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THE FUNDAMENTAL SOLUTIONS OF THE HEAT

EQUATIONS ON RIEMANNIAN SPACES WITH

CONE-LIKE SINGULAR POINTS

BY MASAYOSHI NAGASE

§ 0. Introduction.

The purpose of this paper is to derive some properties of the fundamental
solution of the initial-value problem

(4){t, *)=0, ί>0
(0.1) Kdt '

limθ(t, x) = β(x)
uo

for forms on a Riemannian space with cone-like singular points. Here the
Laplacian Δ is of Neumann or Dirichlet types, or, in certain cases, of unphysical
types with ideal boundary conditions. We can show that the asymptotic expan-
sion of the trace of the fundamental solution can have the log term and therefore
the zeta function can have the simple pole at the origin these new phenomena
arising from the existence of the singular points will evoke much interest. In
order to investigate them more closely, we will further study the same problem
on the metric cone with the help of the Fourier integral operator theory.

The direction of this investigation has been first raised up by a short but
pioneering paper due to J. Cheeger ([2]). He attempted to extend the spectral
geometric theory to the case where manifolds have singularities. The author's
study substantially follows in his direction and should be started with carrying
out the above basic research.

Notations and definitions: Before explaining the contents of this paper in
detail, we will collect the general notations and definitions.

First, let Y be a (perhaps, incomplete) oriented Riemannian manifold with

dYczY; Y=lntY\JdY and, for the metric completion Y,

/Π ON a v — L . ^ v TrΛf- v ! ^ is a manifold wi th smooth boundary]
( α Z ) dϊ-^y^Ξ y - l n t y | i n s o m e neighborhood of y. J '

Let Λι--=Λι(lnt Y) denote the space of smooth z-forms on Int Y and let Λ\—A\

(Int Y) be the subspace of A1 consisting of forms of compact support. Let Aι{Y)

be the subspace of Λι consisting of forms which are smooth up to dY. For
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z-forms Θly θ2, let (θu Θ2}y be the pointwise inner product at j e l " defined by

(0.3)

Here * is the *-operator on Y. Moreover, by definming that the pointwise inner
product of z'i and zVforms θλ and θ2 with i^i2 is equal to 0, the global inner
product of forms θx and θ2 is defined by

(0.4) <1} 2> < l f 2 \ \ ^ ^ ( <

Then, L2Λι—L2Λι{Y) denotes the space of /-forms with finite norm:

(0.5) ||0|| = | | 0 | | r =V<O~>\

i. e. square integrable /-forms.
Let d=dι denote the exterior derivative on z-forms and 3~oL be its formal

adjoint; they should be regarded as unbounded linear operators on IJΛ* by
setting

(0.6)

Let's set dc>ι—d\ji and δCtl—δ\Aι

Q

+1. Moreover the closures of dt, δu dc>ι and

δCt% dire denoted by dlf δif dCίl and δc,τ. Next, let P~P(d, δ) be a polynomial

of d, δ, and define
Λ%

L={Θ^Λx{Y)\Yoτ any P, PΘZΞL2Λ*.},

(0.7) Λι

ahs^{Θ^Λl\¥ov any P,

Λ*β l={0eΛL|For any P, (PΘ)\fγ=0.},

a n d s e t dabs—dabs,ι=d\Λι

abs, drei—drei>% =-d\Λ\.a, δabs—δabs^—δlyii+i a n d δ y e 1 - δ r e i , τ

=δ\At+y, their closures are denoted by dabSy dreh oabs and δreι.

Moreover, several Laplacians are defined by

Uabs.x — O α ^ i f l α j j ^ T f l f l f t , , ι-\Oabs,x-l >

^rel,τ:==δreιiidrei,i-\-dreιι ι-\drel,ι-l

ΔN and ΔD are called the Laplacians of Neumann and Dirichlet types, respectively
they are denoted by ΔM and ΔL in [7] and, from the facts

d*=of

(0.9)
δ*



384 MASAYOSHI NAGASE

they are self-ad joint operators. Here df and δf are the Hubert space ad joints of
dc and δc, respectively. By the way, we may remark that Δabs and Δrel are, in
general, not self-ad joint see Example 1.1. From now on, we set (Λι

bc, dbc>t, δbc>lf

2bc,τ)=(Λιabs, dabs,t, δabs,ι, Δabs>ι) or (Λι

reh dreι,z, δreιtl, Δrel>t), provided that no

confusions occur.
Second, we will define the metric cone. Let N be a compact Riemannian

manifold possibly with smooth boundary the metric on N is denoted by g. Set
β+=r(0, oo), then the space R+xN together with the Riemannian metric dr®dr
-\-r2g is called the metric cone over N, denoted by C(N). Its metric completion
is denoted by C*(N)={p}KJC(N) and the point p is called the singular point
of C(N). Moreover the truncated cone {(r, x)^C(N)\r1<r<r2} is denoted by
Cri,r2(N).

Third, among general Γ's mentioned above, an (ra+l)-dimensional Rieman-
nian manifold X which satisfies the following condition (0.10) is called an (ra+l)-
dimensional Riemannian space with cone-like singular points:

(0.10) X—lntX equals to {pj} Jy a set of finite points, called the singular points
of X. Each point p3 has a neighborhood Ό3 in X which is isometric to
a truncated cone C0%/Λ/'Jι)= {̂ •}UC0(M/A/'Jι) the U/s are disjoint from
each other and the Nf's are m-dimensional compact Riemannian manifolds
possibly with smooth boundary.

In the following, to simplify the notations, we set Nm=^J Nf and take
J

mϊnuj and, without distinction, denote the subspace which is isometric to CO>U(N)
j

through the above isometry, simply, by CO>U(N). For 0<ε^u, the complement
of C0>ε(N) in X is denoted by Xε. Moreover, we write X=C0,ε(N)UXε.

From now on, X—CO>U{N)\JXU always means an (m+l)-dimensional Rieman-
nian space with cone-like singular points and Y means a general Riemannian
manifold mentioned above. In general, points of X or Y are denoted by x, xlf

x2, etc. and, in particular, points of C(N)=R+xN or C0>M(Λ0=(0, u)xN are
denoted by x=(r, x), Xi=(ru £0, etc. Moreover, we assume that, on COjU(N),
the orientation of X is equal to the orientation which is defined by drΛ*l,
where * is the *-operator on N.

Contents: We summarize the contents of the six sections making up this
paper.

Section 1: We show that the Laplacian 3bc>ι on X is self-ad joint and 2abStl

— ΔN>ly Δreιtl — 2D>1 except for the case where

(0.11) dim7V=m=2^, the space of harmonic k-forms on N satisfying the given
boundary condition "be" is not equal to {0}, and i—k or

In the excepted case, by introducing the new condition called "ideal boundary
condition", we construct the self-ad joint Laplacians. Among them, the operators
which equal to ΔN or ΔD are, of course, numbered. However, the other operators
are also numbered among them; they are called unphysical Laplacians.
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Sections 2, 3 : To make clear the fundamental solution of (0.1), it is neces-
sary to carry out the functional calculus on CQ,U(N), therefore, on C(N). In
Section 2, we will calculate the formal eigenforms on C(N). In Section 3, on
the basis of the results of Section 2, we will get the formal representation for
the kernel of the function of our Laplacian on C(N). We have generalized the
representation [4.1] of [2] to the one for general forms.

Section 4: Let's assume that the metric completion X is compact. Then
the Rellich-type theorem holds for X. Therefore, from the general theory of
Fredholm, the Hodge decomposition exists and our Laplacians have the spectra
consisting of eigenvalues of finite multiplicity. We will show, moreover, that
the harmonic spaces are naturally identified with the de Rham-type cohomology
groups attached to Xu. The results mentioned in this section have already been
announced in [2] Theorems 2.1, 3.1.

Section 5: On the basis of the E. E. Levi's method, we will reconstruct the
heat kernel on X from the heat kernel Ec on C(N) and the heat kernel EM on
a complement of some neighborhood of the singular point. Ec and EM are
accessible to us. Actually, EM is well known. Moreover, Ec ' has the formal
representation which can be written according to the result of Section 3, and,
therefore, can be thoroughly investigated through the representation if we want
to do so. Hence the reconstructed one is more accessible than the formal one.
Once the reconstruction is accomplished, we can investigate the asymptotic ex-
pansion of the trace of the heat kernel. Moreover, as its immediate corollaries,
we can derive the fundamental properties of the zeta function for X and the
asymptotic distribution of eigenvalues of our Laplacian.

By the way, the existence of the asymptotic expansion is also announced by
J. Cheeger in [2] Theorem 5.1. He adopted the expression as follows: For

(0.12) J χtr£ t(0~Σ^/.αi/»r^^

Here, tr E^t) is the pointwise trace of our heat kernel. Referring to [2] for the
detailed explanations of notations, the constant term in the right hand side of
(0.12) seems to have some difficulties to understand which occur because of the
use of the index K. We have tried to express the asymptotic expansion more

explicitly by making more clearly the term \ tr εt(l, x, 1, x. t) mentioned in [2]

it is denoted by TrNZ(t i) in this paper. Besides, in the last line but one in
[2] §5, it is asserted that the zeta function for X can have double poles.
However, according to our result, it has no double poles but can have a simple
pole at the origin of C.

Section 6: As mentioned above, Ec can be thoroughly investigated with the
help of the formal representation. However, what we have really derived in
Section 5 are only its fundamental properties, which are in fact good enough for
the purpose of Section 5. By the way, for the purpose of making a further
study of the trace of the heat kernel, that is, of comprehending the meanings of
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the coefficients of its asymptotic expansion, probably it will be useful to more
closely investigate Ec only with the help of the formal representation. Actually
it will further offer new informations about the coefficients of the asymptotic
expansion of the trace of EM, too. In this section, we accordingly intend to
study Ec only with the help of the formal representation. Specifically, let
Ec(t, xu x2) i) denote the heat kernel Ec for i-forms and let's define Z(t, xlf x2', i)
by the formula

(0.13) E c ( t , Xi, x >;i) = ( r 1 r 2 ) ( ί + 2 a ~ 1 ) ~ m ) / 2 e ~ 0 ' ι ~ r 2 ) 2 ! 2 Z ( t , x l f x 2 ' , i ) ,

where m=dimΛ r and Xj = (rJf xj), j — l, 2. Then the pointwise traces have the
following relations:

(0.14) Tr E(ΐ, (;-, .r), (r, x) i)=ru-(m+1)ΎrZ(t, (r, x), (r, x) i)

^r-'TrZf^-, (1, x), (1, x) i) .

Therefore, for our purpose, it suffices to study Tr Z(t, (1, x), (1, x) /), that is, to
characterize each coefficient of its asymptotic expansion by the invariants of a
neighborhood of x in iV. Our aim is restricted to the case where 2=0 and

Accordingly, let's set

(0.15) tr Z(t, ic)=Tr Z(t, (1, x), (1, x) 0).

Then, observing further that (0.15) is influenced mainly by the wave kernel for
JV, we can apply the Fourier integral operator theory to it. Reviewing that
theory in Subsection 6.1, with the help of the key lemma mentioned in Subsection
6.2, we will try to study (0.15) in Subsection 6.3.

The author is grateful to Professor D. Fujiwara and Professor K. Shiga for
useful conversations during the preparations of this paper.

Finally, the author wants to emphasize once again that our methods depend
heavily on J. Cheegers works ([2], [3]).

§ 1. Self-adjoint Laplacians ideal boundary condition.

Let X=CQIU(N)^XU be an (m+l)-dimensional Riemannian space with cone-
like singular points. Then the Laplacian Jbc>ι on X is, in general, not self-
ad joinnt. In this section, we will make a clear distinction between the two cases,
i.e., the (first) case where it is self-adjoint and the (second) case where it is not
self-adjoint. In the second case, we will produce the self-adjoint Laplacians by
introducing the new conditions called the ideal boundary conditions.

Let us begin by adducing an example which shows that there exists the
second case.

EXAMPLE 1.1 (see Fig. 2.1). Assume that X=C(N), dimiV=m=2/? and
Jίbc(N) is not equal to {0}, where Mk

bc(N) is the space consisting of harmonic
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&-forms on N which satisfy the given boundary condition "bc\ Given a form
ω^Stk

bc{N) with ||ftί||^=l, let's set Ω1—ωi Ω2—drAω, which we regard as k and
(fe+l)-forms on C{N), respectively. Let' fx and f2 be smooth functions on R+

which satisfy ]\{r)~r, /2(r) —1 for r small, and fi(r)—fJr)—0 for r large. And
we set

where / = 1, 2, j — l, 2. Then #, r ^ d o m Δbc>k, 0 l i 2 ^ d o m J&,. Λ-i and

dθt,i=fί(r)Ωif 30^=0, Δθx.1 = -f'!(nΩ1.

dθί>2^0, oθί 2'^-fί(r)Ωlf Jθι.2--=—-f'ι'u'*Ω«.

Therefore, we can easily show that

(1.2)

Thus j δ £ . i j f e and JδC)^+i are not self-ad joint.

By changing this example slightly, we can easily understand that the
Laplacian JδCiJ. on X is not self-ad joint in the case (0.11) mentioned in §0. To
show that it is self-ad joint except for the case (0J1), some preparations are
needed.

For general Y, we have

LEMMA 1.2 ([6] Lemma 3.2).

(1.3) dabs — d , drei — O.

Though it will be expected that dreL=^dc and oabs~oc, these are, in general,
not valid. In fact we can offer an example which shows that dfcφobc; as being
easily understood from (0.9) and (1.3), J r e ί = J c and oab$=oc are respectively
equivalent to dfei—drei and dtbs—oab$' The example is as follows. In Example
1.1, we found Δθτ>1~δ(f[ΩoX thus we find fίΩ2^domdbc k, but, from (1.2), we
know fiΩ2^άom dfCl *.

We now search for the condition under which dfc — δ>,r is valid. When

(1.4) <da, βW^<a, δβ>γ

holds for any a^Ai, β^Aι

L

+1, we say that the ι-IJ-Stokes' theorem lor Y holds.

LEMMA 1.3. // the ι-L2-Stokes' theorem for Y holds, then

(1.5) d r e ι t l — dCtl, d a b s , ι — δ c , ι .

Proof. As above, it suffices to prove dfCtl—δbCtl. (0.9; and «'1.3) imply that
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dfcidδifci is always valid. Thus, it suffices to prove the converse implication.
By a simple regularization argument, we have only to prove dfc,τZ)δbc>ι. Given
β^άomδbct, it is trivial that (aΛ*β)\fc=0 for any a(Ξdomdbc,ι. Hence (1.4)
implies dfCιlZDδbCιl.

Hence we get

COROLLARY 1.4. // the (ι — l), t-L2-Stokes' theorems for Y hold, then ΔbCtl

is self-adjoint, and, moreover, ΔabStX — ΔN>x and Δre[ιl = ΔD>ι.

Here, let us return to our X. We will classify our study into three cases:

Case A: the case except for Cases B, C,
Case B: dim;V=2£, Jck

bc(N)Φ {0} and t=k,
Case C: άimN=2k, Mk

bc(N)Φ {0} and i=k+l.

In Cases B, C, we often specify a subspace V of Jcbc(N); in the following,
Cases B(V), C(V) denote Cases B, C with V specified.

First we consider Case A. Theorem 2.2 of [4] extends immediately to our
N which may have a smooth boundary. Since Xu is compact, this combined with
[9] therefore yields that the (i—l), z-ZΛStokes' theorems for Y hold. Hence,
from Corollary 1.4, we have

PROPOSITION 1.5. In Case A, Δbc>ι is self-adjoint, and, moreover, ΔabSil=ΔNιl

and Δrelιl~ΔDιl.

Next, we consider Cases B, C; in these cases, άimN=2k and Jc$c(N)Φ{0}.
Then the &-ZΛStokes' theorem does not hold see the example following Lemma
1.2. Hence we need a certain device. According to [4], we will explain it.

Fix a subspace V of Jtk

bc(N). Let VL denote the orthogonal complement of
V in Jtic(N), and let's set_dr A V= {drΛω\ω£Ξ V\ and drί\ V1^ {dr/\ω\ω^ V1}.
Let V, V1, drΛ V and drf\ VL denote respectively the subspaces of L2Λ*(C0)W(Λ0)
spanned by V, F-, dr/\V and dr/\VL with coefficients in L2((0, u)). Moreover,
for Θ^L2Λ*{X)\et_θv, θv±-,JdrAV and θdrAv1 denote the orthogonal projections
of θ\c0 wαv) to F, F-, dr/\V and drf\VL, respectively. And we set

(1.6) Λl,AX'^{θ~ΛUX)\θvir=o=(dθ)drΛv+:r==o=(δdθ)V]r=o= ... =0},

(1.7) Λiι\-(X)={Θ^Λl7\X)\θdrAV±]r~o=(δθ)vlr=o=(dδθ)dr^^

and dbc,v k—d\Λ«c ^ (X), obc,v> k— O>\A%+1

V(X) \ their closures are denoted by dbCιVι

and δbc,v,k, respectively.

