A REMARK ON ARTAL'S PAPER

Hiro-o Tokunaga

Introduction

In his paper [A], Artal introduced the notion of a Zariski pairs, whose definition is as follows:

Definition 0.1. A Zariski pair is a pair of two plane curves, C_{1} and C_{2} enjoying the following three conditions:
(i) $\operatorname{deg} C_{1}=\operatorname{deg} C_{2}$,
(ii) There exists a diffeomorphism $\left(T\left(C_{1}\right), C_{1}\right) \rightarrow\left(T\left(C_{2}\right), C_{2}\right)$ where $T\left(C_{2}\right)$ is a smooth neighborhood of C_{2} for each i, and
(iii) The pairs $\left(\boldsymbol{P}^{2}, C_{1}\right)$ and $\left(\boldsymbol{P}^{2}, C_{2}\right)$ are not homeomorphic.

The second condition seems to be difficult to deal with. However, we can replace it by another condition, which seems to be rather tractable. For detail, see [A].

The first example of a Zariski pair is found in [Z1]: sextic curves C_{1} and C_{2} with six $(2,3)$ such that
(i) the six cusps are on a conic for C_{1}, and
(ii) there is no conic which through the six cusps on C_{2}.

This example is also intensively studied in [O].
In [A], Artal gave some of new examples of Zariski pairs. The purpose of this note is to give a new proof for one of Artal's examples by using the method developed in [T].

We shall first review one of his example, which we shall study in this article. Let $C_{\imath}(i=1,2)$ be sextic curves both of which have four irreducible components, a smooth cubic and three lines. These two curves satisfy the following properties:

If we write $C_{\imath}(i=1,2)$ in a way such that

$$
C_{i}=l_{1}^{(i)} \cup l_{2}^{(i)} \cup l_{3}^{(i)} \cup E_{\imath},
$$

where $l_{\rho}^{(i)}$ is a line and E_{\imath} is a smooth cubic, then

[^0](i) $l_{\rho}^{(i)}(\jmath=1,2,3)$ is a tangent line at an inflection point, $p_{j}^{(i)}$, of E_{\imath},
(ii) $l_{1}^{(i)}, l_{2}^{(i)}$ and $l_{3}^{(i)}$ do not intersect at one point, and
(iii) For C_{1}, the inflection points $p_{1}^{(1)}, p_{2}^{(1)}$ and $p_{3}^{(1)}$ are collinear, while the inflection points $p_{1}^{(2)}, p_{2}^{(2)}$ and $p_{3}^{(2)}$ are not collinear for C_{2}.

In [A], the idea to prove the pair, C_{1} and C_{2}, to be a Zariski pair is to study the irregularities of cyclic coverings, Z_{1} and Z_{2}, of \boldsymbol{P}^{2} branched along C_{1} and C_{2}, respectively. In order to calculate the irregularities of such cyclic coverings, Artal generalized the method developed by Zariski [Z2] and Esnault [E]. These ideas and techniques seem to be rather classical.

In this article, our basic tool is an \mathcal{S}_{3} covering. We shall also make use of some geometry of double coverings and elliptic K3 surfaces (cf. [MP], [P], [S2]). These points make our approach more interesting. Let us start with the definition of \mathcal{S}_{3} coverings:

Definition 0.2 . Let Y be a smooth projective variety. A normal variety, X, with a finite morphism $\pi: X \rightarrow Y$ is called an \mathcal{S}_{3} covering of Y if the rational function field, $\boldsymbol{C}(X)$, of X is a Galois extension of that of $Y, \boldsymbol{C}(Y)$, having the third symmetric group, $\mathcal{S}_{3}=\left\langle\sigma, \tau \mid \sigma^{2}=\tau^{3}=(\sigma \tau)^{2}=1\right\rangle$, as its Galois group.

With the notations in Definition 0.2, let $\boldsymbol{C}(X)^{\tau}$ be the invariant subfield of $\boldsymbol{C}(X)$ by τ. As $\boldsymbol{C}(X)^{\tau}$ is a quadratic extension of $\boldsymbol{C}(Y)$, the $\boldsymbol{C}(X)^{\tau}$-normalization of Y is a double covering. We denote it by $D(X / Y)$ and its covering morphism by β_{1}. Also, X is a cyclic triple covering of $D(X / Y)$, and β_{2} denotes the covering morphism from X to $D(X / Y)$. By their definition, $\pi=\beta_{1} \circ \beta_{2}$.

Now we are in position to state our main result:
Theorem 0.3. Let C_{1} and C_{2} be two sextic curves described as above. Then there exists an \mathcal{S}_{3} covering of \boldsymbol{P}^{2} branched along C_{1}, while there is no \mathcal{S}_{3} covering of \boldsymbol{P}^{2} branched along C_{2}.

