
D. JANSSENS AND L. VANHECKE
KODAI MATH. J.
4 (1981), 1—27

ALMOST CONTACT STRUCTURES AND

CURVATURE TENSORS

BY DIRK JANSSENS AND LIEVEN VANHECKE

Abstract

We determine an orthogonal decomposition of the vector space of some
curvature tensors on a co-Hermitian real vector space, in irreducible compo-
nents with respect to the natural induced representation of cU(n)xl. One
of the components is used to introduce a Bochner curvature tensor on a
class of almost co-Hermitian manifolds (or almost contact metric manifolds),
called C(ά)-manifolds, containing e.g. co-Kahlerian, Sasakian and Kenmotsu
manifolds. Other applications of the decomposition are given.

1. Introduction.

In his study on Betti numbers of Kahler manifolds, S. Bochner introduced a
tensor which had to take over in his theory the role of the Weyl tensor on
Riemannian manifolds. More precisely, a conformally flat manifold was considered
as an extension of a real space form. So, a Bochner flat Kahler manifold had to
be an extension in the same sense of a complex space form.

The Weyl tensor is well known as a conformal invariant of Riemannian
manifolds but the Bochner tensor on Kahler manifolds was defined in a completely
formal way. Several attempts were made to find a geometrical interpretation.

Besides Kahler manifolds and the more general almost Hermitian manifolds,
one has also studied classes of odd-dimensional manifolds with additional structures,
namely the almost co-Hermitian manifolds or almost contact metric manifolds in
particular Sasakian, co-Kahlerian and Kenmotsu manifolds.

A natural problem arises here: Is it possible to construct a " Bochner cur-
vature tensor" for these classes of manifolds ? A nice way to introduce this
tensor is to use decomposition theory of spaces of curvature tensors. Singer and
Thorpe obtained in this way the Weyl tensor [20] (see also [17]) and the Bochner
tensor was derived with the Hermitian version of this decomposition in [16], [21].
Proceeding in the same way, the second author defined a Bochner tensor for
v4i/3-manifolds (a class of almost Hermitian manifolds containing e. g. the nearly
Kahler manifolds) [24], [27]. The general case is given completely in [34].

In this paper we define with a decomposition theory a Bochner curvature
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tensor for a class of almost contact metric manifolds. The elements of this class
are called almost C(α)-manifolds and are introduced in section 2. They are defined
by a condition on the Riemann curvature tensor. Examples are Sasakian and
co-Kahlerian manifolds, and also the manifolds studied by Kenmotsu [12]. In
sections 3 and 4 we develop the algebraic theory of C-curvature tensors on
co-Hermitian vector spaces and prove the decomposition theorem. In section 5
we give a complete algebraic characterization of the orthogonal decomposition
by considering the naturally induced representation of ΊJ(n)xl in the space of
C-curvature tensors. The components of this decomposition are the irreducible
components of this representation. Geometrical applications are given in section
6 and in section 7 we derive some useful inequalities relating the norm of the
curvature tensor, the norm of the associated Ricci tensor and the scalar curvature.
Finally we study in section 8 the decomposition of proper generalized C(α)-cur-
vature tensor fields (i. e. C(α)-curvature tensor fields satisfying the second Bianchi
identity) on Sasakian manifolds. As for Riemannian and Kahler manifolds [17],
[16], the Codazzi equation for the Ricci tensor will play an important role.

We note that the Bochner tensor obtained in this paper for the class of
Sasakian manifolds is just the C-Bochner tensor introduced by Matsumoto and
Chΰman [15]. C(O)-curvature tensor fields on Sasakian manifolds are the S-cur-
vature like tensor fields introduced in [33].

2. Almost C(α)-manifolds.

Let M be a real (2n + l)-dimensional C°° manifold and 3£(M) the Lie algebra
of C°° vector fields on M. An almost co-complex structure on M is defined by a
C°° (1, l)-tensor field φ, a C°° vector field ξ and a C°° 1-form η on M such that
for any point . r ε M we have

where / denotes the identity transformation of the tangent space TXM at x.
Manifolds equipped with an almost cocomplex structure are called almost cocomplex
or almost contact manifolds. A Riemannian manifold M with metric tensor g and
with an almost cocomplex structure {φ, ξ, rj) such that