From the fact that

etc. in Case B̂  \') which means Case B with V specified, the condition introduced
newly in (1.6) is the one which is concerned only with θv+θv±. Similarly, the
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one introduced in (1.7) is concerned only with θdr/\v+ΰdrΛvL Let's examine (1.6)
closely. Let {%,;j; and {ωv^ί3)j be the orthonormal basis of V and V1, respec-
tively. Then we can write

(1.8) Θv—Σ,gvj(r) ωv>J, θvi-

and the new condition of (1.6) can be rewritten as follows:

(1.9) ££n; }(0)=0, gv\/\0)=0, n=0, 1, 2, - .

Now let's take θ^άomdbCik and expand θv, θv^ as (1.8). Then,

means that each gVtJ belongs to the Sobolov space Hι

0(R+) near r—0. Therefore,
if we set

(1.10) \\θv\\\r,r
3

then

(1.11) dom dbc,v,k= {#edom dbc, k \ \\θv\\(r,r)=o(l), r I 0}.

Similarly, if we write, for θeΛϊi\X),

(1.12) ΰdrΛv=Έfv,j(r) drΛωv>J, θdrAv
1=:zΈ fvL,j(r) dr/\ωv±>3,

then the new condition of (1.7) can be written as follows

(1.13) / £ r υ ( 0 ) = 0 , / κ " > ) = 0 , n=0, 1, 2, - .

Thus, by using the norm defined by

(1.14) | |^drΛ^il^r)-Σ|/F^;(r)|2,
3

we have

(1.15) dom δbc>v>k={θtΞdom δbc> k \ ||θdrAV±-1| ( r, r ) — o(l), r | 0}.

For the general definition and the elementary properties of the norm || ||<r,r),
refer to (2.18)-(2.24).

The conditions introduced newly in (1.6), (1.7), (1.9), (1.11), (1.13) and (1.15)
are generally called the ideal boundary conditions.

We have now

LEMMA 1.6. For any a^άomdbCiV,k and

(1.16) <da, β>x = <a, δβ}x .

Proof. Take a^domdbc>v,k and β^άomδbCiV!k. Then it suffices to prove
(1.16) for these a, β. Since

(1.17)
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it suffices to search for a sequence {εs}, εs j 0 such that

(1.18) \ aΛ*β~>0.
J ( ε s , Λ*)

The way of proof is similar to that of [4] Theorem 2.2. Set

where φ1f ω} do not involve dr. Then the ideal boundary conditions yield

According to the Hodge decomposition for N

(1.21) L*Λ\N)=dΛ\

we decompose ^ as follows; for r fixed,

(1.22) φj—φjre+φj^Λ-

Then we have

i a/\*β — \ φiΛφ

(1.23) —I A r Λ 4 * κ τ φi,v1Λφ2 *v

Hence (1.20) and the estimations (2.63) and (2.64) of [4] yield the existence of
the desired sequence {es}.

LEMMA 1.7. 5?c.r.*=56c,r,*

Proof. Consider first the case "bc"="abs". We will prove dabs.v.k^δtbs.v.k-
Since Lemma 1.6 implies dabSιVtkClδtbs,v,k, it suffices to prove the converse
implication. Obviously

(1.24) d*bStV,k(Zδ*k = dk = dabs.k

follows from (0.9) and (1.3). Hence, if V={0}, then the proof is complete. In
the following, we assume that VΦ{0}. Take a&domdSb8,v,k- Moreover fix
β^domδabs.v.k arbitrarily. Then (1.24) implies that δ*a—da and <α, δβ}x =
(da, β}χ. Hence, observing (1.17), we have, for almost all {ε} with ε | 0 ,

(1.25) f aΛ*β-+0
J (e, N)

when ε I 0. Now expand a, *β into the sums (1.19) and, moreover, expand φ3
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into the sum (1.22). Hence (1.25) equals to (1.23). Moreover, the ideal boundary
condition and the estimations (2.63) and (2.64) of [4] imply that the second,
third and fourth terms of (1.23) tend to 0 when ε I 0 for almost all {ε} with ε j 0.
This combined with (1.25) implies that, for almost all {e} with ε I 0, we have

(1.26) limf φίVΛώ2~*v=0.

By the way, if ω is an element of V with IMU — 1 and / is a smooth function
whose restrictions to Xu and some neighborhood of the singular point are respec-
tively equal to 0 and 1, then β~fdrΛω belongs to άomδabs>Vtk. For such β,
(1.26) can be rewritten as follows.

(1.27) <φi,v(ε, x), ω(x)>N-*0

Hence, by expanding φlιV in terms of an orthonormal basis of V, we can easily

show that ||αrll(r,r) = ll^i,Fil(r,r)=o(l). That is, a^άom dabs>v>k.
In the case where "bc"—"abs", the lemma is thus proved. For the lemma

in the case where "bc"="reΓ, it suffices to prove dfeι>V!kCZdreι;Vtk. This is
similarly proved.

Now, we define the new Laplacians as follows

"be, V, k—Obc, V, kdfrcv, kJtdbc, k-lθbc, * - l »

(1-28) . _ ^ .
Ίbc.v, fc + i — Obc, k+idbc, k + i"\~dbc,v, k^bcv, k

Then [7] Theorem 1.1, (0.9), (1.3), Lemma 1.7, and the facts that dbc>M>k~dι)Cιk

and δbCίjΐkc(Nhk—obCιk yield

PROPOSITION 1.8. In Cases B, C, Jbc Vil is self-adjoint, and, moreover,

The new Laplacians which are identified with neither ΔN>1 nor 3D>1 will be
called the unphysical Laplacians.

From now on, to simplify the notations, we set

Jbc r in Case A,
(1.29) J t H

Jbc,v i in Cases B(V) or C(V)

§ 2. Formal eigenf orms on the metric cone.

Let N be an m-dimensional compact Riemannian manifold possibly with smooth
boundary.

The eigenforms of the Laplacian on C(N), namely, the metric cone over N,
are calculated in [2]. However, the results mentioned in [2] are rather hard to
read and understand and have some oversights for example, [3.9] of [2]. (This
oversight has already been corrected in the revised version of [3] (1980).) Since
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the functional calculus on our X is based on these results, it will be better to
rearrange them once more. The proofs are perfectly based on the elementary
calculations. Hence we will omit them; refer to [15] Appendix.

Let * 3, δ, Δ, be the intrinsic operators on N and *, d, δ, Δ be those on C(N).
Let θ(r, x)—g(r)φ{x)+f(χ)dr/\ω(x) be an /-form on C(N), where φ and ω are

i and (i—l)-forms which do not involve dr. Then we have

(2.1) *0 = (—l)Vm-2*g dr Λ * 0 + r m - 2 ( * - υ f*ω,

(2.2) dθ=g 3φ+drΛ(g'φ-f 3ω),

(2.3) δθ=r-2gδφ+{-f/-(m-2(i-l))r-1f}(o-r-2f

(2.4) Δθ = {-g//-(m-2i)r-1g/\ φ+r-2gΔφ-2r~3g drΛδφ

+ {-f"-(m-2(i-l))r-1f/+(m-2(i-l))r-2f}drΛω

+r-2fdr/\Δω-2r~1f3ω.

We have the Hodge decomposition

(2.5) Λlc(N)=3ΛlΛN)ΘJ

where Mι

bc{N) is the space consisting of harmonic /-forms on TV which satisfy
the given boundary condition "bc"="abs" or "rel". Let {ωbc>-e(ί)yj} 3i {ωbC)Ma),j} j ,
{ωbc,c~e(i),j}3 be those orthonormal basis of 3Λ\~1(N)y Jtι

bc{N)y δΛU\N) which are
consisting of the eigenforms of Δbc, namely, the Laplacian together with the
given boundary condition "be". Let {μbeMihj}j, W,•#«>./=())}„ {μbc.Zw.jlj be
the sets of corresponding eigenvalues, respectively. Here each set has the order
relation: μbcem.j^μbcewj+i f° r a nY J> e t c . Besides, according to circumstances,
the objects of "e{ϊ)" and "3ί(i)" types are gathered and rearranged as follows;
((fi>6c,c(i)j, μbc.c(i).j)}j with the order relation where μbc,~ca).j^μbc.cwj+i for any j .
Similarly the objects of "Jί(t)" and "ce(i)" types are gathered and rearranged as
follows; {(Wbc.Zw.j, μbc,?cω.j)}j with the order relation where μbc.άw.j^μbcZw.j+i
for any j .

From now on, unless confusions occur, we will sometimes omit the subscripts
be, e(i), etc.

We can now expand an % -form θ(r, x) as follows:

(2.6)

Here we have omitted the subscript "be". Then, from (2.4), Δθ can be expanded
as follows:
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(2.7) J#=Σ{—gcici),j—(m—2i)r- ίgh ( i ),J

Jrμ c~ c ( i ) ιjr-2g~ c U ) > j}ω c~ c U ) > J

gce(ι-i),jJΓfίce(ί-l),jr "£ce(.i-D,j

Therefore the differential equation Jθ=λ2θ can be reduced to the simultane-
ous differential equations of Euler-types with respect to the coefficients ££u),j(r),
gΓed-i),j(r), etc. appeared in (2.6). By solving these differential equations, we
get the following two lemmas.

Set
α(ι) = ( l+2ι-m)/2,

v(cc(i), £)j = V'μc-c(i

(2.8) v(cc(i))j=v(cc{i), i)j,

d), k)j=a(k)±v(cc(i), k),,

etc. If necessary to indicate the given boundary condition "fo", we will use
such notations as vibe, cc(i), k)Jt cfφc, cc(i), k)Jt etc.

LEMMA 2.1. An 2-form θ which satisfies Jθ—O can be written as a {convergent)
sum of forms of the following four types:

r 3

d-Dj T ^ ar/\a)c(i-i),j(x),

where (2.9)", (2.11)- αrcd (2.12)" should be multiplied by log r if
v{ce{i—l))j-=l and v{c(i—l), i—2)^=0, respectively.

LEMMA 2.2. Sef 2>0. 4̂n 2-/ί?rm θ which satisfies Jθ~λ2θ can be written
as a (convergent) sum of forms of the following four types:



394 MASAYOSHI NAGASE

(2.15)~0,-1 ) ;, δ*(ra{m-i\J^{^{m

where the Besseί function J-Vj{λr) should be replaced by the Neumann function
NVj{λr) if Vj is a non-negative integer.

In (2.15)^ and (2.16)r, the eigenvalues used for defining v(ce(m—i))3 and
ι>(cc(mJrl—i))j are respectively those of *3ω£(i-i),j and *α^(i-i))>7 which satisfy
the boundary condition adjoint to ours "be". Hence, if we promise to interpose
"adbc" in order to specify that the boundary condition under consideration is
adjoint to the one "be", we should replace v(β{m—i))3 and v(cc(m+l—i))j by
v(adbc, ce(m—ϊj)j and ι<(adbc, Γφn + ί—i))^ respectively. Remark that

v(adbc, cΊ>{m—ϊj)j--\>(]bc, ce(i—ΐ))Jf

(2.17)
v(adbc, cc(m+l-i))j=φc, c(i-l), ι-2)3.

From (2.1)—(2.3) and this fact (2.17), we can rewrite (2.14)—(2.16) as follows.

(2.14T r^'--1)Λ,(c-( i-υ),Wr)J^( i_1),J

ωce{i-l),j

These formulas are also useful for various estimations.
Next, we will investigate the square-integrabilities of (2.9)—(2.16) near the

singular point. The results are collected into Figures 2.1, 2.2. We will confine
ourselves to the explanation of the way from which we can know whether they
are square-integrable or not.

Let θ(r, x) = θi(r, x)+drΛθ2(r, x) and η(r, x)~τjι(r, x)JrdrΛη2(r, x) be i-
forms, where θ3 and rj3 do not involve dr. Set

(2.18) <0, ^>u,D-J ( s γ ) {θi(r, « A M i ( r , x) + θ2(r, x)/\*^2(r, x)},

(2.19)
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Here * s is the ^-operator on (s, N) with metric s2g. Then we have the follow-

ing formulas:

(2.20) H^ill(r.r)=r m / 2 - ί j |^ 1 | i ( 1 , r ,,

(2.21) \\drΛΘ2\\ ( r , r ) = ||Θ2\\ ( r , r ) ^r m ' 2 ~ u " υ ||Θ2\\ ( 1 , r ) ,

(2.22) ||0||&o

Therefore, if β(r, .r)=g(r)^(ic)+/(r)drAa>(.r). then

(2.23) 15He. .c-v) = ]|<δ]

which shows that, by looking at the asymptotic order of /, g when r I 0, we

can know whether Θ^L2Λι(C0>ε(N)) or not.

By applying this way one after another, we get Figures 2.1, 2.2.

(2.9)-

(2.10)"

(2.10)"

(1)
l ( C 0 r)

UJ

(2)
L2Λt+1(Cl) s)

II1

rf

(3)
L2Λί~1(C0 0

^

ί (4)
: For any
. P=P(d, δ),

P Ξ̂ L2Λ*(Cn

o O

o

(t).

iff vj<l iff 2i^??ι& μ}-

o

o (ΐ)s

iff 2i=»!&,«J^0

o

(2.11)-

(2.12)

O

o
iff vj<

o

o
iff v,<

iff

o

o

©

©

o

o
iff VJ<1

o

o

o
O (t), O (f)o

iff 2(?-l)^;?ί iff 2(i-ΐ)=m
& ^̂ ==0 & fij-0

Figure 2.1.

O = " Y e s " . x = " N o " . ®---:'Ύes & = 0 " . C0.5=C0,S(ΛΓ).

( ΐ ) j : ® iff 2 ^ m - l &/ίj=-0. ( ΐ ) , : ® iff 2 ? ^ m + 3 & ,« ; =0.

( ΐ ) 2 : and then ©. (1% : and, then © .

( ΐ ) 3 : and, then rf = δ = 0 . (f) ΰ : and, then d =δ —O.
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(2.13)-

(2.14)-

(2.15)"

(2.16)"

(1)

o

o
! iff vj<l

o

X

O

X

1 °
O

I iff vj<ί

(2)

O

O

©

©

o

o
iff VJ<1

© '

©

(3)

©

©

O

O
iff v, < l

©

©

o

o
iff 2(/-l)<w

& μj=O

(4)

O

O
iff 2t=m&μj=0

O

X

o ,

X

0

iff 2(z-l)=m
& μj=0

Figure 2.2: We continue to use the notations of Figure 2.1.

By the way, we remark, as a preparation for the following sections, that

(2.24) x=(r, x),

where \θ\x is the pointwise norm defined by (0.3).
Finally we will prepare for the study of the spectral representations of

2bC)V>ι in Cases B(F), C(F). The proof depends on the formula (2.23).

LEMMA 2.3.

(1) In Case B,

(2) In Case C,
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Here (2.13)lα ) etc. mean ra(i)J±^Jta))j^r)ωj{{ί)>J etc.

§ 3. Functional calculus on the metric cone.

We continue to use the notations of §2. Let 2X be the Laplacian on the
metric cone C(N) defined by (1.29). Since it is self-adjoint, it has the spectral
representation

(3.1) 2 •=

Hence, for any Borel measurable function / on R, the operator f(2ι) is defined
by

(3.2) f(2τ)

In this section, we will try to describe the formal kernel kf of f{2τ) definitely.
It is already described in the case where forms are of co-closed type ([4.1] of
[2]), or in the case where /=0 ([6]). Here we will remove these restrictions,
but the way of proof is similar to [6].

Unless confusions occur, v(bc, cc{i))3, ωbC!^{i)>j, etc. are abbreviated to v(cc(i))Jy
ωccίi),j, etc., or more informally, to vJy ωJf etc. in certain circumstances.

Using the notation Xj—{r3, Xj)^C(N), we set

(3.3) kf(Xl, x2 ce(i))=Σ (r.r
J

= kf(xu x2 Jt(i))+kf(xlf

(3.4) kf(xlf x2 dc~e(i)+drΛc~e(i))

X
1

a-{ce{ϊ))j
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J/ a+(ce(i))Ί
( _ / ~ , / Λ N

,( dceii), dc~e(i))+kf( dcβ(*), drAceii))

έ/( drΛce(i), dce{i))-Γkf{ dr/\ce(ι), drΛce(i))

(/), dce(i)+drAce(i))+kf( drAceii), dce(i)~drΛce(i)),

),;}, that is, an

(3.5)

= kf( drAJt(i))-rkf( drAeii)).

