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A REMARK ON ARTAL'S PAPER

HlRO-0 TOKUNAGA

Introduction

In his paper [A], Artal introduced the notion of a Zariski pairs, whose
definition is as follows:

DEFINITION 0.1. A Zariski pair is a pair of two plane curves, d and d
enjoying the following three conditions:

( i ) deg d = d e g C2,
(ii) There exists a diffeomorphism (T(d), d ) — (T(C2), d ) where T ( d ) is

a smooth neighborhood of d for each /, and
(iii) The pairs (P 2 , d ) and (P 2, d ) are not homeomorphic.

The second condition seems to be difficult to deal with. However, we can
replace it by another condition, which seems to be rather tractable. For detail,
see [A].

The first example of a Zariski pair is found in [Zl] : sextic curves d and
d with six (2, 3) such that

(i) the six cusps are on a conic for Cu and
(ii) there is no conic which through the six cusps on C2.

This example is also intensively studied in [O],
In [A], Artal gave some of new examples of Zariski pairs. The purpose

of this note is to give a new proof for one of Artal's examples by using the
method developed in [ T ] .

We shall first review one of his example, which we shall study in this
article. Let d (*=1, 2) be sextic curves both of which have four irreducible
components, a smooth cubic and three lines. These two curves satisfy the
following properties:

If we write d (i=l, 2) in a way such that

where /j ί } is a line and Ex is a smooth cubic, then
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( i ) /<<> (j = l, 2, 3) is a tangent line at an inflection point, pj^, of Ex,
(ii) l[ι), l{

2

l) and lii} do not intersect at one point, and
(iii) For Cu the inflection points p[ι\ pil) and pil) are collinear, while the

inflection points pί2), pi2) and pi2) are not collinear for C2.

In [A], the idea to prove the pair, C1 and C2, to be a Zariski pair is to
study the irregularities of cyclic coverings, Zγ and Z2, of P2 branched along
Cx and C2, respectively. In order to calculate the irregularities of such cyclic
coverings, Artal generalized the method developed by Zariski [Z2] and Esnault
[E]. These ideas and techniques seem to be rather classical.

In this article, our basic tool is an Ss covering. We shall also make use of
some geometry of double coverings and elliptic K3 surfaces (cf. [MP], [P], [S2]).
These points make our approach more interesting. Let us start with the defini-
tion of S3 coverings:

DEFINITION 0.2. Let Y be a smooth projective variety. A normal variety,
X, with a finite morphism π : X-+Y is called an SB covering of Y if the rational
function field, C(X), of X is a Galois extension of that of Y, C(Y), having the
third symmetric group, £8—<<?, τ\σ2=τs=(στ)2=l}, as its Galois group.

With the notations in Definition 0.2, let C{X)τ be the invariant subfield of
C(X) by τ. As C(X)τ is a quadratic extension of C{Y), the (7(X)Γ-normalization
of Y is a double covering. We denote it by D(X/Y) and its covering morphism
by j8i. Also, X is a cyclic triple covering of D(X/Y), and β2 denotes the
covering morphism from X to D(X/Y). By their definition, π=β1°β2.

Now we are in position to state our main result:

THEOREM 0.3. Let Cx and C2 be two sextic curves described as above. Then
there exists an <S3 covering of P 2 branched along d, while there is no SB covering
of P2 branched along C2.

From Theorem 0.3, we can easily see that the pair ( d , C2) is a Zariski
pair. As we shall show in § 5, Theorem 0.3 easily follows from next two
propositions as below:

PROPOSITION 0.4. Let d be as above, and let / i : W1-^P2 be a double cover-
ing branched along d. Then there exists an Sz covering, Su of P2 branched
along d with

PROPOSITION 0.5. Let C2 be as above, and let f2: W2-+P2 be a double cover-
ing branched along C2. Then there is no S$ covering, S2, of P2 branched along
d with D(S2/P2)=W2.

Now we shall explain the contents of this article. The first section starts
with a brief summary on S3 coverings. In § 2, we shall look into the canonical
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resolutions of the double coverings, Wx and W2, introduced in Propositions 0.4
and 0.5. §3 will devote to prove Proposition 0.4, and §4 will devote to prove
Proposition 0.5. In § 5, we shall prove Theorem 0.3.

Notations and Conventions. Throughout this article, the ground field will
always be the complex number field C.

