x R —> R is a Caratheodory function such that
(i) for every M > 0, there exists «M e L°° (Z) such that for almost all z e Z

and all |x| < M we have |/(z,x) | < U M W ;
(ii) there exists δ > 0 such that for almost all z e Z and all |JC| < 5, we have

F(z,x)>0;
(iii) there exists 0 e U^{Z) with 0(z) < 0 a.e. o n ^ a n d the inequality is strict

on a set of positive Lebesgue measure such that lim^j^oo pF(z,x) — θ(z) uni-
formly for almost all z e Z;

(iv) limΛ:_,o(/?^Γ(^)^)/|^|/;) = 0 uniformly for almost all z e Z;
(v) there exists £ > 0 such that JzF(z,^Mi(z))rfz > 0.

Remark. By virtue of hypothesis /7(/)2(iii) the potential function i^(z,;c)
has a finite limit as |x| —> oo for almost all Z G Z . Hence according to the
prevaling terminology the problem is "strongly resonant". Such problems for
semilinear equations (p = 2) were studied by Bartolo-Benci-Fortunato [4] (who
coined the term "strongly resonant problem"), Goncalves-Miyagaki [11], Thews
[23] and Ward [25]. It should be pointed out that compared to Goncalves-
Miyagaki [11] (who also have a multiplicity result) our overall hypotheses o n /
are weaker. However, they prove the existence of three nontrivial solutions
(always for the p = 2 problem, semilinear problem). Their result was recently
extended to quasilinear problems by Kourogenis-Papageorgiou [17], using of
course stronger hypotheses than H{f)2.

We have the following multiplicity result:

THEOREM 11. If hypotheses H(f)2 hold, then problem (15) has at least two
nontrivial solutions.
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Proof. As before the energy functional φ : WQ'P(Z) —> R is defined by

φ{x) = - \\Dxfp - ^ \\x\\> - f F(z, x{z)) dz.
Γ Γ J Z

Now we have φ e CX(W^P(Z)). By virtue of hypothesis i/(/)2(iv), we can
find 1 > δ\ =δ\(έ) > 0 such that for almost all zeZ and all |x| <δ\ we have
F(z,x) < (ε/p)\x\p. Combined this with hypothesis H(f)2(ϊ) implies that for
almost all zeZ and all x e R we have

(25) F{z,x)<-p\x\p+βx\x\μ

with p < μ< p* (recall that p*9 the critical Sobolev exponent, equals Np/(N-p)
if p < N and +00 if p > N).

Let WQ'P(Z) = Y® V, where Y = Ru\ and V its topological complement.

CLAIM 1. There exists r\ > 0 such that φ(υ) > 0 for all v e V, \\v\\ < r\.

Using (3) and (25), for every v e V, we have

φ(v)=l\\Dv\\p

p-^-\\υ\\p

p-\ F(z,x(z))dz

> l\\Dv\\ϊ-^\\Dv\\ϊ--\\v\\p

p-β2\\v\\°P for some β2 > 0,
P A P P

> -p \\Dυ\\p

p - £- \\Dυ\\p

p - £- \\Dυ\\p

p -β,\\Dv\\θ

p for some β3 > 0,

Choose ε > 0 so that Λ.i + ε < λ*. Then we have

Φ(v) > β4\\Dv\\p

p - β3\\Dvfp

for some β4> 0 and all z; G F. Since θ > p, by choosing rj > 0 small enough we
see that φ(v) > 0 for all v e V, \\v\\ < r\.

CLAIM 2. Γ/ẑ re βxύ^ r2 > 0 »swc/z ίΛαί <̂ (/wi) < 0 /or α// \t\ < r2.

We have

= - f F{z,tuλ{z))dz.
Jz

Since wi e C ! (Z) (see Lieberman [19, Theorem 1]), from hypothesis H(f)2(n)
it follows that if r2 =δ/\\uχ\\O0, we have that φ{tu{) < 0 for all |/| < r2.
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CLAIM 3. φ{-) satisfies the (PS)-condition.

Let {xn}n>ι £ W^P(Z) be such that {φ{xn)}n>ι is bounded and φ'{xn) ^ 0.