From Theorem 0.3, we can easily see that the pair (C_{1}, C_{2}) is a Zariski pair. As we shall show in $\S 5$, Theorem 0.3 easily follows from next two propositions as below:

Proposition 0.4. Let C_{1} be as above, and let $f_{1}: W_{1} \rightarrow \boldsymbol{P}^{2}$ be a double covering branched along C_{1}. Then there exists an \mathcal{S}_{3} covering, S_{1}, of \boldsymbol{P}^{2} branched along C_{1} with $D\left(S_{1} / \boldsymbol{P}^{2}\right)=W_{1}$.

Proposition 0.5. Let C_{2} be as above, and let $f_{2}: W_{2} \rightarrow \boldsymbol{P}^{2}$ be a double covering branched along C_{2}. Then there is no \mathcal{S}_{3} covering, S_{2}, of \boldsymbol{P}^{2} branched along C_{2} with $D\left(S_{2} / \boldsymbol{P}^{2}\right)=W_{2}$.

Now we shall explain the contents of this article. The first section starts with a brief summary on \mathcal{S}_{3} coverings. In $\S 2$, we shall look into the canonical
resolutions of the double coverings, W_{1} and W_{2}, introduced in Propositions 0.4 and 0.5 . § 3 will devote to prove Proposition 0.4 , and $\S 4$ will devote to prove Proposition 0.5 . In $\S 5$, we shall prove Theorem 0.3 .

Notations and Conventions. Throughout this article, the ground field will always be the complex number field \boldsymbol{C}.
$\boldsymbol{C}(X):=$ the rational function field of X.
Let X be a normal variety, and let Y be a smooth variety. Let $\pi: X \rightarrow Y$ be a finite morphism from X to Y. We define the branch locus of f, which we denote by $\Delta(X / Y)$, as follows:

$$
\Delta(X / Y)=\left\{y \in Y \mid \#\left(\pi^{-1}(y)\right)<\operatorname{deg} \pi\right\} .
$$

For a divisor D on $Y, \pi^{-1}(D)$ denotes the set-theoretic inverse image of D, while $\pi^{*}(D)$ denotes the ordinary pullback. Also Supp D means the supporting set of D.

Let $\pi: X \rightarrow Y$ be an \mathcal{S}_{3} covering of Y. Morphisms, β_{1} and β_{2}, and the variety $D(X / Y)$ always mean those defined in Introduction.

Let S be a finite double covering of a smooth projective surface Σ. The "canonical resolution" of S always means the resolution given by Horikawa in [H].

Let S be an elliptic surface over C. We call S minimal if the fibration is relatively minimal. In this paper, we always assume that an elliptic surface is minimal. For singular fibers of an elliptic surface, we use the notation of Kodaira [K].

Let D_{1}, D_{2} be divisors.
$D_{1} \sim D_{2}$: linear equivalence of divisors.
$D_{1} \approx D_{2}$: algebraic equivalence of divisors.
$D_{1} \approx{ }_{\boldsymbol{Q}} D_{2}: \boldsymbol{Q}$-algebraic equivalence of divisors.
For singularities of a plane curve, we shall use the same notations as those in [P].

§ 1. A summary on \mathcal{S}_{3} coverings

We shall start with the following proposition.
Proposition 1.1. Let $f: Z \rightarrow Y$ be a smooth finite double covering of a smooth projective variety Y. Let σ be the involution determined by the covering transformation of f. Let D_{1}, D_{2}, and D_{3} be effective divisors on Z. Suppose that
(a) D_{1} is reduced, and D_{1} and $\sigma^{*} D_{1}$ have no common component,
(b) $D_{1}+3 D_{2} \sim \sigma^{*} D_{1}+3 D_{3}$.

Then there exists an \mathcal{S}_{3} covering, X, of Y such that (i) $D(X / Y)=Z$, and (ii) $\operatorname{Supp}\left(D_{1}+\sigma^{*} D_{1}\right)$ is the branch locus of β_{2}.

For a proof, see [T].

The conditions in Proposition 1.1 seem very complicate as well as intractable. These are, however, essential to consider \mathcal{S}_{3} coverings, because we have the following proposition saying that the "inverse" of Proposition 1.2 holds.

Proposition 1.2. Let $\pi: X \rightarrow Y$ be an \mathcal{S}_{3} covering and let σ denote the involution on $D(X / Y)$ coming from the covering transformation of β_{1}. Suppose that $D(X / Y)$ is smooth. Then there exist three effective divisors D_{1}, D_{2} and D_{3} on $D(X / Y)$ such that
(i) D_{1} is reduced, and D_{1} and $\sigma^{*} D_{1}$ have no common component
(ii) $D_{1}+3 D_{2} \sim \sigma^{*} D_{1}+3 D_{3}$, and
(iii) $\operatorname{Supp}\left(D_{1}+\sigma^{*} D_{1}\right)$ is the branch locus of β_{2}.