Moreover, for a given subspace F0')Cc^jc(A7), we take
orthonormal basis of F(z), and set

ky(xu x2

k%xu x^\dr

(3.6)

(3.7)

where v ( F ( % = V 0 + α : W 2 = = | α ( ί ) | , v(V(i), i-l)j=\a(i-l)\.
These expressions are easy to read, I think, but it is best to give some

remarks. For example, in (3.4), the terms kf( dce(i), dce(i)), •••, kf{ drAce(i),
drAce(i)) denote the first, the second, the third and the fourth terms in the
preceding expression respectively, i.e.,

kf{ dceii),
a+{ce(ι))j-a {ce{ι))j

a+(ce{i))3

1

a~(ce(ij)j
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etc. Moreover the terms kf{ dce(i), dce(i)+dr/\ce{i)) and kf( drΛce(i), dceii)
+drΛce(i)) denote "kf( dceif), dce(i))+kf( dcβ(i), drΛce(j))" and "kf{ drAceii),
dce(i))+kf( drΛc~e(i), drΛce(i))".

The expressions of these types will appear sometimes in the following
sections, in which we will not give the complete descriptions of them because
they are completely analogous to (3.3)—(3.7).

We can now state the main theorem of this section.

T H E O R E M 3.1. The formal kernel kf(xu x2;i) of f(2t) can be written as
follows in the distribution sense.

(1) In Case Ay

(3.8) kf( *)=£/( cc(i))+kf( dce(i-\yrdrΛce(;i-l))

+kf( dr/\c{i-l)).

(2) In Case B{V{k)),

(3.9) kf( 0=fe/( V(k))+kj( V{kY)+kf{ ce(k))

+ kf( dc~e(k-l)-τ-drΛce(k--l))~kf( drΛc(k-l)).

(3) In Case C(V(k)),

(3.10) kf( i)=kf( cc(k+l))^kf( dc~e(k)+drΛce(k))

+kj( rfrΛ FW)"!^}( drΛ F(/e)L)+^( drΛe(k)).

The proof is so long and complicated that we divide it into Steps J—Ml.
Step L Steps Π—V are devoted to the proof of (1). Steps VI, Mi are

respectively devoted to the proofs of (2), (3).
According to the decomposition (2.6), we set

(3.11) LiAi'^={θ^υ

(3.12) l M ' ί 4 " + < i r Λ S = {

(3.13) L M ^ ^

Then we have the orthogonal decomposition

(3.14) L2Λι(C(N))=L2/ίi; c~©L2Λi; ^^^-Λ^g^.y^; dr,\ct

The restrictions of Δ% to the intersections with dom Δ% and the three subspaces
of the right hand side of (3.14) are respectively denoted by J ΐ ; c^, Ji dά+diΛ™
and 2i; drAc- Since we know from (2.7) that their respective ranges are contained
in the respective subspaces of the right hand side of (3.14), it suffices to study



400 MASAYOSHI NAGASE

their formal kernels, respectively.
Since the proof is based on the elementary properties of Hankel transform,

we will list up some of them concerned to us.
If g(r) is a smooth function on R+ with compact support, its Hankel trans-

form Hv(g) is defined by

(3.15) Hv(g)=[°g(r)Mλr)rdr.
Jo

The Hankel inversion formula ([14] ΠI Page 149) says

(3.16) g(r)=Hv(Hv(g))(r),

with v> — 1. Moreover we have the Plancherel formula

(3.17) ζ\g(r)\2r dr=ζ\Hv(g)(λ)\2λdλ.

Thus Hv can be extended to the Hubert space isomorphism

(3.18) L\R\ rdr) = L*(R+, λdλ).

Step II. The purpose of this step is to show that the formal kernel of

Λ;~ in Case A is equal to kf{ cc(t)). In this step, we set Δv—Δi >^c, L2Λι —

L2Λι;cc, Vj=v(cc(i))j, ωj=ωc~cU)tJ for short.
First, remark that, if we set

W iy)cc(i),.; ^7 : = '^cc( i ) , j= =(2.13) c7(i),; ,

then, from Fig. 2.2, Ω"j belongs to dom Δx near the singular point.
Let's take gj{r)ω^UΛ\ Since (2.23) and (3.17) yield

(3.20) ll£,ω,||8= [V*™g j(r))*rdr= Γ | Hy(χ-«™gs){λ) 12λdλ ,
Jo Jo

we have

(3.21) r-a{ί)g3{r)^L\R\ rdr),

(3.22) \\g&s\\ = \\Hv{r-«™g3)\\L*{R+tλdλ).

Hence the map Σ gjti)j^HVj(r~a{i)gj) induces

(3.23) jζVj : L2Λ*->L\R+, λdλ).

Moreover we have

(3.24) JCVJ(Σ g,ω,) = <gjω,, ΩpC(N).

By this formula, we can show that, for gjωJ^dom2ι,
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(3.25) M

In fact, since there exists a sequence {hk{r)ω3} ̂ Cdom j t such that hk(r)=0 for
r large, and hka)j-±gja)j, d{hka)j)-*d(gju)j), δ{hkωJ)-^δ{gjωJ), Δ{hkωJ)-^Δ{gjω3) in
the ZΛsense when &—>oo, it suffices to prove (3.25) for a form ^ j Ξ d o m Λ with
gj{r)=0 for 7' large. And this is an immediate consequence of the formula (3.24)
and the property of Ωf, that is, JΩJ

h=λ2ΩJ^.
Further, for a form θ—^ΣgjωJ^dom3ι, we have gjWj-άom Jh and ΔΘ-=

Σ Agjωj).
Thus, letting L2(R+, λdλ, I2) be the Hubert space consisting of /2-valued

square-integrable functions on R+ with measure λdλ and define

(3.26) ^ ,

for Σ ^ e L M 1 , we get

LEMMA 3.2. We have the Hubert space isomorphism

(3.27) ^(c7(i)) : L*Λ«"{C{N)) = L\R+9 λdλ, Π .

/n particular, if ^edomϊ ι ; c ~,

(3.28) JCv<

In other words, (3.27) and (3.28) provide the spectral representation of
J t ; c^. Hence the operation with /(Λ,c^) on θ=Σ gjcoj^dom f(Jr>,~) can be written
as follows;

(3.29) f(3xici)θ(ru Jc1) = Jfrfeu))(/Wa)^(«(t»(β))(r1, Jcι)

^^^^

Here the last expression is of the distribution sense.
Thus our purpose of this step was accomplished.
Step III. The purpose of this step is to show that the formal kernel of

f(2i;drAc) in Case A is equal to kf{ dr/\c(i— 1)).
The proof is similar to Step II. Set

/Q QίY)*, N O±~Ω± " s — (? 1(S^
\O.O\JJ c (ΐ-l), j *£j — " * drΛc ( i - 1 ) — \CJ. x\J) c(i-l), j

Then, i2+ belongs to L2Λι drA~c near the singular point. Similar to (3.23), the
map TifJ{r)dr/\ω~ca-.1)>j^HvCca-i),ι~2)1(r-aa-1)fj) induces

j 3

(3.31) «#Mc(i-D.t-2>, : LzΛι''drΛ*->L2(R+, λdλ),
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and further we have

(3.32) <*>cr:ι-v ι-2 (,Σ/AΛ(yί( ί- 1), i)-(-l)" u(///r/\oj ί ( ι- 1 ), J, £?; Γ ( Λ , .

Hence, by the argument similar to Lemma 3.2, we get

LEMMA 3.3. We have the Hubert space isomorphism

(3.33) +:,<;...,-<, ι-.ι) ' L2Λv'drA~c(C(N)) = L2(R\ λdλ, I'1).

In particular, ij #-Ξdom Ju dr\i, then

(3.34) -n>Ccu-v.ι-2ΛJ0)-=Z2&v«u-i).ι-*J0).

Hence our purpose is also accomplished by the argument similar to the one
following Lemma 3.2.

Finally remark that, if we insert "be" or uadbc" into the v( ) in order to
indicate the boundary condition under consideration, we have

- :- v hi i- i - 1 ) , i - 2) — <-^ v (α d be, cc ( m + 1 - /'))''

(3.35)
kfi be, drAci' — D^^kfi flrf^r, α (;;/4-l—/))* .

Step IV. The purpose of this step is to show that the formal kernel of
f(2ι;d£+dr,\£) m Case A is equal to kf( dce(i—ΐ)J

ΓdrΛce(i—1)). In this step,
ΛXTA o p f /? — 1 ~ ~ T 2 At—. T2 Λi; dce+drΛce ,. —i/zW/—-"!^ // — / / ~
W e bCL Aι — -lι; dee-car .ct1' -^ • ί I — ^ y i * ^j — H ^ U -̂ /Vy. / ^ — /-H'£ΛI-1) J<

af=a±(ce(i—l))J and ύ)J=ωc^ii-i),3 ί ° r short.
Here we cannot expect (2.14)+ and (2.15Γ to play the roles similar to (3.19)~

and (3.30)+. Let's start with constructing the /-forms from (2.14)+ and (2.15)*,
which are suitable for our purpose.

The following formulas for Bessel functions are well known ([14] III Pages
158, 159)

(3.36)

By applying (3.36), (2.14) can be rewritten as follows (see (2.14')")

(3.37) of'"'"-

- 2~ r"^{alJ»rl(λrh-a;JKl

Similarly, (2.15" multiplied by (—l)m ( ί- 1 ) + 1 can be rewritten as follows (see
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f3.38) ~~irrnW {ajJ

Hence, if we set

Γ3.39) Ω~~—-Ωd£e(ι-l) + dr\£eU-Ό 3

1 _ι_ ( 1 ") ln ( ι " ! ̂  ~ 1

then

These /-forms play the roles similar to (3.19)" or (3.30)".
First, from Fig. 2.2, Ωf belongs to domi/*, near the singular point. Moreover,

from (2.23) and (3.17), if gfiωj^-fjdrAω^UΆ1, we have

(3.41) hj3ωJ^fJdrAωJΓ=μΓ(r-^i"gJ(r)γrdr-r^(r ' r( r Ί'dr ,
Jo Jo

Moreover, similarly to the proof of (3.25), if gβωj~f3dr, ω3^

(3.43)

LEMMA 3.4.

(3.44) Έ

induces the Banach space isomorphism

(3.45) L2/ίί>; d"+drAc%C(N))^L\R+, rdr, /2Θ/2;.

{the norm of the r.h.s. of (3.44)}"

Jo
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{ ( ( Λ ( S , )
J I JO JO

^ { t h e norm of the l.h.s. of (3.44)}2.

{the norm of the r.h.s. of (3.44)}2

norm of the l.h.s. of (3.44)}2.

Finally, if we set, for {(Fj(r), G(r))} ^ L\R+, rdr, /20/2),

(3.46)

then ΣiigjSwj^rfjdrΛω^L2/^ and, moreover, its image by the map (3.44) is

On the other hand, the map

(3.47) {(Fj(r\ Gj(r))},-»{(H^Fj), HVj+1(Gj))},

induces the Hubert space isomorphism

(3.48) L\R+

y rdr, 12@12)^L\R\ λdλ, /20/ s).

Hence, by composing the maps (3.45) and (3.48), we get

LEMMA 3.5. We have the Banach space isomorphism

(3.49) ^ u / ^ - i - ^ α - υ ) : L2Λ*-d"+d^"(C(N))*L\R+, λdλ,

In particular, if θ = άom Jv, d^+dr/\^f

(3.50) ^ i>{dce(i-l) + dr.\ce{i-

(3.50) is an immediate consequence of (3.42) and (3.43).
We can now accomplish our purpose. Let's take Θ^^ΣigjSωj

udc^dr;cl) and consider f(2t;d^+drA^)θ(rlf Jci). By (3.46), the coefficient
of Sίύjixx) is

(3.51) (α7-α7ϊ~^(rir 8 ) α ( 4Γ/W 2 ){-α7Λ^
Jo L J o J J

j{r2)rψ "2ιdr.2
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Hence, those terms of the formal kernel of f{ΔUd£,+drA~) which involve the
Jω J (jci)®Jω/jc2)

>s and the dωj{x1)®dr2Aωj{x2ys are obviously kf( dce(i—l),
dce(i—l)) and kf{ dce(i—ϊ), drAce(i—l)), respectively. Next, similarly, by
(3.46), the coefficient of drAωό{xι) is

(3.52) (α;-α7)

Hence those terms of the formal kernel of f(Δi d^+drA~) which involve the
dr1Aωj(xi)®3(ύj(x2ys and the dr1Aωj(x1)<S>dr2Aωj(x2ys are obviously
kf( drAce(i—l), dce(i—l)) and kf( drAc~e(i—l), drAce(i—l)), respectively.

Thus the purpose of this step was accomplished.
Step V. The proof of Theorem 3.1 (1) is thus accomplished.
Step VI. Next, we will treat Case B(V{k)). Pay attention to (3.19)±, (3.30)*

and (3.40)±. In Case A, (3.19)+, (3.30)+ and (3.40)* belong to άom2t near the
singular point, which played the important roles in the proof of Theorem 3.1 (1).
However, in Case B(FQfe)), the situations are slightly different because of the
existence of the ideal boundary condition.

T <=̂  C)± O± i onH O ~ he> fQ "IQ^i ίQ ΊQλ*1 t ar\A (*\ 1 Q̂ l ~

respectively. Observing Lemma 2.3 (1) and Fig. 2.2, we know

L E M M A 3.6. In Case B(V(k)), Ω$ik)tJ, Ωva)\P Ω~eik),,, Ωic~e(k-i)+drAc~e<k-i).j
and ΩdrAc(k-D,j belong to dom Δτ near the singular point.

Hence, for proving (3.9), Steps III, IV are still valid and Step II becomes

valid by replacing Ω${k)
L,o by Ωvtk)1^-

Thus we may say that the proof of Theorem 3.1 (2) has been completed.
Step VII. Finally we will treat Case C(V(k)). The situations are similar to

Case B(V(k)).

Let &2drAV(k),j> ΩdrAVik)1,] and SJdr/\e(k),j be (3.30)κ(/^))J, (S.όυjvck)1-^ and

(3.30)f(*)fJ respectively. Observing Lemma 2.3 (2) and Fig. 2.2, we get

LEMMA 3.7. In Case C{V{k)), Ω~(k+}),J9 Ω+

d^k^arA^k,,3, £..,
ΩtrAva)1-,] and ΩtrAe{k),j belong to dom Δx near the singular point.
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Hence, for proving (3.10), Steps II, IV are valid and Step III becomes valid

by replacing Ωtr/wuD.j by Ω'dr/\v{k),^
Thus we may say that the proof of Theorem 3.1 (3) has been completed.
Thus the proof of Theorem 3.1 is complete.

Next we will make some remarks for applying Theorem 3.1 to the study of

/(Λ).
First observe kf( cc{i)). It can be regarded as a family of functions of

v{cc{i)) — ^'p^2i+a(i)2 parametrized by rlf r2. More precisely, by the natural
identification

/O Γ0\ T 2 Λχ\ CC(Γ(\T\\~ T 2/D+ ^TΠ-il^J^ T 2 Λi\ CC( \J\\

with

the operator kf( α:(/)) can be regarded as a linear operator

(3.55) L\R+, rm-iιdr, L2Λί;cΊ{N))-+L2(R+, rm~2'dr} L2Λί;c~

From this view-point, we can apply the functional calculus for functions of
v(cc(i)). Really this gives the crucial view-point [6] provides the best example.

By the way, we wish to observe also (3.4)—(3.7) from the view-point similar
to (3.55). However, what is corresponding to (3.53) is complicated. Hence it
will be best to manage to avoid using such complicated ones.