Let Ψ:WQ'P(Z)-+R be defined by φ(x) = \\Dx\\p - λι\\x\\p - \zθ{z)dz. We

will show that there exists ξ > 0 such that ψ(x) > ξ\\Dx\\p. Suppose not. Then

we can find {xm}m>o £ W^iP(Z) w i t h \\Dχm\\p = 1 such that φ(xm) I 0. Using
Poincare's inequality and by passing to a subsequence if necessary, we may
assume that xm -^ x in W^P(Z) and xm —> x in LP{Z). Thus we have

> ||Z)x||; - A, ||x||; - f β(z) <fe > 0 (Rayleigh quotient),

a contradiction. So there exists f > 0 such that ψ(x) > ξ\\Dx\\p for all x e
Wλ>P{Z).

Now by virtue of hypothesis //(/)2(iii), given ε>0 we can find M = M(ε)>0
such that for almost all z e Z and all \x\ > M, we have F(z,x) < (l/p)θ(z). On
the other hand, from hypothesis H(f)2(i), we know that for almost all z e Z
and all |JC| < M, we have |.F(z,x)| < %(z). Thus we infer that there exists
a\eLco{Z) (take for example a\(z) = aM(z) 4- H^ID such that for almost all
z G Z and all z e /?, we have

(26) F(z,x) <6>(z)+β + αi(z).

Using (26) we have

φ(x) > - \\Dx\\p

p -
 λj- \\x\% +1 f (9(z) dz - β5, for some β5 > 0,

From the above inequality we see that φ(-) is coercive. Since {φ{xn)}n>\ is
bounded, we must have that {xn}n>\ ^ WQ'P(Z) is bounded and so by passing to
a subsequence if necessary, we may assume that xn -^ x in W^P(Z). Then
arguing as in the proof of Theorem 10 we can have that xn —> x in WQ'P(Z),

which proves the claim.
Finally note that ^( ) being coercive is bounded below, while by virtue

of hypothesis i/(/)2(v) and since ||Dwi||£ = Λ,i||«i||£, we have that
mΐwi,P,z, φ < 0. These facts together with Claims 1, 2 and 3, allow as to use
Theorem 1, which gives x\ φ xι, x\,xi Φ 0, such that φ'(x\) = φ'{xi) = 0. The
same argument as in the proof of Theorem 10, shows that x\,X2β W^P(Z) are
nontrivial distinct solutions of (15). Q.E.D.
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6. Semilinear problems at resonance

In this section we prove an existence theorem for the semilinear problem
(i.e., p = 2) at resonance with a discontinuous right hand side. So our problem
is the following:

ί -Δx(z) - λϊX{z) = f(z, x(z)) a.e. on Z 1

K=0. /

As before (see section 4), since we do not require /(z, •) to be continuous, by
introducing the functions /j (z, x) = limx/_,x /(z, Λ;') and /2(z, x) = linv^ x /(z, Λ;'),
we pass to the following multivalued approximation of (27):

ί -Δx(z)-/l1x(z)6/(z,x(z)) a.e. on Z 1
( ' U = o. )
where /(z,x) = { J ; G Λ : / 1 ( Z , X ) < y < /2(z,x)}. Our hypotheses on the discon-
tinuous nonlinearity /(z, x) are the following:

f : Z x R ^ R is a Borel measurable function such that
(i) fλ and f2 are both ^-measurable functions
(ii) for every M > 0, there exists aM e L2(Z) such that for almost all z e Z

and all |x| < M we have |/(z,x)| < %(z);

(iii) lim|x|_00/(z,x)/x = 0 uniformly for almost all z e Z;

(iv) if

if x = 0

and

0 if x = 0

then Gf(z) = limx^_oo G\(z,x) and G^(z) = limx_++00 G2(z,x) exist uniformly for
almost all z e Z, Gf, G2

+ e L2(Z) and J z Gf(z)«i (z) Jz < 0 < J z G%{z)u\ (z) rfz.