For a proof, see [T].
Corollary 1.3. Let $\pi: S \rightarrow \Sigma$ be an \mathcal{S}_{3} covering of a smooth projective surface Σ, and let D be an irreducible component of $\beta_{1}(\Delta(S / D(S / \Sigma))$). If we denote x by any intersection point of D and $\Delta(D(S / \Sigma) / \Sigma)$. Then the intersection multiplicity at x is $\geqq 2$.

Proof. This is immediate from Proposition 1.2.

§ 2. An elliptic K3 surface arising from W_{\imath}

We shall use the same notations as those in Introduction. Let $\mathcal{E}_{i} \rightarrow W_{\imath}$ be the canonical resolution of $W_{\imath}(i=1,2)$. By its construction, \mathcal{E}_{\imath} satisfies the following diagram:

where Σ is obtained by a succession of blowing-ups.
As the singular points of C_{2} are of types a_{1} and a_{5}, singularities of W_{2} are all rational double point. Hence, \mathcal{E}_{2} is a K3 surface. In order to apply the results in the preceding section to \tilde{f}_{2}, we shall look into $\mathcal{E}_{2}(i=1,2)$ in detail.

Let x_{2} be the intersection point of $l_{1}^{(i)}$ and $l_{2}^{(i)}$. Then, lines passing through x_{2} define an elliptic fibration on \mathcal{E}_{2}. This fibration is called the standard fibration centered at x_{2} (see [P], p. 282), which we denote by $\varphi_{i}: \mathcal{E}_{i} \rightarrow \boldsymbol{P}^{1}$. By its construction, the line $l_{3}^{(i)}$ determines the section of φ_{i}, which we denote by $s_{0}^{(i)}$. For the configuration of singular fibers of φ_{i}, we have

Lemma 2.1. The configuration of the singular fibers of $\varphi_{1}: \mathcal{E} \rightarrow \boldsymbol{P}^{1}$ is I_{6}, $I V^{*}, I V^{*}, I_{1}, I_{1}$.

Proof. Let l be a line through x_{1}. Suppose that $l \neq l_{1}^{(1)}, l_{2}^{(1)}$, the line connecting x_{1} and $p_{3}^{(1)}$, which we denote by $l_{x_{1}}$. Then, l determines a smooth fiber of φ_{1} unless l is tangent to E_{1}. From [MP], Table 6.2, if l is tangent to E_{1} at an inflection point, then the corresponding singular fiber is of type $I I$, and if l is tangent to E_{2} at a non-inflection point, the corresponding singular fiber is of type I_{1}.

Claim 2.2. Let l be as above. Then l is not tangent to E_{1} at an inflection pornt.

Proof of Claim 2.2. Without loss of generality, we may assume that $x_{1}=$ $(0: 1: 0)$ and $l_{3}^{(1)}$ is the line at infinity. From the assumption that three a_{5} singularities are collinear, we may also assume that $l_{1}^{(1)}, l_{2}^{(1)}$ and E_{1} are defined by the affine equations:

$$
\begin{aligned}
& l_{1}^{(1)}: y=a x+b \\
& l_{2}^{(1)}: y=-(a x+b) \\
& E_{1}: y^{2}=x^{3}+(a x+b)^{2} \\
& a, b \in \boldsymbol{C}, \quad a \neq 0 .
\end{aligned}
$$

With this coordinate $(x, y), x_{1}$ has a coordinate $(-b / a, 0)$. Suppose that l is tangent to E_{1} at an inflection point and let (x_{0}, y_{0}) denote its coordinate. Then, since E_{1} is symmetric with respect to the x axis, $\left(x_{0},-y_{0}\right)$ is also an inflection point and the tangent line at $\left(x_{0},-y_{0}\right)$ also passes through $(-a / b, 0)$. Thus, four tangent lines at four distinct inflection points meet at $(-a / b, 0)$. On the other hand, the degree of the dual curve of E_{1} is 6 and each inflection point corresponds to a cusp on it. Our situation that the four tangent lines at four distinct inflection points intersect at $(-a / b, 0)$ means that four different cusps on the dual curve of E_{1} are collinear, but this is impossible as the degree of the dual curve is 6 .