Therefore, let's replace //71/2riJω/^i), μj1/2r23cϋj{x2), dr1Aωj(x1), dr2Aa)j(x2)
by ω,(jci), o)j{x2), ω/Jci), a)j(x2) in (3.3)—(3.7). Here, remark that the subscripts
"cc(i\ ce(i), e t c . " a r e o m i t t e d . L e t kf{ cc(i)), kf{ dc~e(j)+drAc~e{i)), •••, k% dr
AV(i)) be the operators constructed in the above way. Of course, kj{ cc(i))—
kf{ ccii)). They can be regarded as linear operators similar to (3.55). Moreover,
through the Hubert space isomorphisms

(3.56) IAR+, rm-2ιdr, drAL2Λι{N)) = L\R+, rm~2ιdr, L2Λι(N)),

(3.57) L2(R+, rm-%ιdr, L2Aur

Σ gj(*>~e(ι),3 h—> Σ gjμ^\i2),j

with

(3.58)

they can be identified with the original ones, that is, (3.3)—(3.7).
Moreover, if we set
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(3.59) k}( c&(0) = (r 1r i) '"»

(3.60) kj(

— J

with Vj = v(ce(i))j, (Oj—ω^w.j, then we have

(3.61) kf{ Λ3K*), dceii))^~k% fg

(3.62) £ / ^ ( 0 , dr/\ce(i))=kf( drΛc~e(i), dce{ι))^{Pc-eΔtY'2kj{

(3.63) ^ ( drAcei i), dr Ace(i))=:~k}( ce(i))-Γa(J)kf(

Moreover, since

(3.64) /?y( cfrΛc(/)) = (-^-)m"2 l*-1^/( fl^ cc(m-i))*

and, in Cases B(F(/?)), C(

(3.65) ^j( I^
Jo

: L2(Λ+, dr, V(k))->L%R+, dr, V(k)),

etc., we can assert that, for the study of /?/( i), it suffices to study the linear
operators

(3.66) kf{ cc(i)) = kf( cc(/)) : L\R\ rm~udr} L2Λί;c~(N))

->L2(R+, rm~2ιdr, L2Λi]~c(N)),

(3.67) k% ^(/)) : IJ(R+, rm~2ίdr, LM t : "(Λ Γ ))

^L2(R+, rm~2ldr, L2Λi;c~(N)),

(3.68) (r1rί)
1/8(Oβ/W8)/±i/2Wr1)/±1/2Wr2Wrf^ : L2(/2+, dr)-^L\R\ dr).

Jo

Finally, we will prove the Rellΐch-type theorem which is the fundamental
material for constructing the Hodge theory in the next section.

The norm on dom ά% is defined by

(3.69) Il0ί[1
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THEOREM 3.8. Given 0<ε<oo, the restriction map

(3.70) dom Λ-^LMXCo.sOV))

is compact.

Proof. The proof is similar to that of [6] Theorem 3.4.
Given 0<r:gε, we have the inequality

(3.71) Γ(v

where K=K(ε)>0 is independent of v.
Take a form Θ^L2Λι(C(N)) with supp#c[0, ε]X./V and expand it to the

convergent sum (2.6). Then, for v> — l, we have the following inequalities.

(3.72),

(3.73)v | i W r - « ( * - V ^ - υ J I ^ ^ ^ ^

Moreover, let \{Gj(r), Fj(r))} 3 be the image of the second sum of the r.h.s. of
(2.6) with respect to the map (3.45). Then, for v>0, we have the following
inequalities.

(3.74),

In Case A, consider the inequalities (3.72)v&(i))j, (3.73)vCcu-i),ι-2)J and (3.74)v(^( ί_1)) i.
InCaseB(7(«), consider (3.72),{V{k))j, (3.72Uir(k)±)J9 &.72)v{e~β{k»J9 (3.73)y(g(*.1,f*-B)/

and (3.74),(c7u_υ)j.. In Case C(7(^)), consider (3.72)V(C~(^+1))J., (3.73)-V(V(k),k-i)j,
(3.73)viVa)^.k-DJf G>.73)vcea),k-i)3 and (3.74)v(^α)) j.. Then, in any cases if & is
contained in the unit ball in L2Λι(C(N)) and consists of forms supported on
[0, ε]XiV, then, for any fixed positive a, the map

(3.75) Mv : L2Λ\C{N)) = L\R\ λdλ, /20/20/20/2)

defined by (3.27), (3.33) and (3.49) (in Cases B(V(k)) or C(V(k)\ Ω${k>\j or
ΩdrΛV(k),j should be replaced by Ωγ{k)

L,3 or ΩdrΛV(k),j, respectively; see Steps
VI, VII) carries & into a family of forms whose restrictions to (0, a) have range
lying in a totally bounded subset of /2Θ/2Θ/2Θ/2.

Hence the proof can be completed by the argument similar to that of [6]
Theorem 3.4.
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§ 4. Hodge theory for X with X compact.

Let us return to our I m + 1 = C 0 ) U ( i V m ) υ I t t and construct the Hodge theory
for X.

To avoid awkward repetitions of similar expressions, let's adopt the follow-
ing notations and definitions.

First classify Case A into

Case A-r. άimN=2k, J(k

bc(N)Φ {0} and t=k-l,
Case Ao : otherwise.

Moreover, denote Case A-x with VaMk

bc{N) specified simply by Case A-X{V).
Next we set

ί A\C{X) in Case A,
(4.1) JL\X) = \

{ Alc.v(X); in Cases B(F), C(F),

and denote the closures of D%, Df by Dlf Df respectively. Then

dbe.i in Case A,

dbc v i in Case B(F),
(4.3)

( δbc i in Cases Ao or C(V),
D*=\ '

[ δbc>v>τ in Case B(F),

but the operators Dx of Case C(V) and Df of Case A_i(F) haven't appeared
until now. However, we have

(4.4) Dι=dbc,ι; in Case C(F),

(4.5) Df=δbc>ι; in Case A-^V).

In fact, (4.4) is an immediate consequence of the facts that the ideal boundary
condition on Θ<Ξ.Λ\^V{X) is concerned only with θdrAV+Θdr/\vL and moreover
diΰcirΛv+ΰdr/w1)—®' (4.5) is also similarly derived. Therefore, in any cases,
Df is the Hubert space adjoint of Dz, and our Laplacian Δ% can be written as
follows:

(4.6) 2τ=DfDi+Dι-1Dt1 : L2A\X)^L2Aι{X).

Further, if we set

(4.7) Άι(X)={θtΞL2Aι(X)\dθ=δθ=0 as distributions.},

Ml

bc(X)=J{l(X)ndom dbc>indom hc,%-i \ in Case A,

(4.8) c,ife-.1 in Case B(V),

<MlΐMX)=Mk+1(X)fΛάom dbCι ̂ +1Πdom 8bc,v, k in Case C(F),
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then (4.8) equals to

(4.9) Wι(X)^Ά>(X)r\dom DiίΛάom D*-,

in respective cases.
From now on, we will use mainly the notations Jl\X), Dlf Df, %C\X) and

return to use Λ\C{X), dbc,u etc. when occasion demands.
General properties of Δ% and objects around it can be derived by the method

similar to [7]. Hence we omit explaining such general ones and we concentrate
ourselves on constructing the Hodge theory when X is compact.

In the following, the metric completion X of our X is assumed to be compact.

LEMMA 4.1. Given λ>0, the operator

(4.10) (Ji-^λ)-1 IJΛι(Xy>L2Λι(X)

is compact.

Proof. (Ji--/)"1 : UΆ\X)~>dom J t is a continuous operator. Hence, by
Theorem 3.8 and the well-known Rellich theorem for Xu> (4.10) is compact.

Thus, given x>0, (4.10) is a compact self-ad joint operator. Therefore, by
the general theory of Riesz-Schauder, we get

PROPOSITION 4.2. The spectrum of Jτ consists of eigenvalues of finite multi-
plicity.

Moreover we have

(4.11) 2ΓCX)={0€Ξdom j t 1^0=0},

and, by the general theory of Fredholm, for a given f^L2Λι{X), there exists
#edom 2t satisfying Δtθ—f if and only if / is orthogonal to df£l{X). Hence, if
we define Hz : L2Λ\X)-^%€\X) to be the orthogonal projection, then, for a given
β^L2Λι(X), there exists a unique element θ1edom2ι which satisfies J i 0 x =
Θ — Hιθ and Hiθ^O, by which the Green's operator Gι is defined to be Gtθ — Θ^

THEOREM 4.3 (Hodge decomposition). There exists the unique pair of contin-
uous operators

(4.12) Hlf G, LzAι{X)-*άomΔ%

such that JιHί^HiGι~-0 and, for any Θ^L2Λι(X)}

(4.13) θ=Hiθ^rDΐDiGiΘ^Dι-1D*-1Gιθ.

The uniqueness can be easily verified.
Next we will study the harmonic space ffl^X). Then 2-th L2-cohomology

group of X is defined by
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(4.14) H\2)(X)-=Ker Dt/

411

If necessary to indicate the boundary condition or the ideal one, we will use the
notations H\2hbc(X), H\2hbc>v(X) instead of (4.14).

LEMMA 4.4. The natural map α>^[α>] induces the 'isomorphism

(4.15) <* : WKX) = H[t){X) •

Proof. We have the Hodge decomposition

(4.16) L2Λt(X)=Hi(X)QRange D* ^Range Dt., .

And we have

(4.17) Ker ^ - ^ ' ( A O S R a n g e Dt-{.

Thus the proof is complete.

THEOREM 4.5. Set dXu=dXΓ\dXu, XU^CO u(N)ndXu.

(1)

(4.18)

(4.19)

Hι(Xu) i*

Hι(Xu, Xa) /:

H\Xu,dXu) , ι<
m+1

2"

(2) In Case where m—2k + \,

i*(Hk{Xu, Xu))c:Hk(Xu); ;=,* = p^IJ-1-

H"+1(XU, Xu) ι = k + l,

i*{H*{X«, Na))(ZH*(XH, o%); t = k,

(4.20)

(4.21) H\2),rel(X)

(3) In Case where m=2k, if ^ c (Λ')={0}, then

(4.22) H\»tbc{X)=H\»l1)c,{»(X); ι--=k, k~rh

and, in general, given V(ZJ(k

bc{N), we have

' {j*y\v")(zHk(Xu) *=*=[—f-1

(4.23) i/{2 ),α 6,, r(^)s L 2

. Hk+\XU, NuJ/ό^V1) *--=--& + !.
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(4.24) HU,rcl,v(X) = \
Hk+\XU>

In each case, the isomorphism is given as follows:
Given [ω], that is, an element of the right hand side of each expression,

let's extend ω\Nu to ώ, a form on COιU(N), and denote the form thus defined on
X by Ω, that is, Ω—ώ on CO,U(N) and Ω—ω on Xu. Then [ β ] is defined to be
the image of [ω] with respect to our isomorphism.

Besides, each right hand side of (4.20) and (4.23) is defined by the long
exact sequence

i* j * δ*
(4.25) > H\XU, Nu) — > H\XU) —^ H\NU) — ^ Hk+1(Xu, Nu) — > -

and the orthogonal decomposition Hk(Nu)=V(BV1. Moreover, each right hand
side of (4.21) and (4.24) is defined by the long exact sequence

'4.26) > Hk(Xu, dXu) -L> Hk{Xu, dXu) ^ U Hk{Nu, 3NU)

δ*

and the orthogonal decomposition H\NU, dNu)=V®V1.

Proof of Theorem 4.5. Referring to [4], [16], etc., let's gather some prop-
erties of the ZAcohomology groups. Set C=COtU(N). Let's define the z-th relative
ZAcohomology group H\2)(X, C) to be the 2-th cohomology group of the cochain
complex

Then, we have the /Aversion of long exact sequence

(4.27) > H\»KC) — > H\2)(X, C) —> H\2)(X) —> H\2)(C)

— > H \ i X X , C ) — > - .

We remark that, when we define Hf2)(C), we leave the boundary condition on
Nu out of consideration.

Moreover, we have

H\2),abs{XfC)~HKXu,Nu)
(4.28) in Case A,

H\2hrel(X, C) = H\XU, dXu)

H\2),ahs,v{X,C) = H\Xv,Nu)
(4.29) in Cases B(V), C(V).

H\2),reiAX, Q=HKxn, dxu)

Since the ideal boundary condition has no effect on our relative ZAcohomology
groups, in view of (0.9) and (1.3), it suffices to prove
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(4.30) Ker dtΛX, o/R&nge dt-lt iX,c^HKXu, NJ ,

(4.31) Kerrfe.^^.c/Rangerfc^-Lcr.oS^*^, dXJ .

(4.30) can be shown similarly to [16] Lemma 3.14. As for (4.31), if we take a
manifold Xu with XuZDlnt XUZ)XU, then the left hand side of (4.31) is naturally
isomorphic to

Ker dt, au, χw-χw)/Range dι-1> {χu, χu-χu)

And this is naturally isomorphic to the right hand side of (4.31); see [16]
Lemma 3.14. Thus (4.28) and (4.29) have been proved.

Next, consider Hf2)(C). Precisely writing, H\2){C)—H\2)ιbc(C) in Case A and
H\2)(C)=H\2)ιbc,v(C) in Cases B(V), C(V). We have

(4.32) H\2)>bc(C) =

ίθί

We remark that we are taking account of Cases B({0}), C({0}), too, by the
identification

(4.33) m2)>bc>l0)(C)=H\2)>bc(C) in Cases B({0}\ C({0}).

(4.32) can be shown similarly to [4] Lemma 3.4. Moreover we have

(4.34)
H\2hrel(Nu) = H\Nu,dNu).

These can be shown by the arguments similar to the proofs of (4.30) and (4.31).
Moreover, in Case B({0}), by (4.32)—(4.34), we have gotten the isomorphism

(4.35) JtUN)^Hk

w.be.lQ){C),
ID ID

co i——> [ώ]

where ώ(r, x)=ω(x). Now, in Case B(V), through (4.35), we get the isomorphism

(4.36) V J - ^ H k

W t b e . v ( C ) = K e r dbc>v, k / R a n g e dbc>k^

H k

{ 2 ) > b c > m { Q = K z r dbc> ^ / R a n g e dbc, k-λ.

Besides, in Case C({0}), by (4.32) and (4.33), we know

(4.37) Ker dbc, *+ 1/Range dbc>{0}, k^ {0}.

In Case C(V), we can show

Ker dbc, έ + 1 /Range dbc, Vι k={0}, that is,
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(4.38) H^AQ-iO}.

In fact, if we decompose cveKer dbC; k+1 into

a — φ+drΛω,

then a^d\ ω with \ ωedom dbc k; see (3.12) and Lemma 3.2 of [4]. Moreover,
Jo Jo

S r
ωedom dbc M\ C.V) *. Thus (4.38) was proved.

0 ' OC

We can now prove the theorem by applying the five lemma repeatedly to
the diagrams which are made by arranging (4.25), (4.26) and (4.27) suitably.
Here we will give only the diagram corresponding to "bc"="abs".

The subscripts "abs" and "V" are removed in the following.

In the case where ^ p - ί 1 " ! bY (4 28), (4.32) and (4.34), we have the fol-

lowing commutative diagram.

••• -> H^KNu) -> H\XU, N u ) -> H\XU) -> H \ N a ) -> HU\XU, N u ) -+ •••

(4.39) !? ί \}l \ I
si y si >i

HU(X, Q -> HU(X) -> HUQ --> H[il{X, C)

In the case where ?> ,J •- -f-1, or in the case where nv-=2k — 1 and r—έ + 1,
L Z J

by (4.28), (4.32) and (4.38), we have the following commutative diagram.

~ -> H^N^HKX*, Nu) -> H\XU) -+ H\NU) ->Hί+\Xu, Nu)-> •••

(4.40)

••• -> i / ^ / C C ) -> J / k , ( * , C) -> 7/{2 )(j?) -> H\2)(C) -+ H\»HX, C) ->--
II II

{0} {0}

In the case where m=2k — l, by (4.28), (4.32) and (4.34), we have the fol-
lowing commutative diagram.

(4.4D

Nu)-> H\XU, Nu) -+ H"(XU) -> H"(Na) ->H*+\XU, Nu)-> -

i!? I?
SI Ni

\C) --> i/?a)(X, C) ~->HU{X)^H\2){C) -> / / ^ ( j ? , C) - + - . .

Finally, in the case where m^2^, by (4.29), (4.36) and (4.38), we have the
following commutative diagram.
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II
(4.42) ||? VφV^

lit i
{0}

Finishing our study of the harmonic space, we next aim to study the heat
kernel and the objects around it in the following sections.

In the following, our X is always assumed to have the compact metric
completion X. Moreover, let's denote the sequence of eigenvalues of Δ% by

(4.43)

and denote the orthonormal basis of L2Λι(X) consisting of eigenforms correspond-
ing to (4.43) by

(4.44) φit0, φiΛ, φi>2,

If n e c e s s a r y , t h e s u b s c r i p t s "be", "V" a r e a d d e d , f o r e x a m p l e s , { Δ b C j l t λ b c > ί > J >

φbCίz,j} in Case A, or {2bCtVιt, λbc,v,t.j, ψbcv.t.j) in Cases B(V), C{V).

§ 5. Heat kernel.