Remark. Hypothesis //(/)3(iv) generalizes the well-known Landesman-
Lazer conditions, even in the continuous case (i.e., /(z, •) continuous). Thus, in
this respect our theorem extends the results of Solimini [22] (see also Ghoussoub
[9, Theorems 9.14 and 9.16]). Another generalization of the Landesman-Lazer
condition can be found in the work of Landesman-Robinson-Rumbos [18].

We have the following existence theorem:
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THEOREM 12. If hypotheses H(f)3 hold, then problem (28) has at least one
nontrivial solution.

Proof. We consider the energy functional φ : HQ (Z) —> R defined by

φ(x) = \ \\Dxf2 -*± ||x||2
2 - I F(z, x(z)) dz.

By virtue of hypothesis //(/)3(iii), given ε > 0 there exists M = M(έ) > 0
such that for almost all zeZ and all \x\ > M we have \f(z,x)\<ε\x.
Combining this with hypothesis H(f)3(n) we infer that for almost all ZEZ and
all x e R, we have

(29) | / ( z , x ) | < u | x | + α i ( z )

with a\ eL2(Z). Evidently the same growth condition is satisfied by fx and f2.

CLAIM 1. The energy functional φ(-) satisfies the nonsmooth PS-condition.

Let {xn}n>\ ^HQ(Z) be a sequence such that {φ(xn)}n>\ is bounded and

m{xn) - ^ S 0. We will show that {xn}n>\ ^s bounded. Suppose not. Then we

may assume that \\xn\\ -^5- oo. Let x* e dφ(xn), n > 1, such that m(xn) — ||x*||.

We have

x* = A(xn) - λ\xn -wn, n>\,

where A e £ff(H^(Z),H-ι(Z)) is defined by (A(x), y) = $z(Dx(z),Dy(z))RN dz
and wn EL2(Z), fλ(z,xn(z)) < wn(z) < f2(z,xn(z)) a.e. on Z. Let Y = Ru\ and
V - YL. Then H^ (Z) = Y 0 V. We can write that xn = ίwwi + ϋΛ, with ίπ e R
and ι>Λ e F. From the choice of the sequence {xn}n>\

(30) | « , ^ > | <βι\\vn\\ for some βλ > 0

/ Γ
since

V J

- [ wn(z)vn(z)dz <
Jz

z

" I l l , 2

iz = θ\

(since on F we have \\Dv\\2 > λ2\\v\\l for all v e V; here A2 > 0 is the second
eigenvalue of (~A,H^(Z)) and λ2 = λ* (see (3))). Divide (30) with | |ϋ Λ | | 1 ) 2 and
using Poincare's inequality to obtain

c\ 1 ~ T") ll^lli,2 " εIWIi,2 " llα2||2 < β\
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with c > 0. Now divide this last inequality with \\xn\\ι 2 . We obtain

c ( ι ~ f J i π i ~ε~
Since λ\ < λ2, we infer that

Let ε i 0 to conclude that

(31)

A l s o w e k n o w t h a t | | x « | | ? 2 = ζ ? | | w i | | ? 2 + I K H ? 2 = ^ + I K I I ? 2 a n < i s o

o

Suppose without any loss of generality that (^/|| x«||i,2) —~> +1 ( t n e analysis

is the same if (WIWIi^) ~~> ~^) Then tn - ^ ^ +00 and if yn — ̂ «/||^«||i?2

we have yn ^ ^ u\ in HQ(Z). Let

\z,xn(z))/(xn(z)) if xn{z) φ 0 ^ ^ ^ L

otherwise

Then we have:

2φ{Xn)
(32)

= f 2A Λ (z) Λ (z)ώ-f wn(z)yn(z)dz
Jz Jz

> f 2hn(z)yn(z)dz- f /2(z,xΛ(z
Jz J{^>0}

- f fγ(z,xn(z))yn(z)dz
J{yn<0}

= f G2(z,xn(z))yn(z)dz- f

From the choice of the sequence {xn}n>\ ^ H^{Z) we have that (x*,yn}

lθ and 2φ(xn)/\\xn\\l2<M/\\xn\\l2^
:^>0. In addition, at least for a
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subsequence, we have X{yn>o} ——>Xz — 1 a e o n ^ Thus by passing to the
limit in (32), we obtain

which contradicts hypothesis i/(/)3(iv). This proves the boundedness of {xn}n>\
c HQ(Z). SO we may assume that xn ^ x in HQ(Z) as n —> oo and proceeding
as in previous proofs, we have that xn - ^ 3 - x in HQ(Z) and so ^( ) satisfies the
nonsmooth PS-condition.