By Claim 2.2, if $l \neq l_{1}^{(1)}, l_{2}^{(1)}, l_{x_{1}}, l$ determines either a smooth fiber or a singular fiber of type I_{1}. Now we shall go on to the remaining three cases. In the case of $l=l_{1}^{(1)}$ or $l_{2}^{(2)}$, we can easily check that l determines an irreducible component of a singular fiber of type $I V^{*}$ by looking into the process of the canonical resolution $\mu_{1}: \mathcal{E}_{1} \rightarrow W_{1}$. We next consider the case of $l=l_{x_{1}}$. By looking into the process of the canonical resolution $\mu_{1}: \mathcal{E}_{1} \rightarrow W_{1}$, we see $l_{x_{1}}$ determines an irreducible component of a singular fiber of type I_{6} if $l_{x_{1}}$ meets E_{1} at two distinct points other than $p_{3}^{(1)}$. Hence, it is enough to show that $l_{x_{1}}$ is not tangent to E_{1}. Suppose that $l_{x_{1}}$ is tangent to E_{1} at a point P. If we take the same affine coordinate as those in the proof of Claim 2.2, we can easily see that P is on the x-axis, and $l_{x_{1}}$ is a line parallel to the y-axis. But this is impossible as $(-b / a, 0)$ which is different from P, is also on $l_{x_{1}}$. Thus, the configuration of singular fibers of \mathcal{E}_{1} is $I_{6}, I V^{*}, I V^{*}$, and some I_{1} 's. By
[K], Theorem 12.2, the number of I_{1} fibers is 2 , and we have our lemma.
For the configuration of singular fibers of \mathcal{E}_{2}, we have the following lemma.
Lemma 2.4. Let $\varphi_{2}: \mathcal{E}_{2} \rightarrow \boldsymbol{P}^{1}$ be the elliptic fibration centered at $x_{2}=l_{1}^{(2)} \cap l_{2}^{(2)}$. Then its configuration of singular fibers is either (i) $I_{6}, I V^{*}, I V^{*}, I_{1}, I_{1}$, (ii) I_{6}, $I V^{*} . I V^{*}, I I$, or (iii) $I_{7}, I V^{*}, I V^{*}, I_{1}$.

Proof. Our statement easily follows from the proof of Lemma 2.2 .
Remark 2.5. Note that every exceptional curve except one arising from the singularity at $x_{1}\left(\right.$ resp. x_{2}) is an irreducible component of a singular fiber of \mathcal{E}_{1} (resp. \mathcal{E}_{2}).

We shall end this section with the following theorem by Shioda [S2], which will play a key role in proving Propositions 0.4 and 0.5 . We here need some notations to refer his theorem. Let $\varphi: \mathcal{E} \rightarrow C$ be a minimal elliptic surface over a curve C. Assume that
(i) φ has a section s_{0}, and
(ii) there is at least one singular fiber.

Let T denote a subgroup of the Néron-Severi group, $N S(\mathcal{E})$, of \mathcal{E} generated by the section s_{0} and all irreducible components of fibers, and let $M W(\mathcal{E})$ be the Mordell-Weil group (the group of sections) of $\varphi: \mathcal{E} \rightarrow C$, where s_{0} corresponds to the zero element. With these notations, we have

Theorem 2.6. Let $\varphi: S \rightarrow C$ be as above. Then there is an isomorphism

$$
\psi: N S(\mathcal{E}) / T \cong M W(\mathcal{E})
$$

For details, see [S2].
It is clear that both elliptic surfaces $\varphi_{i}: \mathcal{E}_{i} \rightarrow \boldsymbol{P}^{1}(\imath=1,2)$ satisfy the conditions for Theorem 2.6. Hence, the assertion in Theorem 2.6 holds for $\varphi_{i}: \mathcal{E}_{i} \rightarrow \boldsymbol{P}^{1}$.

§ 3. Proof of Proposition 0.4

We shall use the same notations as those in § 2. The goal of this section is that there exist an \mathcal{S}_{3} covering $\pi_{1}: S_{1} \rightarrow \boldsymbol{P}^{2}$ branched along C_{1} with $D\left(S_{1} / \boldsymbol{P}^{2}\right)$ $=W_{1}$.

Suppose that there exists an \mathcal{S}_{3} covering $\pi_{1}: S_{1} \rightarrow \boldsymbol{P}^{2}$ with $\Delta\left(S_{1} / \boldsymbol{P}^{2}\right)=C_{1}$ and $D\left(S_{1} / \boldsymbol{P}^{2}\right)=W_{1}$. Then the $\boldsymbol{C}\left(S_{1}\right)$-normalization, \tilde{S}_{1}, of Σ_{1} is an \mathcal{S}_{3} covering of Σ_{1} such that
(i) $D\left(\tilde{S}_{1} / \Sigma_{1}\right)=\mathcal{E}_{1}$,
(ii) $q_{1}\left(\Delta\left(\widetilde{S}_{1} / \Sigma_{1}\right)\right)=C_{1}$.