C(X) :=the rational function field of X.
Let I b e a normal variety, and let F be a smooth variety. Let π: X-* Y

be a finite morphism from X to Y. We define the branch locus of /, which we
denote by A(X/Y), as follows:

A(X/Y)= {y^Y\ #(π'\y))<άeg π].

For a divisor D on Y, π~ι(D) denotes the set-theoretic inverse image of D,
while π*(D) denotes the ordinary pullback. Also Supp D means the supporting
set of D.

Let π:X-+Y be an S3 covering of Y. Morphisms, βi and β2, and the
variety D(X/Y) always mean those defined in Introduction.

Let 5 be a finite double covering of a smooth projective surface Σ. The
"canonical resolution" of 5 always means the resolution given by Horikawa
in [H].

Let S be an elliptic surface over C. We call S minimal if the fibration is
relatively minimal. In this paper, we always assume that an elliptic surface is
minimal. For singular fibers of an elliptic surface, we use the notation of
Kodaira [K].

Let Dlf D2 be divisors.
D1^D2: linear equivalence of divisors.
DX^D2: algebraic equivalence of divisors.
Dι^QD2: Q-algebraic equivalence of divisors.

For singularities of a plane curve, we shall use the same notations as those

in [P]

§ 1. A summary on cS3 coverings

We shall start with the following proposition.

PROPOSITION 1.1. Let f: Z^Y be a smooth finite double covering of a
smooth projective variety Y. Let a be the involution determined by the covering
transformation of f. Let Dlf D2, and Dz be effective divisors on Z. Suppose that

(a) Dι is reduced, and Dx and σ*Dλ have no common component,

(b) Z>1+3£8~0'*A+3Ai.

Then there exists an Sz covering, X, of Y such that ( i ) D{X/Y)—Z, and

(ii) Supp(iλ + <7*A) is the branch locus of β2.

For a proof, see [T] .
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The conditions in Proposition 1.1 seem very complicate as well as intract-
able. These are, however, essential to consider cS3 coverings, because we have
the following proposition saying that the "inverse" of Proposition 1.2 holds.

PROPOSITION 1.2. Let π:X-^Y be an S3 covering and let a denote the
involution on D(X/Y) coming from the covering transformation of βλ. Suppose
that D(X/Y) is smooth. Then there exist three effective divisors Du D2 and Dz

on D(X/Y) such that

( i ) Di is reduced, and Ώx and o*Dγ have no common component
(ii) D1+W^σ*Dι+Ws, and
(iii) Supp(D1-\-σ*D1) is the branch locus of β2.

For a proof, see [ T ] .

sur

COROLLARY 1.3. Let π:S-+Σ be an cS3 covering of a smooth projective
surface Σ, and let D be an irreducible component of βi(A(S/D(S/Σ))). If we
denote x by any intersection point of D and A(D(S/Σ)/Σ). Then the intersection
multiplicity at x is ^ 2 .

Proof. This is immediate from Proposition 1.2.

§ 2. An elliptic K3 surface arising from Wt

We shall use the same notations as those in Introduction. Let 6i-*W% be
the canonical resolution of W% (i=l, 2). By its construction, 6X satisfies the
following diagram:

Mi
VV χ ^ C"i

ft

P2 «*— Σt

where Σ is obtained by a succession of blowing-ups.
As the singular points of Cx are of types ax and α5, singularities of Wt are

all rational double point. Hence, ex is a K3 surface. In order to apply the
results in the preceding section to / t , we shall look into βx (i=l, 2) in detail.

Let x% be the intersection point of /i(ί) and lil). Then, lines passing through
x% define an elliptic fibration on et. This fibration is called the standard fibra-
tion centered at xt (see [P], p. 282), which we denote by ψi\βi-^Pλ. By its
construction, the line lp determines the section of φu which we denote by sj ί }.
For the configuration of singular fibers of φi} we have

LEMMA 2.1. The configuration of the singular fibers of ψi'.S-^P1 is /6,
IV*. IV*, / l f Λ.
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Proof. Let / be a line through xx. Suppose that lΦl[l), lil), the line con-
necting xx and pil), which we denote by lXl. Then, / determines a smooth
fiber of ψi unless / is tangent to Eλ. From [MP], Table 6.2, if / is tangent to
Bι at an inflection point, then the corresponding singular fiber is of type //,
and if / is tangent to Ex at a non-inflection point, the corresponding singular
fiber is of type Iγ.