CLAIM 2. ^(tai) - * -oo αy |ί| -> oo.

From hypothesis i/(/)3(iv), given ε > 0, we can find M = M(έ) > 0 such
that for almost all z e Z and all x < - M we have

(33) Gι(z,x)<Gϊ(z) + ε = θι

ε(z)

x2 x2 dx I x I

Also note that from the definition of G\(z,x), we have

= l^f(z,r)dr-±f(z,x)

= ^ l " ^ /(z''-)ί/' )=d-x[—TΓ1

UΛ \ Λ J o / 6iΛ \ Λ

Using this inequality in (33), we obtain

d ( F(z,x)\ d ( θ\{z)\ ^ .
' ' < - j- --£+-!•) a.e. on Z, for a.a. x < -M.dx\ x2 J dx \ x

Integrating this inequality on [y,x], y < x < —M, we have

F(z,x) . F{z,y) -θl(z) θl(z)

~^2~~+~y^~-'^~+~^r
From (29) we know that for almost all z € Z and all r < 0 we have

f(z,x) < -er + aι(z),aι e L2(Z),

2 y2
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Let ε i 0 to conclude that

y-^-oo

So, if in (34) we let y —• — oo, we obtain that for almost all z e A and all
x < —M we have

BE ^^- <θ\(z) a.e. on Z.

Letting ε J. 0, we have that

(35) Urn i^lΞΪ < G7(z) a.e. on Z.

Similarly we can show that

(36) lira 1^1 > G+{z) a.e. on Z.
+ XJt—>+OO

Suppose the claim was not true. Then we can find \tn\ —> -t-oo such
that φ(tnu\) >—y for some γ > 0. First assume that tn^-co. We have
(l//π)^(ίΛ«i) < -y/ίΛ. Therefore

lim —φ(tnu\) < 0

^ ΠS_If F(Z)tnuλ{z))dz<0
tnJZ

>̂ lim— F(z,tnuχ(z))dz>0
U)z

=* f Gf(φi(z)ώ^0, (see(35))
Jz

which contradicts H(f)3(i\). Similarly if tn -+ +00, we obtain using (36)

f <?2

+(z)W l(z)<fe<0
Jz

which. contradicts H(f)Jiv). Therefore the claim is true and we have
^() > - 0 0 .

CLAIM 3. ψ(v) —> +00 α,s | |ϋ| | 1 }2 ^ 0 0 , ί; e V (hence φ\γ is bounded below).

Since for veV, \\Dv\\l > λ2\\v\\l, λ2 > λ\ and using (29) we have for all
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ve V

- K 1 " t ~ i ) ^ ~βllDvh for some β > °
Choose ε > 0 so that λ\ + ε < λ2. Then from the above inequality, it is

clear that φ(v) —> oo as ||t?|j t 2 ~^ °° Hence ^ is bounded below.
Claims 1, 2 and 3 permit the application of Theorem 7, which gives

us XEHQ(Z) such that Oedφ(x). As before we conclude that x solves
(30). Q.E.D.

Remark. We know that in this case there is an orthonormal basis {um}m>ι

of L2(Z) and a sequence of positive real numbers {λm}m>ι with λm —• +oo such
that 0 < /li < λ2 < λ3 < < λm < - • and um e H^{Z) Π'c^ίZ), m > 1, are sol-
utions of (1) with p = 2. Moreover, these higher eigenvalues have variational
characterizations similar to (2) (see Kesavan [13]). So, in this case, in contrast to
the case p > 2, we have full knowledge of the spectrum of ( — Δ , / / Q ( Z ) ) . Thus
what we did for the resonant at λ\ problem, we can do it for the problem which
is resonant at some higher eigenvalue, using the same approach with minor
modifications.
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