Conversely, if there exists an \mathcal{S}_{3} covering, \tilde{S}_{1}, enjoying the above two conditions, then the $\boldsymbol{C}\left(\widetilde{S}_{1}\right)$-normalization, S_{1}, of \boldsymbol{P}^{2} is an \mathcal{S}_{3} covering branched along C_{1} with $D\left(S / \boldsymbol{P}^{2}\right)=W_{1}$.

Thus, it is enough to show that there exists an \mathcal{S}_{3} covering of Σ satisfying the above two conditions. As $\tilde{f}_{1}: \mathcal{E}_{1} \rightarrow \Sigma_{1}$ is a smooth double covering, we can apply Proposition 1.1 to this case. Now we reduce our problem to find three effective divisors D_{1}, D_{2} and D_{3}, on \mathcal{E}_{1} such that
(i) these three divisors satisfy three conditions in Proposition 1.1, and
(ii) every irreducible component of D_{1} is that of the exceptional divisor of the resolution $\mu_{1}: \mathcal{E}_{1} \rightarrow W_{1}$.

To find these three divisors, we shall make use of the elliptic fibration $\varphi_{1}: \mathcal{E}_{1} \rightarrow \boldsymbol{P}^{1}$, and label irreducible components of singular fibers as below :

Figure 1
where s^{+}, s^{-}denote sections arising from the line through $p_{1}^{(1)}, p_{2}^{(1)}$ and $p_{3}^{(1)}$. Note that $\Theta_{4}^{(i)}(i=1,2)$ and $\Theta_{3}^{(3)}$ are irreducible components arising from $l_{i}^{(1)}$ $(i=1,2)$ and $l_{x_{1}}$, respectively, and all other labeled irreducible components of singular fibers are those of the exceptional divisor of the resolution $\mu_{1} \mathcal{E}_{1} \rightarrow W_{1}$.

Under these notations, we have
Lemma 3.1. If we put

$$
D_{1}=\sum_{\imath=1,2}\left(\Theta_{1}^{(i)}+\tilde{\sigma}^{*} \Theta_{2}^{(i)}\right)+\Theta_{2}^{(3)}+\tilde{\sigma}^{*} \Theta_{1}^{(3)},
$$

$$
\begin{aligned}
D_{2}= & s^{+}+\sum_{i=1,2}\left\{\Theta_{1}^{(i)}+\Theta_{4}^{(i)}+\tilde{\sigma}^{*} \Theta_{1}^{(i)}+\tilde{\sigma}^{*} \Theta_{2}^{(i)}\right. \\
& \left.+2\left(\Theta_{2}^{(i)}+\Theta_{3}^{(i)}\right)\right\}+\Theta_{1}^{(3)}+\Theta_{2}^{(3)}+\Theta_{3}^{(3)}+\tilde{\sigma}^{*} \Theta_{2}^{(3)}, \text { and } \\
D_{3}= & s_{0}^{(1)}+2 F
\end{aligned}
$$

then (i) these three divisors satisfy the conditions in Proposition 1.1 and (ii) every component of D_{1} is that of the exceptional divisors of μ_{1}.

Proof. Regard $s_{0}^{(1)}$ as the zero element of the Mordell-Weil group, $M W\left(\mathcal{E}_{1}\right)$, of \mathcal{E}_{1}, and let \langle,$\rangle denote Shioda's pairing on M W\left(\mathcal{E}_{1}\right)$ (For detail, see [S2]). Let ψ be the isomorphism in Theorem 2.6. Then, by [S2], Theorem 8.6, we have $\left\langle\psi\left(s^{+}\right), \phi\left(s^{+}\right)\right\rangle=0$. Hence, by [S2], Lemma 8.1, we have

$$
\begin{aligned}
s^{+} \approx_{Q} s_{0}^{(1)}+2 F- & \sum_{i=1,2}\left(\frac{4}{3} \Theta_{1}^{(i)}+\frac{5}{3} \Theta_{2}^{(i)}+2 \Theta_{3}^{(i)}+\Theta_{4}^{(i)}+\frac{4}{3} \tilde{\sigma}^{*} \Theta_{2}^{(i)}+\frac{2}{3} \tilde{\sigma}^{*} \Theta_{1}^{(i)}\right) \\
& -\left(\frac{2}{3} \Theta_{1}^{(3)}+\frac{4}{3} \Theta_{2}^{(3)}+\Theta_{3}^{(3)}+\frac{2}{3} \tilde{\sigma}^{*} \Theta_{2}^{(3)}+\frac{1}{3} \tilde{\sigma}^{*} \Theta_{1}^{(3)}\right)
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
3 s^{+} \approx & 3 s_{0}^{(1)}+6 F-\sum_{i=1,2}\left(4 \Theta_{1}^{(1)}+5 \Theta_{2}^{(i)}+6 \Theta_{3}^{(i)}+3 \Theta_{4}^{(i)}+4 \tilde{\sigma}^{*} \Theta_{2}^{(i)}+2 \tilde{\sigma}^{*} \Theta_{1}^{(i)}\right) \\
& -\left(2 \Theta_{1}^{(3)}+4 \Theta_{2}^{(3)}+3 \Theta_{3}^{(3)}+2 \tilde{\sigma}^{*} \Theta_{2}^{(3)}+\tilde{\sigma}^{*} \Theta_{1}^{(3)}\right) .
\end{aligned}
$$