CLAIM 2.2. Let I be as above. Then I is not tangent to Ex at an inflection
point.

Proof of Claim 2.2. Without loss of generality, we may assume that xx=
(0:1:0) and l^l) is the line at infinity. From the assumption that three aδ

singularities are collinear, we may also assume that l[l), lil) and Eλ are defined
by the aίfine equations:

a, b(ΞC, aφO.

With this coordinate (x, y), x1 has a coordinate (—b/a, 0). Suppose that / is
tangent to Ex at an inflection point and let (x0, y0) denote its coordinate. Then,
since Eλ is symmetric with respect to the x axis, (x0, —y0) is also an inflection
point and the tangent line at (x0, —y0) also passes through (—a/b, 0). Thus,
four tangent lines at four distinct inflection points meet at (—a/b, 0). On the
other hand, the degree of the dual curve of Ex is 6 and each inflection point
corresponds to a cusp on it. Our situation that the four tangent lines at four
distinct inflection points intersect at (—a/b, 0) means that four different cusps
on the dual curve of E1 are collinear, but this is impossible as the degree of
the dual curve is 6.

By Claim 2.2, if lΦl[l), / | υ, lXχ, I determines either a smooth fiber or a
singular fiber of type Ix. Now we shall go on to the remaining three cases.
In the case of l=l[l) or /|2), we can easily check that / determines an irreducible
component of a singular fiber of type IV* by looking into the process of the
canonical resolution μ1:£i-*W1. We next consider the case of 1=1 Xι. By
looking into the process of the canonical resolution μι'.6ι-^Wι, we see lXl

determines an irreducible component of a singular fiber of type 76 if lXχ meets
Eι at two distinct points other than pil). Hence, it is enough to show that lXl

is not tangent to Eλ. Suppose that lXχ is tangent to Eλ at a point P. If we
take the same affine coordinate as those in the proof of Claim 2.2, we can
easily see that P is on the %-axis, and lXι is a line parallel to the y-axis. But
this is impossible as (—b/a, 0) which is different from P, is also on lXχ. Thus,
the configuration of singular fibers of ex is h, IV*, IV*, and some Λ's. By
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[K], Theorem 12.2, the number of Iλ fibers is 2, and we have our lemma. •

For the configuration of singular fibers of 62, we have the following lemma.

L E M M A 2.4. Let φ2: S2-*Pι be the elliptic fibration centered at x2=l[2)Γλlί2\
Then its configuration of singular fibers is either ( i ) /6, IV*, IV*, Ilf Iu (ii) /6,
IV*. IV*, II, or (iii) 77, IV*, IV*, h.

Proof. Our statement easily follows from the proof of Lemma 2.2. •

Remark 2.5. Note that every exceptional curve except one arising from the
singularity at xι (resp. x2) is an irreducible component of a singular fiber of βx

(resp. e2).

We shall end this section with the following theorem by Shioda [S2], which
will play a key role in proving Propositions 0.4 and 0.5. We here need some
notations to refer his theorem. Let ψ:β^C be a minimal elliptic surface over
a curve C. Assume that

(i) φ has a section s0, and
(ii) there is at least one singular fiber.

Let T denote a subgroup of the Neron-Severi group, NS(e), of e generated
by the section s0 and all irreducible components of fibers, and let MW(0) be the
Mordell-Weil group (the group of sections) of ψ'.e^C, where s0 corresponds to
the zero element. With these notations, we have

THEOREM 2.6. Let φ: S—>C be as above. Then there is an isomorphism

For details, see [S2].

It is clear that both elliptic surfaces ψt: βi-*Pι (i — l, 2) satisfy the conditions
for Theorem 2.6. Hence, the assertion in Theorem 2.6 holds for ψi'.βi-^P1.

§3. Proof of Proposition 0.4

We shall use the same notations as those in §2. The goal of this section
is that there exist an Ss covering πx: S1-^P2 branched along d with D(SJP2)
=WX.

Suppose that there exists an S3 covering πx: S1-^P2 with Δ(S ι /P 2 )=Ci and
D{SJP2)=Wι. Then the CCSO-normalization, Su of Σλ is an Ss covering of Σx

such that

(i)
(ii)
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Conversely, if there exists an S3 covering, Su enjoying the above two con-
ditions, then the CCS^-normalization, Slf of P2 is an S3 covering branched along
d with D(S/P2)=Wλ.