The main purpose of this section is to investigate the asymptotic behavior
of the trace of the heat kernel on Xm+1=CO,U(N)\JXU

(5.1) 3

To do so, it is best to reconstruct the heat kernel on X according to the
method of E.E. Levi from the one on C(N) and the one on a complement of a
neighborhood of the singular point; the last two heat kernels are accessible
to us.

We need the detailed description of the reconstruction as follows.
Let Ec(f, xly x2 ϊ) be the heat kernel for /-forms on C(N), which has the

formal expression ke-*t(χu χ2 /) according to § 3 here we impose on Ec( /) the
boundary condition and (in certain cases) the ideal boundary condition which are
consistent with those of (5.1). Next, let ε '>0 be sufficiently small and (X*,, N*>)
be the copy of (Xε>, Nt>), where Ne'=C0,s>(N)ΓΛX8>. Then M is defined to be the
attaching space X£>\JjX*>, where / is the natural identification map NC>=N%
M is endowed with the Riemannian metric which coincides with the given
metric on Xε>. Let EM(t, xlf x2;i) be the heat kernel for /-forms on M which
is thus a compact Riemannian manifold possibly with smooth boundary here we
impose on EM{ i) the boundary condition which is consistent with that of (5.1).

Fix ε>0 such that 0<ε'<ε<6ε<u.
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Let {Φc(x)y ΦM(X)\ be a partition of unity on X such that both elements
depend only on r when x=(r, X)ΪΞCOIU(N), supp ΦcC.C0t4ε(N), supp ΦMcXZεy Φc—^
on C0>Sε(N) and ΦM~l on Xiε. Moreover, let Ψc{x), ΨM(X) be smooth functions
on X such that both functions depend only on r when x=(r, ί)eCOi! i(iV), supp?^
cC0iββ(ΛO, supp^jfCX., ^ c = l on C0,5ε(N) and ^ = 1 on X2ε.

Now set

(5.2) E(t, xu x2 i)=Ψc{xi)Ec(t, xu x2 i)Φc(x2)

+ΨM(xi)EM(t, xi, x2 i)0M(x*) •

As usual we look for a double form F(t, xlf x2', i) such that the double form

(5.3) E(t, x l t x 2 ; i) = E(t, x l t x 2 ; i)

d t λ E ( t — t l f x l f xs;i)Λ*χBF(tu x 3 y x 2 ; i )
0 J X

satisfies

(5.4)

(5.5)

E(+0, xu

t, xu xt',i)=Q.

We will search for F(t, xlf x2 /) with the following two properties (I), (Π).

( I ) F(t, λΊ, x2 i) is a smooth double-z'-form on [0, o o ) χ l χ l which has
support on [0, oo)χ(Cε)2ε(ΛOUC5ε>6ε(ΛO)xX and, for fixed t and x2, belongs
to dom Δτ with respect to xlm

(Π) Let ε / r <l be sufficiently near 1 and ψ{x) be a smooth function on X
such that p(*)>0, ^(r, jc)=r~ ( m + ε ' ) / 2 on C0>ε/2(Λ^) and ^(x)=l on X£ see
(5.43). Then there exist # > ( ) and <5>0 such that, for n=0 or 1,

(5.6) I Jn*iF(f, ^ , x2 /) I ^ % f e > - δ / ί .

Here, | -1 Is the pointwise norm at (xlf x2) defined by (0.3).
First of all, we will show that, if F has the properties (I), (Π), then

E(t, xu x2;i) satisfies (5.4) and, for any Θ^L2Λ\X) and ί>0, E(t)θ belongs to
dom 21.

Since, from (5.6), we have

\ \
Jc0fe/2(ΛΓ)

tu xz, x2',i)Λ*X2θ(x2)

\F(tu xs, x2;i)\2*X

)

F(tlf xs, x2',ϊ) *«,1

=K vo\(N)
1—ε"

-»ι
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the form \ F(tlt xz, x2; i)Λ*X2θ(x2) exists. Moreover, by estimating

Άxλ F(tlf x3, x2 i)Λ*χ2θ(x2) similarly, we know that the above form belongs to

C°([0, oo), dom J J. On the other hand, Ec and EM define

(5.7) Ec : dom 2i->C°([0, oo), dom Δ%) on C{N),

(5.8) EM : dom Jt->C°([0, oo), dom Λ) on M.

We examine only (5.7). By using the operator (3.75), we have

(5.9) (Ecθ)(t, (r, x)) = MzKe-tλ%JCv{θ))<r, x).

Hence, if #edom Δ% on C(ΛΓ), we have, for arbitrarily fixed α>0,

\\{I+Δ){Ec{t)θ-Ec{s)θ)\\c,m

This implies (5.7). Since (5.7) and (5.8) induce

(5.10) E : domJ^C°([0, oo), dom J J on X

w e k n o w t h a t , f o r a n y θ ( = L 2 Λ ι ( X ) , \ E(t, x l f x 3 ; i ) Λ * x Λ F ( t 1 } x z , x 2 ; i ) Λ * X 9 θ ( x 2 )

is a domϊΐ-valued continuous function of (t, ίi)e[0, oo)χ[0, oo), and, moreover,

I dtλ E(t—th xu x3; i)Λ*χΛ F(ίlt xZf x2 i)/\*x2θ{x2) belongs to dom Δx and con-

Jo J J J x

verges to 0 when 110. Moreover, by the argument similar to the proof of
(5.10), we have

(5.11) E : L2Λι(X)->C°(R+, dom Jz)nC°([0, oo), L~Λι(X)),

(5.12) E(+0, xlf x2',i)=I.

Then the desired results are immediate consequences of (5.11), (5.12) and the
facts mentioned above.

Now, for constructing such a form F, we need some preparations. EM is
well known ([17] §5), but all we know about Ec now is that it can be written
as a formal sum according to § 3. Hence we need to investigate Ec more closely.

Let Ec(t, Xι, x2 cc(i)), etc. be ke-u(χlf χ2 cc{ϊ))> etc. which are defined by
(3.3)—(3.7). Moreover, define Z(t, xlt x2; cc(i)), etc. by the following formulas.

(5.13) Ec(
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(5.14) E(Λ \dce{ι)-rdrf\ce(i))

^[r1r z)a{i)e-{r^r^luZ{ dc~e(i)+drΛce(i))

= ;r 1 r 2 ) ' ι ( < ) e- ( r i- r ί ) 2 / 4 ί {^( ', dc~e(i), dceii))

- Z ( dceii), dr/\ce{i))+Z{ drΛc~e(i), dce(ί))

—Z( drAceij), drΛce(i))}

(5.15) £V( ,drΛc(i)) = (r1r2)
aa)e-(r>-r*)2<luZ{ drAc(ί))

(5.16) £?( W^tnr^^^-^-^^'ZI F(/))

(5.17) £c ' , ώv\ y(ί))=(r 1 r 2 ) α ( ί ) β- ( r i - r 2 ) 2 / 4 ί Z=( rfrΛ V(i))

(5.18) £C'V , /)--=.(r1r2)
α(i-1)e-(ri-r2)2/4ίZ( /).

Besides, Z( jίV/'λ etc. are defined in the same way.

Set τ—t/(rii'2). Then, by Weber's second exponential integral ([14] III Page 200),

we get, for v> —1,

(5.19) Slc'^-J^h^JΛλ

Here, /υ is the modified Bessel function of order v.

Hence we have

(5.20) Z( ^ Γ / ) ) = ^ ~ β ~ 1 / 2 r Σ

(5.21) Z( rfα- 7), dceiO^
2τ

) " " β

r (^)) ; Λ ( "

(5.22) Z( dΓe'i'K d

, „ dr.

1 .,,..„ 1
(5.23) Z ( dr. ,cTri\ d c ^ i ) ) = e HJT^T^

2τ j 2v(ce(i))}
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1 *\ T ( ίM

(5.24) Z( drf\ce(ϊ), drAc~e(i))= ~-e-lltτ Σ

dr1 ,„ s^ dτo . s

Λ i / 2

(5.25) Z( dr/\c{i)) — -ϊς-e 1/2Γ Σ haa),ι-v.

Moreover, in Cases B(V(k)), C(V(k)), we have

(5.26) Z=(

(5.27) Z=(

1 2

etc. Besides, by [14] III Page 172,

(5.28) I±

By using these formulas, we aim to estimate the pomtwise norm of Ec(t /)
For a while we assume v>0.
Observing the integral representation of the modified Bessel function ([14]

III Page 186), we know

(5.29) ^ ~ 1 / 2 r

|2πτ

Moreover we know, for any
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(5.30)

( π / n \2n-l sin V 9

(ir) (e~(1'coss)/2τ)-^rrds

ί
/ 9 \27i-l

()ί°°/ 9 \
(~)

o \ as /

ί \ 0
(~Λ~) ( β " ( 1 " t

o \αs /
Actually, since [14. I, Page 9] yields

1 \*
) -d-COSβ)/2Γ

Σ(*

( )

(5.31) (4r)\e-«-'» *)= Σ ^ - " ^ Σ(*)
V OS / fe=o /? ! £=o \ / /

•(cosh s)'-^-^-V(-cosh s)\
\os /

we have

v 2 n - l( O \ 2 n - i
, , p _ n , , ^ - ( 1 - C O S S ) / 2 Γ ^

and (5.30) can be verified by induction.
Now, by the formula (5.30) and the inequality ([14] III Page 186),

(5 33)

we get the following lemma.
Set

(5.34) {£,},= Mα-(/)y, j

Mc(/-1), ι-2)}), HV(k))Jt -viVikY),, v{c-e(k))i\,



THE FUNDAMENTAL SOLUTIONS OF THE HEAT EQUATIONS 421

or, {-v(V(k\ k-l)Jy v(V(k)\ k-Dj, v(ce(k\ k-l)j\

the last two sets are taken into account when the cases under considerations are
Cases B(V(k)), C(V(k)).

LEMMA 5.1. For any p^N, there exist K>0 and n^Nsuch that, for given vJo,

(5.35) Σ -^e-^lJ-^a+^jy^Kiτ-'H^+τ-η

for TΪΞR+.

Proof. First we show (5.35) when vJo>O. We estimate the left hand side
of (5.35) in the cases where τ ^ l and r ^ l , respectively.

First, consider the case τ g l . Take K{>Q and n^Nwith Σ ^ (
ΐ

Then, from (5.30), the left hand side of (5.35) is dominated by

(5.36) K ^
o I \όs I

-(cosh s) /2z)

Second, consider the case
dominated by

^ l . From (5.33), the left hand side of (5.35) is

By applying the formula

as many times as we need, we know that the above is dominated by

KsKjc-W1 Σ e~z^K5KGKΊ( Σ Vj-n)τ~zJo~\
> >

Here neiVis so large that Σ ^ 7 n < ^ 8 Thus, as a result, the left hand side of

(5.35) is dominated by

(5.37)

Thus, by (5.36) and (5.37), the estimate (5.35) has been verified when £,0>0.
Next, consider the case (—1<) ^ 0 ^ 0 . It suffices to estimate the finite sum

(5.38) Σ —
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By the recurrence relation ([14] III Page 173), we have

(5.39) h

Hence, by applying the estimate (5.33) to the right hand side of (5.39), (5.38) is
dominated by K9{τ"zh'1+τ"z).

Thus the proof is complete.

Take — K £ o < 0 with v3>vύ for any v3\ see (5.34).

LEMMA 5.2. There exist K>0 and n^N such that

(5.40) \Ec(t, xu x2;i)\^K(r1r2y
i-m)/2+Hrh-1+t-^e~(r

for (ί, xlf X2)ΪΞR+XC(N)XC(N) with r / ^ 1 .

Proof. Observing (0.3), (2.18)—(2.24), and using the Sobolev lemma, there
exist Kί>0 and p<=N such that

, (r2,

~ ~ /\<*>ce(i-l),j(X2)\ ((r^x^, (,r2,x2))
^2

etc. Hence, by referring (5.13)—(5.27), the pointwise norm \Ec(t, Xi, Xz',t)\ can
be regarded as dominated by a finite sum of functions of the following type;

(5.14) ^ ( r ^ - ^ + u ' V ^ - ^ 2 ' " ^

Here, we are setting τ—t/(rίr2). The {£/}'s are (5.34). Moreover, by Lemma
5.1, for some K2>0 and neiV, (5.41) is dominated by

Thus the proof is complete.

Moreover, by the argument similar to the proof of Lemma 5.1, we know
that, for any /eJV, there exist K>0 and neiVsuch that
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(5.42) \(4r)Ec(t,Xllxt;i)

for (ί, xu X2)(ΞR+XC(N)XC(N) with rλr2^L
Besides, let us take ε">0 such that

(5.43) - l ~ 2 P 0 < ε / / < l .

(This number ε" is just the number ε" which was referred in the property (II).)
Moreover, let ψir) be a positive smooth function with ψ(r)—r-

(m+ε')/2 for r,

small. Then, for any εo>O and any P=P\-^—, dx , δx\ that is, any polynomial
3 \όr1 /

of ~—, dXl and δx , there exist K>0 and neJVsuch that

(5.44) \PEc(t, xi, X2 }t)\^Kφ(r2)(l+t-n)e-(r^r^2/ιt

for (f, xu x2)^R+xC£o>1(N)xC(N) with rxr2^l. Since our P does not involve
dX2, δX2 and we have cut off the neighborhood of the singular point with respect
to xlf (5.44) can be verified by the argument similar to the proof of (5.40).

Further, by the similar argument, we can easily show that, for any 0<ε 0 <εt

and any P—P\~^—, --—, dXj, δXj, ~-j of order ^/, there exist K—K(ε0, εh /)>0

and n=n(ε0, εly /)eiVsuch that

(5.45) \PEc(t, xu x2 i)\^K{U-Γn)e-'r^2lu

for (ί, Xl, x2)^R+xC$Oιεi(N)xCεo>Sl(N).
Hence Ec(t, xu Xz\i) is smooth on R+xC(N)xC{N). Moreover, as is easily

observed, it satisfies the boundary condition with respect to both xλ and x2. We
may remark that it has already been shown that, in the case where the ideal
boundary condition is concerned, Ec satisfies also the ideal one.

We will now construct F(t, xlf x2 i) which has the properties (I) and (Π),
and verify the remained condition (5.5).

Applying -^~J

rJXl to both sides of (5.3) and assuming that (5.5) is valid,

we get

(5.46) F(t, Xl, x 2 \ i ) = G(U x u x * \ ϊ )

— \ d t λ β{t—ilf x l f x i i)f\*χsF(lly x 3 , x 2 \ ϊ ) ,

Λvhere we set

(5.47) G(f, xu x* i)

Hence, formally, F(t, xly x2 /) is the solution of the integral equation (5.46), and,
as is well known, it can be written as the following sum, namely, the Levi's
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sum.

(5.48) F(t, χly χ2 z ) = Σ Fj(tf xu χ2 i)
j

F0(t, xu x2)i)—G(t, xlf x2;i)

( 5 . 4 9 ) ' l j Jo 1JX It 1> S t J?3 0 , 3 ,

fί f
Fj+i(t, x 1 } x 2 ' , ι ) — — \ dtΛ G(t—ΐu x l f X3',t)Λ*x*Fi(tu x s , x 2 \ ι )

Jo Jx 3 J

Therefore, for our purposes (involving the purpose of the verification of (5.5)),
it suffices to show that the Levi's sum (5.48) has the properties (I) and (Π).

Now let us apply -~-+ΔXl to the first and the second terms of the right

hand side of (5.2) and let Gc(t, xlf x2\ i) and GM(f, xlf x2; i) be the two terms
thus obtained. Moreover, according to the decomposition of Ec( i), let us de-
compose Gc( ί) into Gc( cc(i))+Gc( dce(i-l)+drΛc~e(i-l))+Gc( ', dr/\c(i))
(in Case A), etc. Then, by (2.7), we have

Gc{ cc{i))-=--{Ψ'i{r1)
Jr2Ψcir1)-^ ^(m-2i)rγίΨc(r1))Ec( cc{i))Φc(x2),

or i

Gc( dc~e{i-l)+drΛc~e(i-l))

(5.50) ° dri

Έc{ dce(i—l), dce(i—l)+drΛce(t — l))Φc(x2)

u r 1

•Ec{ )drAce(i-l), dce(i—l)+drΛce(i—ϊ))Φc(x2),

etc. Hence Gc(t, xu x2',i) has support on R+xCδε>6ε(N)xC0>iε(N). Similarly,
GM(t, xlf x2; i) has support on R+xCε>2ε(N)xX3ε.