As \mathcal{E}_{1} is simply connected, we can replace algebraic equivalence by linear equivalence. By using this linear equivalence of divisors, if we put three effective divisors D_{1}, D_{2} and D_{3} as above, it is straightforward to check out that they satisfy the assertions (i) and (ii).

Combining Lemma 3.1 and Proposition 1.1, we have Proposition 0.4.

§ 4. Proof of Proposition 0.5

We shall also use the same notations as those in § 2 . The purpose of this section is to show that there exists no \mathcal{S}_{3} covering, S_{2}, of \boldsymbol{P}^{2} branched along C_{2} with $D\left(S_{2} / \boldsymbol{P}^{2}\right)=W_{2}$.

Suppose that there exists such an \mathcal{S}_{3} covering of \boldsymbol{P}^{2}. Let \mathcal{E}_{2} be the canonical resolution of W_{2}, and let Σ_{2} be the surface we have defined in $\S 2$. Let \widetilde{S}_{2} be the $\boldsymbol{C}\left(S_{2}\right)$-normalization of Σ_{2}. Then \widetilde{S}_{2} is an \mathcal{S}_{3} covering of Σ_{2}. Moreover, since \mathcal{E}_{2} is the $\boldsymbol{C}\left(D\left(S_{2} / \boldsymbol{P}^{2}\right)\right)$-normalization of Σ_{2}, we have $\mathcal{E}_{2}=D\left(\widetilde{S}_{2} / \Sigma_{2}\right)$. We shall denote the covering morphism from \widetilde{S}_{2} to Σ_{2} by $\tilde{\pi}_{2}$. We shall also denote the canonical morphism from \mathcal{E}_{2} to Σ_{2} and one from \tilde{S}_{2} to \mathcal{E}_{2} by $\tilde{\beta}_{1}$ and $\tilde{\beta}_{2}$, respectively. $\tilde{\sigma}$ denotes the involution on \mathcal{E}_{2} determined by $\tilde{\beta}_{1}$. As $\tilde{\beta}_{1}: \mathcal{E}_{2} \rightarrow \Sigma_{2}$ is a smooth finite double covering, we can apply Proposition 1.2 to this case.

Hence there exist three effective divisors D_{1}, D_{2} and D_{3} on \mathcal{E}_{2} which satisfy that
(i) D_{1} is reduced and D_{1} and $\tilde{\sigma}^{*} D_{1}$ have no common component,
(ii) $D_{1}+3 D_{2} \sim \tilde{\sigma}^{*} D_{1}+3 D_{3}$, and
(iii) $\operatorname{Supp}\left(D_{1}+\tilde{\sigma}^{*} D_{1}\right)$ is the branch locus of $\tilde{\beta}_{2}$.

Since the stein factorization of $q_{2} \circ \tilde{\pi}_{2}: \tilde{S}_{2} \rightarrow \boldsymbol{P}^{2}$ is S_{2}, and the support of the branch locus of $\tilde{\beta}_{1}$ contains the proper transform of C_{2}, the third condition means that every irreducible component of D_{1} is that of the exceptional divisor of μ_{2}. Also, the condition (i) means that the exceptional curves arising from a_{1} singularities of C_{2} can not be irreducible components of D_{1}. Moreover, by Corollary 1.3, any exceptional curve which meets $s_{0}^{(2)}$ transversely can not be an irreducible component of D_{1}. Thus, by Remark 2.5, every irreducible component of D_{1} is that of singular fibers of \mathcal{E}_{2} not intersecting the section $s_{0}^{(2)}$.

Consider $s_{0}^{(2)}$ as the zero element of the Mordell-Weil group, $M W\left(\mathcal{E}_{2}\right)$, and let $N S\left(\mathcal{E}_{2}\right)$ and T be the Néron-Severi group of \mathcal{E}_{2} and a subgroup of $N S\left(\mathcal{E}_{2}\right)$ defined by the same way as that in Theorem 2.6, respectively.