Thus, it is enough to show that there exists an S3 covering of Σ satisfying
the above two conditions. As f1: £1—>2Ί is a smooth double covering, we can
apply Proposition 1.1 to this case. Now we reduce our problem to find three
effective divisors Du D2 and D3, on ex such that

(i) these three divisors satisfy three conditions in Proposition 1.1, and
(ii) every irreducible component of Dί is that of the exceptional divisor of

the resolution μ1:£1-^>W1.

To find these three divisors, we shall make use of the elliptic fibration
ψι\ βi-^P1, and label irreducible components of singular fibers as below:

pil)

[l)

Figure 1

where s+, s" denote sections arising from the line through p[l), £| 1 ) and pi
Note that θ i i } (z'~ 1, 2) and Θ(

3

3) are irreducible components arising from l[l)

(i=l, 2) and lXχ, respectively, and all other labeled irreducible components of
singular fibers are those of the exceptional divisor of the resolution μλ ε1->W1.

Under these notations, we have

LEMMA 3.1. / / we put
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(i) these three divisors satisfy the conditions in Proposition 1.1 and (ii)
every component of Όx is that of the exceptional divisors of μx.

Proof. Regard s£υ as the zero element of the Mordell-Weil group, MW(βλ),
of eu and let <,> denote Shioda's pairing on MW(ελ) (For detail, see [S2]).
Let φ be the isomorphism in Theorem 2.6. Then, by [S2], Theorem 8.6, we
have <φ(s+)} φ(s+)>=0. Hence, by [S2], Lemma 8.1, we have

3 3

Hence, we have

-(2<9p> +4<9|3>

As <£7i is simply connected, we can replace algebraic equivalence by linear
equivalence. By using this linear equivalence of divisors, if we put three
effective divisors Dlt D2 and D3 as above, it is straightforward to check out
that they satisfy the assertions (i) and (ii). •

Combining Lemma 3.1 and Proposition 1.1, we have Proposition 0.4.

§ 4. Proof of Proposition 0.5

We shall also use the same notations as those in § 2. The purpose of this
section is to show that there exists no S3 covering, S2f of P2 branched along
C2 with D(S2/P2)=W2.

Suppose that there exists such an SB covering of P2. Let ε2 be the canon-
ical resolution of W2, and let Σ2 be the surface we have defined in § 2. Let S2

be the C(S2)-normalization of Σ2. Then S2 is an SB covering of Σ2. Moreover,
since β2 is the C(D(S2/P2))-normalization of Σ2ί we have 82—D(S2/Σ2). We
shall denote the covering morphism from S2 to Σ2 by π2. We shall also denote
the canonical morphism from e2 to Σ2 and one from S2 to β2 by βi and β2,
respectively, σ denotes the involution on e2 determined by βλ. As β1:ε2-*Σ2

is a smooth finite double covering, we can apply Proposition 1.2 to this case.
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Hence there exist three effective divisors Dly D2 and DB on 62 which satisfy
that

( i ) Dx is reduced and D1 and σ*Dι have no common component,
(ii) D1+Wι~σ*Dι+Wι, and
(iii) Supp(ί)i-f<7*i)i) is the branch locus of β2.

Since the stein factorization of q2°π2: §2->P2 is S2, and the support of the
branch locus of βλ contains the proper transform of C2, the third condition
means that every irreducible component of Dt is that of the exceptional divisor
of μ2. Also, the condition (i) means that the exceptional curves arising from
ai singularities of C2 can not be irreducible components of Dγ. Moreover, by
Corollary 1.3, any exceptional curve which meets So2) transversely can not be
an irreducible component of Dλ. Thus, by Remark 2.5, every irreducible com-
ponent of Dι is that of singular fibers of β2 not intersecting the section s{

0

2).
Consider sίί2) as the zero element of the Mordell-Weil group, MW(£2), and

let NS(£2) and T be the Neron-Severi group of β2 and a subgroup of NS(β2)
defined by the same way as that in Theorem 2.6, respectively.

If we see the second condition on Du D2 and Ds in a way that 3(DS—D2)^
D1—σ*D1, by the same argument as that in [T], §4 Claim, the divisor D2—D3

gives rise to a torsion element of order three in NS{β2)/T. Then, by Theorem
2.6, there exists a torsion element of order three in MW{62). Thus, we get a
section s of φ2 which corresponds to the torsion element of order three.