Paying attention to the fact that the supports of Gc and GM are thus apart
from the diagonal set with respect to xx and x2, we can easily show by (5.45)

and the similar estimate for EM that, for any εo>O and any P—P[^—, -=—,
- \ar1 or 2

dXj, δXj, -g-j of order <Zl, there exist K=K(ε0, /)>0 and δ=δ(ε0, /)>0 such that

(5.51) \PG(t, xlt x2',i)\^Ke-δlt

for (ί, xlf x2)^R+xXεoxXεQ. Hence, we have the following inequalities on

\PF0(t, xlf x2',i

R+xXεoχXεo.
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\PFι(t, xi, X2;i)\^KK1

Here, we set

1 771+1

We may take ε>0 so small that K<1. In general, we have the inequality

~ V
(D.oZJ \rΓj\ty x1} X2 , ZJI^ΛΛ 7 —-e

for (ί, xlf x2)<ΞR+xXεoxXεo. Hence, any termwise derivatives of the infinite
series (5.48) converge absolutely on R+xXεQXXεQ and, moreover,

(5.53) \PF(t, xlf x2;i)\^Ke-δ/t,

for t, small.
By the above fact and the fact that F has a compact support with respect

to xlf we know that F has really the property (I). Moreover, by (5.44) and the
similar estimate for EM> we know that F has the property (Π).

Thus, our purpose of reconstructing the heat kernel has just been accom-
plished.

Now, by the uniqueness of the heat kernel ([10] Lemma 1), we have

Moreover, we have

(5.55) e'^Kxi, X2)—Ec(t, xu x2 i)+O(e~δ/t) on C2s,3S(N)xC2s,3S(N),

(5.56) e~aKxu X2)=EM(t, xi, x2;i)+O{e-δ/t) on C4ε,5e{N)xCi8,5s(N).

Here, O(e~δ/t), δ>0, is a term any derivatives of which decrease exponentially
when ί | 0 . For showing (5.55) and (5.56), it suffices to prove

(5.57) [dtS E(t-tlt xu Xs;i)Λ*XsF(tlf xs, x2 i)=O(e-δ/t)
Jo J X

on respective subspaces. We can assume that F(tu xs, x2', ϊ) has a support on
R+X(Cε>2ε-.εo(N)\jC5ε+εo,Gε(N))xX with εo>O, small. Therefore, about (5.57), the
integral over X is practically the integral over Cεi2ε-So(N)VjC5s+εQ>6ε(N). Hence
(5.57) can be verified by observing (5.53), (5.44) and the similar estimate for EM.

By (5.55), (5.56) and, again, by the uniqueness of the heat kernel, we can
get the following valuable lemma.

Before stating our lemma, let us make some remarks. To avoid complicating
the explanation, we may assume first that our X can be described as
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X=COtUτ.£ί(N)VJXu+εi with £i>0, sufficiently small. (In other words, we may
formally substitute u-\-ε1 for u.) Second, we have took a sequence ε ' < ε < 2 ε <
•"<6ε<uJrε1 and constructed the heat kernel E, but there is no necessity to
start our construction with specifying a sequence so definitely. More freely, we
can construct E from a sequence

(5.58) ε / < ^ 1 < ^ 2 < <^0<w,+ε1

with r^—ηx, sufficiently small.
Now take ε /<ε 0<w. Then we have

LEMMA 5.3. Keeping the distance between the two points xλ and x2 of Cε0tU(N)
sufficiently short, we have

(5.59) e-ι\xly x2)=Ec(t, xu x2 i)+O(e'S/t)

Proof. If we construct the heat kernel E from the sequence (5.58), then
(5.55) and (5.56) can be rewritten as follows;

[ c { , 1 , i ; ) { δ l t ) o n CV2,V3(N)xCV2>V3(N)
(5.60) e-uKxi,x*)={

{ Ex(t, x u x,',i)+O{e-δίt) o n C η i t η , ( N N )

Therefore, by changing (5.58) gradually, (5.59) can be verified.

We can now investigate the trace of (5.1).
First we have

(5.61) J c ^ T r j ^ f ^ β ( t - t λ , x, xΆ i)A*XjtF(tlf x3, * i)=O(e~δ/t),

(5.62) ^ Ύr^dt^Ed-ti, x, xΆ i)A*x,F(tlf xz, x ί)=O(<rδ/ί).

Here 0(e~d/t), δ>0, is a function of t any derivatives of which decrease expo-
nentially when tlO. The left hand sides of (5.61) and (5.62) are the integrals
of the pointwise traces over CQ>ε(N) and X6ε> respectively. These are easily
verified by (5.53) and (5.42) and the similar estimate for EM, and by the fact
that the integral over X is practically an integral over Cε+εQt2ε(N)\JCδε,6ε-εo(N)
with εo>O, small. We may remark that (5.6) and (5.40) guarantee the integrability
of the left hand side of (5.61).

LEMMA 5.4. Given ε'<ε^ε1<u,

(5.63) \ Tr e-tΊKx, x)^\ Tr Ec(t, x, x i)+O{e'dlt),

(5.64) \ r Tr e~fJKx, x) = [ r Tr EM(t, x, x i)+O(e'δ/t).
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Proof. The integrabilities of both sides of (5.63) are guaranteed by (5.40)
and (5.54). The lemma can be verified similarly to the proof of Lemma 5.3 by
using (5.61) and (5.62).

Hence, first, for investigating the asymptotic behavior of the left hand side

of (5.64) when 11 0, it suffices to investigate \ Tr Eκ(t, x, x i). And this is

well known ([11], [17] §5). That is, there exist the smooth double forms on M,
aj/2(x):=cij/2(x;i), j—0, 1, 2, ••• with aj!2(x)=0 if j is odd, and smooth forms on
dM, bj/2(x)=bjf2(x',i), i = 0 , 1, 2, •••, such that, if we set

(5.65) id%--=\ Tr aJ/3(x)+[^ Tr bJ/2(x), ; = 0 , 1, 2,

then we have

(5.66)

Besides, if we set, for r with ε^r^u,

(5.67) ϊfli/2=ϊ<Wr=[ Tr am(r, x)+[ Tr bj/2(r, x),

we have

( r \m-j

-) Wj i,

τn-jrlr

In the following, we will omit the subscript UΓ, i. e. we use the notations cvyλ,
raj/2, etc. instead of id%, idj/2f etc.

Now, we know from (5.65)—(5.69) that

(5.70)

a\7£+ί)/2

Jruάj/2u log--- , / ^ ^ l .
So

Let us explain (5.68) roughly. Let us define

f, : C(N)-»C(N)

to be the map (r, x)*-*(sr, x). Then, by (2.1) and (2.4), we have the formulas;

cfd—s~zdcf,
(5.71)

;**=:5m+1"2ι*r? on z-forms.

Therefore, by the uniqueness of the (pointwise) asymptotic expansion of the heat
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kernel, we have

(5.72) r*j,2=s-n+"raJJt,

if eo^r^u and εo^sr^u. Hence, by setting sr—u, we get (5.68).
B y t h e w a y , l e t T r ( r t r ) E M ( t i) b e t h e t r a c e o f E M ( t , (r, x), (r, x ) ; i ) w i t h

respect to the inner product (2.18) with s—r. Then we have

(5.73) Ύr(r>r)EM(t 0 ~ Σ rά3l2r
{M)l2+jl\ 11 0.

This expansion plays an important role in studying the asymptotic expansion of
(5.63).

Now, we will expand (5.63). To do so, it is necessary to collect the prop-
erties of Z( i). Let us begin with it.

Let Tr(r,r)Z(t;i) be the trace of Z(t, (r, x), (r, x)\i) with respect to the
inner product (2.18) with s—r. In particular, set ΎvNZ{t i)—Tr(ίΛ)Z(ΐ i). Then,
by Theorem 3.1 and (5.13)—(5.28), we have

LEMMA 5.5.

(1) In general,

(5.74) Tr ( r > r ) Z(ί; i)=rm~2ϊTrΛ-

(2) In Case A,

(5.75) TrNZ(t i)=^j-e~1/2t\Σ / , ( c 7 u ) ) , ( ^ ) + 2 Σ i:<c~e«-i

; ("n7j Γ"f" Σ^tc(i-l), l-2)

(3) In Case B(V{k)),

(5.76) TrNZ(t; / ) - ^ - ^ 1

+ Σ Λ (ce

(4) /w Case

+dim

-Σ/*(«
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By (5.18), (5.59), (5.73) and (5.74), we have

t
ι) = r Ύr(r>r)EM(t i

ί|0.

r ( T O + 1 ) / 8 + " 2 , 11 0

Therefore we have

(5.79) TτNZ(t;i)~:_Q

with

(5.80) 0Cji2~ιθCji2— J-2, «

We may remark that the a J / 2 's are independent of r. On the other hand, by
applying the method similar to the proof of (5.35) when τ ^ l to (5.75)—(5.77),
we can show that

(5.81) ΎτNZ(f i)~Ktv°, t T oo,

i) when 11 oowhere vo<O. The asymptotic orders of the derivatives of Tr
is, of course, lower than (5.81).

Now, we will return to the study of (5.63). By (5.18), we have

(5.82) f Tr Ec(t, x, x i)=[ r2t-<m+«Tr z(t, (r, x), (r, x) i)

= fβl

r2*-(m+i)Tr Z ( ί . i)drJί\-i TrNz(\ t)dr
Jo ' Jo \ r /

Hence, if we set

(5.83) Z ( ί ; z ) =

Tr i VZ(ί / ) - Σ aJ/2r
(m+1)/2+JJ2

0

then (5.82) equals to

(5.84) Σ
j = 0 J ί / ε

Z Jo

1 ff/ε?

- 'τ-'Ziτ
Z Jo

V

^t m +i_y
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+ {α(m+1)/a log ε^jζτ^Ziτ i)dτ)~ i j ^ V ^ τ i)dτ .

λVe note that τ~λZ{τ\ ϊ) is integrable over R" because of (5.79), (5.81) and (5.83).
Moreover, observing (5.79), we have

(5.85)
1 ft/c?

- — τ-
2 Jo

when ί i 0. Thus we get the asymptotic expansion of (5.63).
Now we observe (5.66), (5.82), (5.84) and (5.85). In particular, by setting

ευ~ε1} we can get the asymptotic expansion of (5.1). That is, if we set

(5.86)
<(m+i)/2+^<m4i)/2M log M + y J t~xZ{t) i)dt \

(θ.θ7) ιA~ y U τ ά ( m + 1)/2— r , t f t ( m + l ) / 2 ?

which are, of course, independent of w, then we have

THEOREM 5.6.

(5.88) Σ e~tλt.j~ Σ tAjί2r
im+1)j^jl2-rιA log t, tl 0,

j=0 j=0

Besides, if we set

(5.90) ζ i ( s ) = Σ ^ΓΛ,

(5.91) ^ i « ) j ^

then, by an usual argument, we get

COROLLARY 5.7.

(1) The zeta function ζ^s) can be extended to a meromorphic function with
simple poles at points (m+l)/2—;/2 which are not negative integers. The residue
of the pole at the point (7n+ΐ)/2-j/2Φθ, is equal to Γ((mJ

Γl)/2-j/2)-1

ιAj/2. The
residue of the pole at the point (m+l)/2— j/2=0, that is, the origin, is equal to

•iA— o i&(m + i)/2»

(2)
Λ ^ ( / Λ + l ) / 2

(5-92) N ^ _ ^ , T o o



THE FUNDAMENTAL SOLUTIONS OF THE HEAT EQUATIONS 431

In particular,

(5-93)

Proof. Set bi=άim3ΐi(X) and

(5.94) Qa

Take N^n>-^^-. Then, if Re(s)>-^z z

(5.95) W5)

s " 7 / J '

where jw n(ί)=O(r ( m + 1 ) / 2 + r ι + 1 / 2), ί | 0. Here, -jγ^-Γίβ- 3Tr e-^ dί can be extended

1 Γε

to a holomorphic function on C and -τ̂ τ~r\ ts~ιμn(t)dt can be extended to a holo-

1 (s) Jo

morphic function on j s e C | R e ( s ) > — n ——\. Hence, by the usual argu-

ment, we get (1). (2) is due to the Tauberian theorem.

Our purpose was thus accomplished in such a way, but the meanings of the
coefficients of the right hand side of (5.88) still remain obscure. Of course, we
cannot expect them to be made perfectly clear. However, the constants (5.80)
can be made clearer through the independent study of ΎτNZ(t i), without using
the formula (5.78). (In the former arguments, we have got the asymptotic ex-
pansion (5.79) not by using the concrete expressions (5.75)—(5.77) but by estab-
lishing the relation between Ec and EM.) If it is possible, conversely through
the relation (5.80), we can get new informations on J5y/2, ιΛj/2, %A, etc. Therefore,
it will be worth while to explore the possibility of its independent study.

The next section is devoted to the exploration of such a possibility.

§ 6. Asymptotic behavior of Z{ i).

From Lemma 5.5, we know that

(6.1) TrNZ(t) dc~e(i-ϊ)+drΛc~e(i-l))

4τ
at
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(6.2) TrNZ{t dr/\e(j-l))=TτNZ(t adbc, ce(m+l-i)).

Now we make it the high aim to calculate the coefficients of the asymptotic
expansion of ΎτNZ(f i), or thus equivalently, of TrNZ(t cc{i)), as spectral
invariants of N. However, our aim in this section is lower. Actually we
restrict our attention only to the case where /=0.

Before stating our aim definitely, it may be better to make some preparations,
first.

We denote points of TV simply by x, y, etc., i.e. delete " ~ " .
Referring to Lemma 5.5, we can easily understand that

(6.3) ΎrNZ{t 0)=Ti>Z(f # ( 0 ) ) = ^ t r Z(t, x)*lx ,

(6.4) tr Z(t, x)=^e-llu Σ h^-^ω

\-m
where Vj — Vμj+a2, a—α(0) = — ^ — , μj=μ£(o),j a n d ωj=ω^(o)tj. Obviously,

trZ(ί, x) is just the pointwise trace of

(6.5) Z(0 = Z(ί, x, y)=-^e-im Σ hj{-^)ωj{

namely, that function of the operator v—^J+a2 on TV which is parametrized
by t.

By the way, it is relevant for us to rewrite (6.5) as follows; see (5.29).

(6.6) Z(0-^-ΣJi%- ( 1 - c o s s ) / 2 ί cos

- s i n

Zπt Uo
sds\ .

J

Let φ(s) be a smooth function on R satisfying that φ(s) = l near s=0 and φ(s)=0
for \s\, large, and let us decompose (6.6) as follows.

(6.7) Z(t)=-^— [y(s)e-(1-coss)/2t cos vsds

l-cosβ)/2ί c o s v s ds
o -jl (l
2πt Uo

- ( 1 + c o s h 5 ) / 2 ί e~vsds\ .
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Then, since we have, for ^ > 0 ,

(6.8) [π(l-φ(s))e-n-coss)/u cos VjS ds-sin i^7rίV ( 1 + c o s h s ) / 2 ί e~vJsds
JO JO

5°°/ d \2n-i

o \ dsί
the second term of the right hand side of (6.7) can be regarded as a smooth
function on N and, moreover, decreases exponentially when 110 because of the
existence of the cutting-off function φ. Hence, for investigating the asymptotic
expansion of (6.3) or (6.4), it suffices to set, in disregard of the second term of
(6.7),

(6.9) Z(t)=-^~[7tφ(s)e-(1-coss)/2t cosvs ds
2πt Jo r

^(s)έΓ ( 1- c o s s ) / 2 ί e~ιsvds , t^V^ί,

and study that asymptotic expansion of its pointwise trace at x which is equal
to the asymptotic expansion of (6.4).

We can now state that our aim in this section is to explain the general
algorithm which describes how to compute the coefficients of its pointwise
asymptotic expansion at x^lntN in terms of the informations which are derived
from the behavior of the wave kernel cos us, or equivalently, the wave-like
kernel e~ιsv, near the time s=0. More explicitly, since we have already known
from (5.79) that, if xelnt N, then the pointwise trace tτ Z(t, x) can be expanded
into

(6.10) tr Z(t, χ)~ Σ άj(x)t^m+1)/2+J, t i 0,

our aim is to explain how to compute the α/s in terms of the informations
about the phase function and the amplitude of e~ιsv.

Many of the results of this section can extend to the case where the objects
are forms. But the expressions will become more complicated. This is the main
reason why we restrict ourselves to the case where the objects are functions.
However, the reason for setting x^lntN is that, if x^dN, then there seems to
exist an essential difficulty : we will need more elaborate arguments in order to
surmount such a difficulty.
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The remainder of this section is divided into three subsections as follows:

6.1. Review of the wave-like kernel on N
6.2. Key lemma
6.3. Computation of ά3

Please pay attention that we will use DSy λ-Jy a-p affi, A-J} etc. which
resemble what were used in the former sections, in the senses which will be
specified in the following.