If we see the second condition on D_{1}, D_{2} and D_{3} in a way that $3\left(D_{3}-D_{2}\right) \sim$ $D_{1}-\tilde{\sigma}^{*} D_{1}$, by the same argument as that in [T], §4 Claim, the divisor $D_{2}-D_{3}$ gives rise to a torsion element of order three in $N S\left(\mathcal{E}_{2}\right) / T$. Then, by Theorem 2.6, there exists a torsion element of order three in $M W\left(\mathcal{E}_{2}\right)$. Thus, we get a section s of φ_{2} which corresponds to the torsion element of order three.

Let \langle,$\rangle denote Shioda's pairing on M W\left(\mathcal{E}_{2}\right)$ (For definition of the pairing, see [S2]), and let ψ denote the isomorphism in Theorem 2.6. In order to calculate the value of $\langle\psi(s), \psi(s)\rangle$ by using of the explicit formula by Shioda (cf. [S2]), we label irreducible components of singular fibers of \mathcal{E}_{2} in such a way as in [S2] pp. 228-229.

As \mathcal{E}_{2} is a K3 surface, by [S2], Theorem 8.6, we have

$$
\langle\psi(s), \phi(s)\rangle=4+2 s s_{0} \text {-the contribution terms from the singular fibers. }
$$

The contribution term arising from a singular fiber of type $I V^{*}$ is 0 or $4 / 3$. Also, if the section s intersects the i-th component of a singular fiber of type I_{b}, the contribution term arising from this singular fiber is $i(b-i) / b$.

By Lemma 2.4, there are three cases for the configuration of singular fibers of \mathcal{E}_{2}. As $M W\left(\mathcal{E}_{2}\right)$ has a torsion of order three, the second case in Lemma 2.4 does not occur (see [S1], Remark 1.10).

Now we shall consider the first case in Lemma 2.4. Assume that s intersects the i-th component of the singular fiber of type I_{6}. Then we have

$$
\langle\psi(s), \psi(s)\rangle=4+2 s s_{0}^{(2)}-\frac{i(6-i)}{6}
$$

-the contribution terms from the singular fibers of type IV*.

On the other hand, as s is a torsion, $\langle\psi(s), \phi(s)\rangle=0$ by [S2], Theorem 8.4. Hence, $s s_{0}^{(2)}=0$ and s intersects either the second or the fourth component of the singular fiber of type I_{6}, and the both contribution terms from the singular fibers of type $I V^{*}$ is $4 / 3$. Thus we may assume that s intersects at each singular fiber in the same way as s^{+}in Figure 1. Under these circumstances, we have

Claim 4.1. $q_{2} \circ \tilde{\beta}_{1}(s)$ is a line passing through $p_{1}^{(2)}, p_{2}^{(2)}$ and $p_{3}^{(2)}$.
Proof of Claim 4.1. Put $C=q_{2}{ }^{\circ} \tilde{\beta}_{1}(s)$. Since $s s_{0}^{(2)}=\tilde{\sigma}^{*} s s_{0}^{(2)}=0$, we have

$$
C \cap l_{3}^{(2)} \subset \operatorname{Sing}\left(C_{2}\right) .
$$

Let Q_{\imath} denote the intersection point of $l_{\imath}^{(2)}$ and $l_{3}^{(2)}(i=1,2)$. Suppose $Q_{i} \in C$, then $s \cap\left(q_{2} \circ \tilde{\beta}_{1}\right)^{-1}\left(Q_{2}\right) \neq \emptyset$. As $\left(q_{2} \circ \tilde{\beta}_{1}\right)^{-1}\left(Q_{2}\right)=\left(\beta_{1} \circ \mu_{2}\right)^{-1}\left(Q_{2}\right)$ is the exceptional curve for the A_{1} singularity of $D\left(S_{2} / \boldsymbol{P}^{2}\right)$ lying over Q_{\imath}, it is the irreducible component of the corresponding singular fiber of type $I V^{*}$ which meets $s_{0}^{(2)}$. But s does not meet such an irreducible component. Hence, $Q_{i} \notin C$, and this implies $C \cap l_{3}^{(2)}$ $=\left\{p_{3}^{(2)}\right\}$. Now by looking into the inverse process of the canonical resolution, we can easily see that C intersects $l_{3}^{(2)}$ transversely and passes through $p_{1}^{(2)}$ and $p_{2}^{(2)}$. Hence, $C l_{3}^{(2)}=1$, i.e., C is a line, and it passes through $p_{1}^{(2)}, p_{2}^{(2)}$ and $p_{3}^{(2)}$.

The statement of Claim contradicts to our assumption. Therefore, the first case in Lemma 2.4 does not occur.