Let <, > denote Shioda's pairing on MW(62) (For definition of the pairing,
see [S2]), and let φ denote the isomorphism in Theorem 2.6. In order to cal-
culate the value of (φ(s), φ(s)} by using of the explicit formula by Shioda (cf.
[S2]), we label irreducible components of singular fibers of β2 in such a way
as in [S2] pp. 228-229.

As 62 is a K3 surface, by [S2], Theorem 8.6, we have

(,φ(s), φ(s))—4t-\-2sso—the contribution terms from the singular fibers.

The contribution term arising from a singular fiber of type IV* is 0 or 4/3.
Also, if the section s intersects the z-th component of a singular fiber of type
Ib, the contribution term arising from this singular fiber is i{b—ϊ)/b.

By Lemma 2.4, there are three cases for the configuration of singular fibers
of 62. As MW{€2) has a torsion of order three, the second case in Lemma 2.4
does not occur (see [SI], Remark 1.10).

Now we shall consider the first case in Lemma 2.4. Assume that s inter-
sects the z-th component of the singular fiber of type /6. Then we have

-the contribution terms from the singular fibers of type IV*
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On the other hand, as s is a torsion, <</<s), 0(s)>=O by [S2], Theorem 8.4.
Hence, ss{

0

2)=0 and s intersects either the second or the fourth component of
the singular fiber of type /6, and the both contribution terms from the singular
fibers of type IV* is 4/3. Thus we may assume that s intersects at each
singular fiber in the same way as s+ in Figure 1. Under these circumstances,
we have

CLAIM 4.1. q2°βι(s) is a line passing through p[2\ pi2) and pi2).

Proof of Claim 4.1. Put C=q2°βi(s). Since ssέ2) = cr*s5$2)=O, we have

Cn« 2 ) cSing(C a ) .

Let Qt denote the intersection point of l[2) and /f> (*=1, 2). Suppose
then sn(^2°/§i)"1(Ot)^:0. As (q2

o βi)~ι(Qι)=(βι°μ2y\Qι) is the exceptional curve
for the At singularity of D(S2/P2) lying over Qlf it is the irreducible component
of the corresponding singular fiber of type IV* which meets sS2). But s does
not meet such an irreducible component. Hence, Qi^C, and this implies CΓ\li2)

= {p32)}. Now by looking into the inverse process of the canonical resolution,
we can easily see that C intersects /{2) transversely and passes through p[2) and
p?\ Hence, C/ | 2 ) =l, i.e., C is a line, and it passes through p[2\ £ | 2 ) and pi2).

The statement of Claim contradicts to our assumption. Therefore, the first
case in Lemma 2.4 does not occur.

Now we go on to the remaining case. Namely, the configuration of the
singular fibers is the case (iii) in Lemma 2.4. We also assume that s intersects
the z'-th component of the singular fiber of type I7. Then we have

— the contribution terms from the singular fibers of type IV*.

As φ(s) is a torsion element of MW(g2), we have <^(s), ψ(s)}=0. But, by
the above formula, it easy to show that the value <^(s), ψ(s)> can never be
zero for any i ( l ^ i ^ β ) and any value of the contribution terms from the
singular fibers of type IV*.

Combining both cases, we disprove the existence of the section s. This
implies that there do not exist such three divisors as Du D2 and D3. Therefore,
by Proposition 1.2, we obtain Proposition 0.5.

§5. Proof of Theorem 0.3

It is now enough to show the following:
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CLAIM 5.1. There is no S3 covering of P2 branched along C2.

Proof. Suppose that there exists an S3 covering, S, of P2 branched along
C2. As the branch locus, A(D(S/P2)/P2), of β,: D(S/P2)-+P2 is a curve of
even degree, its degree is either 2, 4, or 6. By Proposition 0.5, we have
A(D(S/P2)/P2)ΦC2. Hence we have degΔ(Z)(S/P2)/F2)=2 or 4. But, for each
case, there is a line component, /, of C2 such that

(i) / intersects a line component of A(D(S/P2)/P2) transversely, and

(ii) βf(l) is contained in the branch locus of β2.

But this contradicts to Corollary 1.3.

From Proposition 0.4 and Claim 5.1, we have πι{P2\Cι)ψπι{P2\C2). There-

fore, the pair (Cίf C2) is a Zariski pair.
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