6.1 Review of the wave-like kernel on N.
To study (6.9), we need to acquire the informations about the local behavior

of the wave-like kernel e~ιs\yly y2) at (s, ylf y2)—(0, x, x). In this subsection, on
the basis of the Fourier integral operator theory, we will derive its property
when the time s is sufficiently close to 0 and ylf y2 belong to a sufficiently small
neighborhood of x^lntN.

Let (Rm, (xlp •••, λ'm)) be a local coordinate at x^lntA7. Our Laplace
(-Beltrami) operator has the following local expression on it.

(6.11)

= Σ g"3(x)DXhDX)+V~-ΪΈkh%χ)DXk.,

where g(x)--=det(ghJixj), DXh——,--^-- -x— and the ΓAJ(x)'s are the ChristoffeΓs

symbols. Hence the symbol of the differential operator Δ+a"- is as follows.

(6.12) σ(J-α!){.γ £)= Σ g*'(*)£»£, + V-~ί Σ Γh%x)ξk+a\
h, j h,j, k

The symbol of the positive square root v=^J+a2, that is, a pseudo-differ-
ential operator, also admits an asymptotic expansion

(6.13) σ(v)(x ξ)~ Σ λ-,(x ξ),

with λ-j homogeneous of degree —j with respect to ς. By an easy computation,
we have

/i(.v ξ)=ρ(χ f ) - V
(6.14) _ h'J

λo(x ς^V-l&λάx ξ))-1 Σ Γh%x)ξk.
h,j, k

In general, according to [18] Page 298, we obtain

(6.15) /?- ; = (Λ(Λ ; D)+λo(x)D)+ ••• +λ.j(x; D))-(J+a

with λ.J(x;ξ) = — (2λ1(λ"tξ))-1σP(R1-j). Here σP{R^3) is the principal symbol of
/?!__,. Hence we have
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(6.16) σF(R-j)=λoλ-j+λ-1λ-j+1+ ••• - M - Λ ,

which combined with (6.14) implies

LEMMA 6.1. λ-j(x;ξ) is real, resp., imaginary if j is even, resp., odd.

Now, setting λ-j(y; η)—Q for \x—y\, large, we will regard v as a pseudo-
differential operator on Rm and investigate the structure of the fundamental
solution e~ιsv of the initial-value problem of the first order hyperbolic equation;

(
(6.17)

According to Hormander [13] or Duistermaat and Guillemin [8] (our nota-
tions imitate mainly those of [8]), e~ιsv is a Fourier integral operator of class
/~1/4 with wave front set on the Lagrangian submanifold

(6.18) A={((s;σ), (y η), (x;ξ))€=T*(RxNxN)\lO} j

σ+ρ(y 7)=0, (y η)=Φ'(χ -ς)},

where Φs denotes the Hp-fίow in T*N\ {0}, namely, the Hamiltonian flow defined
by the principal symbol p(x ξ) of v. We can find a phase function for Λ near
the set {(0, x, (x ξ))} defined by

(6.19) ^(s, y, (x £))=<£, expΛy)>sp(x ξ),

where expx : TXN->N is the exponential map associated with the Riemannian
metric ([12] Page 375). More generally, if we set, included a degree of freedom,

(6.20) φ{y, (*;£))=<

which is homogeneous of degree 1 in ξ, then

(6.21) ψ(s, y, (x ξ))=φ(y, (x ξ))-sp(x ξ)

also defines a local phase function for A.
Now e~ιsv can be written m the form, when \s\ is small,

(6.22) e - t . v = ^ _ J ^ ( . . y . u ; f , ) f l ( S j yf (X;ζ))dς

-a-j(s, y, (x; ω))rm~1"'ύfr dω,

where r^p(x ξ), a=Σ%jCi-j^S\RxNx(T*N\{0})) with a-3 homogeneous of

degree —/ in ζ. Here " = " means "equivalent to each other modulo C°°-operators"
and the X/s are defined as follows. Let X(r) be a smooth even function on R
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which satisfies X(r)=0 for r e [ 0 , 1] and Z(r)=l for r e [2, oo). Let {AT,} be a
sequence which goes to infinity very fast when j | oo. Then we set

(6.23) ^ ( ^

Since our object, the ά/s, are influenced by C^-operators, a subtle argument will
be needed for managing their influences. The above explanation how to construct
the Z/s is a preparation for the argument.

We will collect the informations about the α_/s from the eikonal equation
and the transport equations. By applying D8+vy formally to the right hand side
of (6.22), we get

(6.24) _ i _ J ^ ( . . y . ( * ; f t ) c ( s > yf (χ;ξ))dξ,

where

(6.25) c(s, y, (

(6.26) b=e-ιόv(y, Dy)(ae1*)

^ s , y', (x

(6.27) Λ(v, / , (x;ξ))=φ(yf, (x;ξ))-φ(y, (x; ξ))-{y-y') Vxφ{y, (*;£)).

Here dη=-^— and Vyφ — {-^- , •••, -^—\ (6.25) admits an asymptotic expan-

sion

(6.28) c(s, yy (x f ))~ Σ c-j{s, y, (x ζ))

with c-j homogeneous of degree —j in ξ. By setting cλ=0f we get the eikonal
equation

(6.29) P(y;Vyφ)=P(χ;ξ),

which determines φ. Moreover, by setting co=O, we get the first transport
equation

(6.30)

where

(6.31) Γ-Σ-5

2 j.k dTjjdrjk tiyβ

In general, by setting c~j=0, j—l, 2, •••, we get the transport equations
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(6.32), (-d-+γy_J+d_J=0, y=l,2,-,

where d-1 is expressible in terms of φ, a0, tf-i, •••, ax-3. The initial condition

concerning a0 is determined by

(6.33) flo(0, x, (x;ω))=l.

In general, we set

(6.34), α_,(0, y, (x; ω))=0, ; = 1, 2, ••• .

A function / on S*N will be called an even, resp., odd function if f(x; —ώ)
—f(x\ω), resp., f(x; —ω)——f(x;ω). Then, referring to the proof of [8] Prop-
osition 2.1, we know

( 9 \*
-̂ —J α_; (0, x, (* ω)) ts an even, resp., odd function on S*N

if k—j is even, resp., odd.

By considering Lemma 6.1, we have

LEMMA 6.3. a-3 is real, resp., pure imaginary if j is even, resp., odd.

Proof. Since the initial condition of a0 is real and the operator Y is a real
operator because of Lemma 6.1, a0 is real. Now, assume that the lemma is valid
if j<n. If we can show that d-n is real, resp. pure imaginary if n is even,
resp. odd, then the lemma for a-n which is the solution of (6.32)n with the
initial condition (6.34)n is obviously valid. Therefore, it suffices to prove that
the above assertion for d-n is valid. Observing (6.26) and (6.27), we know that
d-n is the sum of the following terms multiplied by real numbers:

\P.OΌ) . , α | Oη Λ-iOy^ a-j\_Oy' β J\y'=y>

where j<n, a=β+γ, — n + / + i + | α | ^ 0 and [dv

r?ά1*1^.=y is the sum of those
terms of [dy

r?eίh]\yι=y whose degrees in ξ equal to —n+ί+j+\a\. The degree
of d^a)λ-ιdy

β)a-j equals to —ί—j—\a\. Therefore, the assumption of the induc-
tion and Lemma 6.1 imply that (6.35) is real, resp. pure imaginary if

is real, resp. pure imaginary. Here we note that (6.36) is obtained from (6.35)
by replacing d<a)λ-h dv^a.3 and [3#V f t]ί#= 1, by iι+1, iJ+1 and t-*+ι+j+\«\f respec-
tively. This completes the proof.

Moreover, let ψ+(s, y, (x; £)) and a+(s, y, (x; f ) ) ~ Σ d-j be the phase function
3

and the amplitude of eιsv. Then, by the argument parallel to that of e~ιsv, we get

(6.37) ψ+(s, y, (x ξ))=φ(y, (x ξ))+sp(x ξ),
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(6.38) a±j(s)=a-j(-s),

where φ and a~j are those of e~ιsv. Therefore,

(6.39)

Thus (6.39) is a real operator. Hence, by setting y~x, we know that

cos rs{a-j(s, x, (x; ώ))+a-j(—s, x, (x; ώ)))

+i sin rs(a-j(s, x, (x; eo))—a~j(—s, x, (x ω)))

is a real function. Therefore, observing Lemma 6.3, we get, for \s\, sufficiently
small,

LEMMA 6.4. a-j(s, x, (x; ώ)) is an even, resp., odd function of s if j is even,
resp., odd.

6.2 Key lemma.
Let u, v be arbitrarily fixed non-negative integers and h(s) be a function on

R of class Ck+1 with compact support near s=0. Then our purpose of this sub-
section is to show that

admits an asymptotic expansion when 11 0.

ί
τr/2 Cπ Γ~

+ 1 , then the term \ obviously decreases
0 Jπ/2 Jπ/2

exponentially when 11 0. Hence, it suffices to study the asymptotic expansion of

Sτr/2 \ — COS S Cπ/2

. By the change of variables, z— — — — , the term I equals to
o It Jo

(6.41)

Let us set

(6.42)

and try to expand it when w 10.

The term arccos(l—2u;2)=2arccos|u;| is an analytic function on [0, ε) and
admits the Taylor expansion as follows.

(6.43) arccos(l-2u/2)-
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where ( 2 n - l ) ! ! = (2n-l)(2n-3) ••• 3-1 and (-1)! ! = 1. On the other hand, we
have the asymptotic expansion

(6.44) A(s)~ Σ rLsnj

Γ0{sk+1), s 10.
n=o n!

Since the first term of (6.43) is 2w, that is, not a constant term, we can get the
following asymptotic expansion by substituting (6.43) for s of (6.44).

/ι(arccos(l-2it'2))~ Σ Hkw
n+0(wk+1), w 10,

where

(6.45) #o=A(O), 7fn=-~ft ( n )(0)+ Σ^A ( n - 2 O (0)

with i/f, a constant number. By the way, we have

(6.47)

where (α)n=β(α+l) ••• (c+w—1) and (β)0~l. Hence, f{w) admits the following
asymptotic expansion.

(6.48) f(w)~ Σ F% Ό>wn+0(wk+1), wlO,

(6.49) /**•»>= Σ / ί p β? w , ίκ,« β>=ffo=Λ(0).

Thus we get

(6.50) f((tz)1/2)~ Σ F? r > z w / 2 P' / 2 +O((^) a + 1 ) / 2 ) , ί I 0.

Therefore, observing that

J l/2£ fl/2t / I/-!-™-LI \

o Jo \ I /

we can prove the following lemma by an easy induction.

KEY LEMMA 6.5.

(,51,

(u/2+v) I Q/f( k+
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In many cases, we use (6.51) by assuming &=oo, u=v=0 and h(O)—ha)(O)
= ... =h(n°~1)(0)=0 for some n0. On the above assumption, (6.51) can be expanded
as follows:

(6.52) Σ F(£'o)

Here (6.52) consists of the terms which involve the half-power of t, resp. the
terms which consist of the integer-powers of t if h(s) is an even, resp. odd
function.

6.3 Computation of άj.
Observing (6.4), (6.9) and (6.22), we get

trtr

Ίj{r)a-3{s, x} (x w^^^ds dr dω,

where a-j(s) is an either even or odd function and α_/s)=0 for \s\, large.
The purpose of this subsection is to calculate the ά/s with the help of the

formula (6.53). However, to my regret, all I can show on the basis of the
informations mentioned in Subsection 6.1 is the existence of the following
asymptotic expansion (6.55) with (6.56) and the way of the computations of its
coefficients. In this paper we will not give the full descriptions of the formulas
of the coefficients because of their complexities : if necessary, sum up those terms
of the various asymptotic expansions described in due course whose orders in t
equal to the one fixed arbitrarily.

(6.55) trZ(ί,

Σ & / 2 (x)r ( m + 1 ) / 2 + >' 8 ; m: odd,
j : odd

Σ ά ω r ( m + 1 ) W + Σ fj(x)t-(m+1)/2+J\ogt; m: even,
j=0 j=m/2+i

(6.56) άo(x) = (4π)- ( m + 1 ) / 2.

As a direct consequence of (6.10), we have

(6.57) βjί2(x)=rj(x)=0.

From our standpoint, this ought to be verified by the investigation of the wave-
like kernel, independently of (6.10). However, to do so, closer investigations
than those mentioned in Subsection 6.1 will be needed. Hence, we have omitted
the approach from such a standpoint.
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When we use the formula (6.54) for the study, we ought to pay attention
to the following fact.

If K(s) is a smooth function on R, then, from (6.52), we know that

(6.58) Γ e-α-cos*)/** φ(s)K(s)ds=\~e-(1-coss)/2t φ(s)(K($)+K(-s))ds
J -oo J 0

~ Σ F« 0 > r ( ^ ^ V ( n+1)/8, 110,

where the F^'0>fs are constant numbers, in particular, Fl°'0>=2K(0). Hence,
much care is necessary in replacing an operator for the one which is equivalent
to the former one modulo C°°-operators..

We will first investigate those terms of (6.54) with j^m—1.

(6.59) Γ Γ e-tsre-d-co33)/2t χJ(r)a-j(s)rm-1~Jds dr
JO J -oo

e-
ιsre-{1-coss)lu a-j(s)dsjdr

e-{1-coss)/u a-j(s)ds\dr

(6.60) = Γ s(Y)(s)(— 4-)ml\e~(1~coss)l2t a-j(s))ds .
J-oo \t OS '

Here Y(s) is the Heaviside function and £F(F) is its Fourier transform (in the
distribution sense), that is,

(6.61) ff(7)(s)=f(s)= Γ e-ιsrY(r)dr .
J -oo

Hence we have

(6.62) 2(Y)(s)=πδ(s)+—v.p.—,
i s

where δ(s) is the Dirac operator and v.p.— is a distribution defined by the
1 S

principal value of — at s=0 ([14] II Page 274). Therefore, (6.60) equals to

(6.63) (

+ "TV'P]°° "s~(τ" •^-) m " 1 "^" ( 1 " c o s ' ) / a ί f l -/

For studying the asymptotic expansion of (6.63), it suffices to differentiate
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e-u-coss)/2t a_^s) w ^ fae help of the formula (5.31) and to apply Key lemma
6.5 to it. However, (5.31) is not a handy kind of formula. The following will
be a little more convenient than (5.31) for our purpose.

LEMMA 6.6. Given

/ () \%n / s i n <?\2n-2i/cos <? \ ^

(6.64) (-pi (e-<i-co..)/«)=e-(i-co..,/« Σ flί|.>(™ί) ( c ^ i )
\OS' oikύί^n \ It / \ It J

(6.65)

where the coefficients have the following relations',

(6.66) αg?>=

Proof. The lemma can be verified by an easy induction.

LEMMA 6.7.

Proof. According to (6.66), the lemma can be verified easily by induction.
Here, we will compute ά^% which provides the starting point of our inductive
proof. From (6.63), we know

\2n / 1 \n

Hence, observing (5.31), a'i% equals to

( 5 \2
—-1
os)

Σ -ψ^j
\ ks n\ kpi+-+pk=2n Pi! ••• Pk !

Pj . even^O

1 n
Set Aι— Σ — . .- and rearrange the above so as to Σ flί^ Then,

Pi+-+pv=2n p i ! ••• pi ! o N ί= i
p? : even>0 (2w ) '

αn, that is, the coefficient of An, equals to (-l) n—~--=2 n(-l) n(2/2-l)! ! .

Moreover, ah Kn, equals to

Thus the proof of a^=(-l)n(2n-l)!! is complete.

By using Lemma 6.6, we can show that the first and the second terms of



THE FUNDAMENTAL SOLUTIONS OF THE HEAT EQUATIONS 443

(6.63), respectively, equal to

(6.68)

(6.69) ( ) Σ ( 9 .

γ
2ί / V 2t ) ~

where fli?(s)=(-g-yα_<?(s).

(6.68) is a polynomial of Γ1. Hence, it suffices to show that (6.69) admits an
asymptotic expansion. Set

(6.70)

s

These are smooth functions and satisfy

(6.71)

2
wa{qjn+1)(0) if n is even,

0 if n is odd,

n/2 V f 1 w

Σ -Vr-^r-(9 Jα i'+ S* )w i f n i s

0 if n is odd.

Referring to Key lemma 6.5, we set

F(i4<?))<

n

fί t > > ="F <

n " r> with h(s)=Λ<S}(sY\
(6.72)

F(J3ί?})g£ 1 ) > ="F <

7 l

l ί ' t ' > with h(s)=B<S}(s)n.