Now we go on to the remaining case. Namely, the configuration of the singular fibers is the case (iii) in Lemma 2.4. We also assume that s intersects the i-th component of the singular fiber of type I_{7}. Then we have

$$
\langle\psi(s), \psi(s)\rangle=4+2 s s_{0}^{(2)}-\frac{i(7-i)}{7}
$$

-the contribution terms from the singular fibers of type IV*.
As $\psi(s)$ is a torsion element of $M W\left(\mathcal{E}_{2}\right)$, we have $\langle\psi(s), \psi(s)\rangle=0$. But, by the above formula, it easy to show that the value $\langle\psi(s), \psi(s)\rangle$ can never be zero for any $i(1 \leqq \imath \leqq 6)$ and any value of the contribution terms from the singular fibers of type $I V^{*}$.

Combining both cases, we disprove the existence of the section s. This implies that there do not exist such three divisors as D_{1}, D_{2} and D_{3}. Therefore, by Proposition 1.2, we obtain Proposition 0.5.

§ 5. Proof of Theorem 0.3

It is now enough to show the following:

Claim 5.1. There is no \mathcal{S}_{3} covering of \boldsymbol{P}^{2} branched along C_{2}.
Proof. Suppose that there exists an \mathcal{S}_{3} covering, S, of \boldsymbol{P}^{2} branched along C_{2}. As the branch locus, $\Delta\left(D\left(S / \boldsymbol{P}^{2}\right) / \boldsymbol{P}^{2}\right)$, of $\beta_{1}: D\left(S / \boldsymbol{P}^{2}\right) \rightarrow \boldsymbol{P}^{2}$ is a curve of even degree, its degree is either 2, 4, or 6. By Proposition 0.5 , we have $\Delta\left(D\left(S / \boldsymbol{P}^{2}\right) / \boldsymbol{P}^{2}\right) \neq C_{2}$. Hence we have $\operatorname{deg} \Delta\left(D\left(S / \boldsymbol{P}^{2}\right) / \boldsymbol{P}^{2}\right)=2$ or 4 . But, for each case, there is a line component, l, of C_{2} such that
(i) l intersects a line component of $\Delta\left(D\left(S / \boldsymbol{P}^{2}\right) / \boldsymbol{P}^{2}\right)$ transversely, and
(ii) $\beta_{1}^{*}(l)$ is contained in the branch locus of β_{2}.

But this contradicts to Corollary 1.3.
From Proposition 0.4 and Claim 5.1, we have $\pi_{1}\left(\boldsymbol{P}^{2} \backslash C_{1}\right) \not \equiv \boldsymbol{\pi}_{1}\left(\boldsymbol{P}^{2} \backslash C_{2}\right)$. Therefore, the pair (C_{1}, C_{2}) is a Zariski pair.

References

[A] E. Artal Bartolo, Sur les couples de Zariskı, J. Algebraic Geom., 3 (1994), 223-247.
[E] H. Esnault, Fibre de Milnor d'un cône sure une courbe algébrıque plane, Invent. Math., 68 (1982), 477-496.
[H] E. Horikawa, On deformation of quintic surfaces, Invent. Math., 31 (1975), 4385.
[K] K. Kodaira, On compact analytic surfaces II, III, Ann. of Math. (2), 77 (1963), 563-626, 78 (1963), 1-40.
[MP] R. Miranda and U. Persson, On extremal rational elliptic surfaces, Math. Z., 193 (1986), 537-558.
[P] U. Persson, Double sextıcs and singular K-3 surfaces, Algebraic Geometry Sitges 1983, Lecture Notes in Math., 1124, Springer, 1985, 262-328.
[O] M. Oka, Symmetric plane curves with nodes and cusps, J. Math. Soc. Japan, 44 (1992), 211-240.
[S1] T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan, 24 (1972), 20-59.
[S2] T. Shioda, On the Mordell-Weil lattices, Comment. Math. Univ. St. Paul., 39 (1990), 211-240.
[T] H. Tokunaga, On dihedral Galois coverıngs, Canad. J. Math., 46 (1994). 12991317.
[Z1] O. ZARISKI, On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math., 51 (1929), 305-328.
[Z2] O. Zariski, On the irregularity of cyclic multiple planes, Ann. of Math. (2), 32 (1931), 485-511.

Department of Mathematics
Kochi University
Kociil 780
JAPAN
e-mail: tokunaga@math.kochi-u.ac.jp

[^0]: ${ }^{1}$ Research partly supported by the Grant-in-Aid for Encouragement of Young Scientists 30211395 from the Ministry of Education, Science and Culture.

 Received March 23, 1995 ; revised May 18, 1995.