Then, since F(Λ<S})<^'v>=F(B<3^ v>=0 if n is odd, (6.69) admits the following
asymptotic expansion; see (6.45) and (6.49).

(6.73) ( 1 ) " " Σ Σ
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In order to complete our task of investigating the terms with jSm—l, we
have only to integrate (6.68) and (6.73) over S%N. Though it seems that the
resulting asymptotic expansions have imaginary parts, they are, of course, real.

( \ \m-i-j

—j αiQj(O) is real because of Lemma

6.3, and, if m is even, then I + aty(0)dω=0 for any / because of Lemma 6.2.

Moreover, as for (6.73), the first, resp. the second sums of (6.73) are the power
series of t with the coefficients which equal to certain finite sums of the

( \ \ m-j / 1 \ m~J

—j αi9+odd)(0)'s, resp. the {—) αi9+even)(0)'s multiplied by real numbers; if

ί / 1 \m~j

I — ) aίqj+odd)(0)dω a n d
( —) a%f&ven)(0)dω, equal to 0 because of Lemma 6.2, if m is even, then

S*χN\ I J

they are real because of Lemma 6.3. Besides, from the other view-point, these
argument verifies that, if m is oddf then our asymptotic expansion is put under
the control of (6.68) which consists of those terms whose orders in t are of integer-
powers, and, if m is even, then it is put under the control of (6.73) which consists
of those terms whose orders in t are of half-integer-powers.

Thus we get the following results.
The expression

(6.74) 7^Li97 Σ f [T e-^e-v-^Wa-j
(2π)m+ It m-lzjJS*χNjθ J-oo

admits the following asymptotic expansion:

(TO-Ό/2

(6.75) Σ &i , (x)Γ ( m + 1 ) / 2 + ; if m is odd,

(6.76) Σ « u W ί " ( m + 1 ) / 2 + ; if m is even.

Besides, we get, by an easy computation,

(6.77) άί>0(x) = (4π)-(m+1)/\

Actually, if m is odd, then, in view of (6.68), (6.33) and (6.67), we have

(6.78) ά1,oU)=(27r)-(-+1)2-Vα<

(-z\>)/2>(m-1)/2(-2)-(--1)/2vol(5*7V)

= (4ττ)-(m+1)/2,

and, if m is even, then, in view of (6.73), (6.33), (6.66) and (6.67) we have,
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(6.79) α 1 > o(x)=(2τr)- ( m + 1 ) 2- 1 (- l ) m / 2 Σ bίmriy ~ vol(S£/V)
osl^m/2-i ' JL

/ 1 \ m /9

Σ (m-3-2/)! ! bft-1*

v (-1)' /(m-2)/2\

/ 2)m/22m/2~1f

2

= (4ττ)-(m+1)/2,

where the last equality but one is due to [14] II Page 12. Or, more easily, since
άi,o(#) is a value which can be computed by an elementary algebraic method
(that is, ά1>0(x) does not depend on x or N), (6.77) can be regarded as a direct
consequence of the case where Nm=Sm, that is, C(JV)=jRm+1\{0}.

Next, before investigating those terms of (6.54) with j>m—1, we will deal
with the influence of C°°-operators see (6.58). Regarding the left hand side of
(6.53) as the trace of the right hand side of (6.9), we set

(6.80) ^ g-u-cos*)/2ί £ i ( s ? tf x)ds="the l.h.s. of (6.53)"

- " t h e r.h.s. of (6.53)",

(6.81) £V

Then k(s)=k1(s)+k2(s) is a smooth function and, moreover, can be regarded as
an even function. Hence, from (6.58), we have

Σ ej/2(x)r<m+1)/2+j/2 if m is odd,

(6.82) I e - ( 1 - c o s s ) / 2 ί ŷ (s, ί, x ) ί ί s~ ^ : o d d

Σ e / * ) r ( m + 1 ) / 2 + 7 if m is even.

We will now deal with those terms of (6.54) with j>m—l.

(6.83) Γ°Γ° e-ιsre~{1-coss)l2tli{r)a-j(s)rm-ι-:ιds dr

We will first rewrite (6.83) so that we can apply Key lemma 6.5 to it. (6.83) is
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a real function of t and, moreover, a-j(s) has the property mentioned at Lemma
6.3. Hence, it suffices to deal with

(6.84) Re [°°X(r)r-kf(r)dr
Jo

in the four cases, namely,

Case ( i ) : k is even and f(s)—g(s),
Case ( i i) : k is even and /(s)=*ft(s),
Case (iii): k is odd and f(s)—g(s),
Case (iv): k is odd and f(s)=ih(s),

where g(s) and h(s) are real functions. Actually, by setting X{r)—Xj(r), k—j — m-i-l
and /(s)=0- ( 1 " c o s * ) / 2 ί a-j(s), (6.83) can be classified into a certain one of the above
cases.

Now, (6.84) equals to

(6.85)

(6.85),

(6.85),

where

(6.86)

Re

ψds

= 1—X(r). Moreover, from [14, II Page 274], etc.,

if k is even,

) if k is odd,

(6.87) £F(|r|-*sgnr)(s) =

—-ιsk~1(2γΛ-2\og\s\) if k is even,

1 sgn s if k is odd,

where f is the Euler's constant. Applying (6.86) and (6.87) to (6.85), we get the
following results. Let's set

1_

In Case (i), (6.85) equals to

(6.88)

For the further rewriting of the second term of (6.88), the following formula is
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useful.

(6.89) (ί

p: odd

p: even

In Case (ii), (6.85X, that is, the first term of the right hand side of (6.85),
equals to

(6.90) - S w ί o s " 1 / / ( s M s + V k " I 5 * " ™ l o g s d s '
and, (6.85)2, that is, the second term of the right hand side of (6.85), equals to

(6.91) - - ^

1
(—-iγk+D/2

Here we have used the formula

(6.92)

-*+ Σ (-1
p+q=k-l

In Case (iii), similarly to Case (ii), (6.85) x and (β.85)2 equal to

(6.93) ψ^-rτ 1 sk~ίG(s)dsJι T^TTT I sk~1G(s)log s ds ,
1 (k) Jo 1 (k) Jo

(6.94) ^77τ \ sk~1G(s)ds
1 (k) Jo

-^γyj)— + Σ i(-l)q(κ

k~1)Γ(Dfφ^log\s\)s1)G(s)ds.

In Case (iv), similarly to Case ( i ) , (6.85) equals to

(6.95) - -(:

+ 2Γ(k)

Moreover, for the further rewriting of the second term of (6.95), the following
formula is useful.
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(6.96) (fKlsΓ"1:

Now let us set

(6.97)

(6.98)

and

(6.99)

A-j(s)=

ϋ + g £ l
p\ odd

+ Σ
p+q=k-l
p: even

if / is even,

— a-j(s)=-^(a-J(s)—a-j(s)) if / is odd,

Γ j—m+1 Ί .- . ,,
- — A if m is odd,

j-m+2 Ί
iif m is even.

Then, observing Lemmas 6.3, 6.4 and using the above results properly, we get

LEMMA 6.8.

(1) // m is odd, then (6.83) equals to

(6.100)
0—ra)!Jo

s'-mA-j(s)ds

2(j-m)\ P+Q=J-
q: odd

(2) // ?72 zs ez;gn, then (6.83) equals to

)Jo e~α~C0SS)/2ί(jD^*1°SIs I)spΛ-j(s)ds .

Let us assign the reference numbers (6.100)2, (6.100)2 and (6.100)8 to the first,
second and third terms (or sums) of (6.100), respectively. Similarly, (6.101)i and
(6.101)2 are defined to be the reference numbers of the first and second terms of
(6.101), respectively.
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Now, first, let's deal with the case where m is odd.
Since fj(s)=sJ~mA-j(s) is an odd function and /jn )(0)=0 for n^2nJy observing

(6.52) and the remark folllowing it, we know that (6.100)! admits the asymptotic
expansion

(6.102) π. '"J Σ FifjY^ri&nl tn+1.

Next, if we define

r ( « + 1 ) Γ D*φj(t)dt if q is even,

(6 .103) " • •

-2^D*φj(t)dt} if q is odd,

then (6.100)2+(6.100)s equals to

)\ £ ~ ( 1 ~ c o s s ) / 2 t βj-m+i f ( s) 4 s)ds
ϋ /Jo J'q * ~J

2 ( / - m ) ! P+a=j-

(-Dn' Σ
(j — m) I p+q=J-n

Moreover, since gj,q(s)=sJ~m+1fj>q(s)Λ-j(s) is an even function and gj?q(O)—O for
1, the first sum of (6.104) admits the asymptotic expansion

j DfyjWdtW e-
a-cosε)J~r spΛ-j<

/LJo JJo

(6.105) J;^^, Σ Σ (
Z(j—m)\ ρ+q=j-τn n = nj+l\ p

Before dealing with the second sum of (6.104), it will be best to summarize
the results already obtained. That is, the formal sum

(6.106) * — Σ \ K6.100)!+"the first sum of (6.1G4Γ}

admits an asymptotic expansion of the form

(6.107) Σ ά2j(χ)t-lm~iyi-*J+ Σ βi.j/2(x)t-'m-i: 2 ^ 2

j=(m+l)/2 ' j-τn+2
Jl odd

Now, let us deal with the second sum of (6.104;. Of course, it admits such
an asymptotic expansion as

(6.108), ΈFn,^
+1/2.

7i = l

However, at this stage, I cannot say which the lowest term in (6.108), is, that
is, which the first non-zero term is. Hence, in order to show that the formal
sum
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(6.109) /o-xi-io- Σ \ "the second sum of (6.104)"

admits an asymptotic expansion, we have to carefully investigate whether the
formal summation of the (6.108)/s over j>m—l has a sense or not.

The formal sum

(6.110) Σ "the second sum of (6.104)"
j V 771 - 1

equals to

(6.111) Γe- f f-c o s s ) / 27(s)fi?s,
Jo

where

J • y7=ί. /> I

(6.112)

j- m-p; odd

Moreover, if q is odd, then

(6.113) [D^jmdt^-^DVCj^dt^ t%-WJL,(t)dt
Jll JO J co

r'%{r)dr

Jo

= Γ(q)C\q)\lj-q,

and

! C{q) 1 ^2\ \-ql\r)dr^\l\r)dr=2 ,
Jo Jo

that is, C(q) is bounded independently of q see (6.23). Thus

Σ
j>m-p
j-m-p: odd

Here, it is obvious that, for given N^N, we can find such a sequence {Mj} that

^Λ-jis) and its tennwise derivatives of order ^ΞΛH-1 converge absolutely nearΣ
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5=0. Hence, if N^N is given and such a sequence {Mj} is fixed, then the above
is true for fp(s) and, moreover, true for /(s). Thus, f(s) which is defined through
such a sequence {Mj} is of class CN+1 and (6.111) admits an asymptotic expan-
sion of the form

(6.115) Σ Γ(n + l/2)F(f)%i0>tn¥1/* A-O(t(X"2] 2 ) .

Hence, given such a sequence {M3}, (6.109) admits an asymptotic expansion of
the form

(6.116) Σ β2,j/2(x)t"(m+1)/2+j/2jr0(t~x'2).
3: odd

By the way, {ej/2(x)}, {(3i j/2(^)| and this {β2.j/2(x)} are dependent upon the
choice of {M3} see (6.82), (6.107) and (6.116). The summations β3/2(x)=εj/2(x)
Jrβi,j/2(x)Jrβ2,ji2(x), however, are independent of its choice and produce the
second series which appears in the right hand side of (6.55).

Thus, in the case where m is odd, gathering the results (6.75), (6.77), (6.82),
(6.107) and (6.116), we can conclude that trZ(t, x) admits the asymptotic expan-
sion (6.55) with (6.56).

Next, we will deal with the case where m is even, that is, (6.101).
Let's decompose (β.lθl)i into

(6.177) Γ°Vα-coSS)m Sj-mΛ ^ l o g r l _ \ d s

Jo . S
\ Silly/

,-(l-coss)/2ί sJ~mA-j(s) log

About the first term, since log/ \ is smooth near 5 — 0 and f3(s)~

\ s i n4/
/ 5 \

sJ~mA-3(s)logl \ is an even function and /j/O(0)=0 for n<2n3, it admits an

asymptotic expansion of the form

(6.118) f

About the second term, setting g3{s) — s3'mA-j{s) and changing the variable
1—cos s .

z— w. , it equals to

(6.119) t
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By the argument similar to Subsection 6.2 (the Γ-ίunction should be replaced by
its derivative), the first term of (6.119) admits an asymptotic expansion of the

oo

form Σ ^ , ^ 7 ί X 1 2 Moreover the second term admits an asymptotic expansion
n=7ij

of the form Σ G!lιΊt
n+1/2logt. Hence, the formal sum

n — TLj

(6.120) o-N—ΐTΓ- Σ [ (6.101)!

admits an asymptotic expansion of the form

(6.121) Σ ά2j(x)r(m+1)ί2+J+ Σ fjMt'cm+1)/2τJlogt.
.7 = 7/1/2+1 ' J = 7Π/2+l

Next, let's deal with (6.101)2. Owing to the circumstances similar to those
of the second term of (6.104), it is no use expanding (6.101)2 one by one. Let's
decompose Σ (6.101)2 as follows. For a positive integer N,

j>m-l

(6.122) Σ (6.101)2=A! y(t, x) + h9 x(ί, x),
7>m-i*

Λττ-m-i c — ] ) n j + 1 / i—m

(6.123) Λ l i Λ./. Λ - Σ V ^ T ! Σ ( 1 ) β ( \
J = m Z{j—111) !

cc

- Σ

( 6 . 1 2 4 ) / z o N , Λ i • = Γ
Jo

(6.125) ;.vls--- Σ V ^ T i Σ (
7-xV+m π{j—m)\ p=o

~- V1

τr(/-m)!

Then, it is obvious that the first sum of the right hand side of (6.123)
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admits an asymptotic expansion Σ Fnt
n+lί2. As for the second sum of the right

71 = 1

hand side of (6.123), since fJtP(s)=(DJ

r~
m~pψj*log\s\)spA-j(s) is an even function

and /jni(0)=0 for n^j~rn~N+l, ίV' 1" 0 0 8 1 0 '"/, p(s)ds admits an asymptotic
Jo

expansion of the form

Σ
Hence, the second sum also admits an asymptotic expansion. Thus, we get

( 6 1 2 6 ) ^

In order to show that

admits an asymptotic expansion, some preparations are needed. If q^N, then

(6.128)

e-ιsr\r\-χφf{r)dr

e-ιsr\r\-%φ{r)dr

rrί(-l)«-Λrj°° (~)qN(e-ιsr\r\-1)X(

J

N)(r)dr

q-N (n—ΛΠ t

r Σ S * W g * - J-oo

= π ΣΣ S Γ T M Γ
k=o k!

where
/ ^ AT) f

Λ(s:ΛΓ, y, q, fe) = ( ~ l ) ^ + 1 + ί - ^ — T ^ 1

Hence, /^(s), that is, (6.125), equals to

oo oo j - N-m- p

(6.129) Σ Σ Σ sv+kMj-(>-n-P-k)h(s:N, j, j-m-p, k)A-j(s)
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where

(6.130)

Given

. v
p=o

••=£-

f

n<N,

IΛvM

<χ> j-N-m

ZJ ZJ
j = X + m + p l = p

(2sΫ_

v,(3)

we have

n / 71 \
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-sιM}-°-m-l)h(s:

\ h(s : N, j , j—i
M

N,j

n—p

j

N-m

Σ ! ^

N + m Oin^N

thatwhere C\v —\ | χ ( Λ Γ ) ( r ) | J r . Hence, we can choose such a sequence {M,-
J -oo

fN,ι(s) is of class C^"1. Moreover, /^(s) which is defined through such {Mj}
is also of class CN"\ Observing that fN(s) is an even function and /JV(0)=0,
we know that (6.127) admits an asymptotic expansion

(6.131) Σ
/ 2 + l ^ g (

By the way, {e3{x)}, {ά2>j(x)}, {άSιj(x)} and {άίtJ(x)} are dependent upon the
choice of {M3) see (6.82), (6.121), (6.126) and (6.131). The summations ά3(x)=
άi,j(x)+εj(x)+ά2,j(x)+ά3>j(x)+ά4>j(x), however, are independent of its choice and
produce the first series which appears in the right hand side of (6.55).

Thus, in the case where m is even, gathering the results (6.76), (6.77), (6.82),
(6.121), (6.126) and (6.131), we can conclude that tr Z(t, x) admits the asymptotic
expansion (6.55) with (6.56).
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