VZ, Y(ΞDC(M): g{φX, vY)=g(X, Y)-η{X)η{X)

is an almost co-Hermiίian or an almost contact metric manifold. The existence of
an almost cocomplex structure on M is equivalent with the existence of a reduc-
tion of the structural group to (i7(π)Xl, i.e. all the matrices of 0(2nJrl) of the
form

A B 0

-B A 0

0 0 1
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where A and B are real (n, n)-matrices.
The Sasaki form (or fundamental 2-form) Φ of an almost co-Hermitian

manifold (M, g, ψ, ξ, η) is defined by

Φ(X, Y)=g{X, ψY)

for all X, Y^3C(M) and this form satisfies ηΛΦnΦθ. This means that every
almost co-Hermitian manifold is orientable and that (77, Φ) defines an almost
cosymplectic structure on M. If this associated structure is cosymplectic (dΦ~
dη=^0), M is called an almost co-Kdhler manifold. When Φ—dτh the associated
almost cosymplectic structure is a contact structure and M is an almost Sasakian
manifold. It is known that conversely every contact manifold has an almost
Sasakian structure.

The Nijenhuis tensor of the (1, l)-tensor field ψ is the (1, 2)-tensor field
[_ω, φ~] defined by

lψ, ψ]{X, Y) = lφX, φYl~lX, Yl-φίX, φYl-φlφX, 7],

where [X, F ] is the Lie bracket of X, Y^2C(M). An almost cocomplex structure
is called integrable if [_φ, φ]—ΰ and normal if \jpy φ~]-i

Γ2dη0ξ—O. An integrable
almost cocomplex structure is a cocomplex structure. A co-Kdhler manifold (or
normal cosymplectic manifold) is an integrable (or equivalently, a normal) almost co-
Kahler manifold, while a Sasakian manifold is a normal almost Sasakian manifold.

For an extensive study of these manifolds we refer to [4], [6] and [19]
where many examples are given. On the other hand, Kenmotsu studied in [12]
another class of almost co-Hermitian manifolds, defined by the following conditions
on the associated almost cosymplectic structure:

(dΦxx, Y, Z)=JX®Z{

where (5 denotes the cyclic sum. We call such manifolds almost Kenmoίsu
manifolds. A normal almost Kenmotsu manifold is a Kenmotsu manifold. The
warped product RxfF (F being a Kahler manifold and f(t)—ceι, c^Rt) provides
an example [5], [12].

The classes of co-Kahler, Sasakian and Kenmotsu manifolds are precisely the
three classes which occur in a classification theorem of connected almost co-
Hermitian manifolds M2n+1 for which the automorphism group has maximal
dimension (n + 1)2 (see [22]).

The Riemannian connections 7 of Sasakian, co-Kahler and Kenmotsu manifolds
have some well known properties which allow us to characterize these manifolds.

THEOREM 2.1. Let (M, g, φ, ξ, η) be an almost co-Hermit tan manifold with
Riemannian connection 7. Then

( i ) M is co-Kdhlenan if and only if 7<z>=0;
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(ii) M is Sasakian if and only if

VZ, Y<=3C(M): {lxφ)Y=g{X, Y)ξ-V(Y)X;

(iii) M is a Kenmotsu manifold if and only if

VX, reaf(M): φzφ)Y=g(φX, Y)ξ—η(Y)φX.

Kenmotsu used (iii) for the definition of his class of manifolds [12]. Furthermore
we have

THEOREM 2.2. ξ is a Killing vector field for co-Kahler and Sasaki manifolds,
i. e.

VX, YΪΞX(M): g(Vxζ, Y)+g(X, Vy£)=0,

while for Kenmotsu manifolds we have

ξ, Y)-g(X,

Finally, the Riemann curvature tensor R on these manifolds satisfies some
interesting identities which will play an important role in the decomposition
theory.

THEOREM 2.3. Let R be the Riemann curvature tensor on M and X, Y, Z, W
G3C(M). We have

( i ) for M co-Kάhlenan :

R(X, Y, Z, W)=R(X, Y, ψZ, φW);

(ii) for M Sasakian:

R(X, Y} Z, W)=R(X, Y, ψZ, φW)-g{X, Z)g(Y, W)+g(X, W)g{Y, Z)

Λ-g{X, φZ)g(Y, φW)-g{X, φW)g{Y, φZ)

(iii) for a Kenmotsu manifold M:

R(X, Y, Z, W)=R(X, Y, ΨZ, ΨW)+g(X, Z)g(Y, W)-g{X, W)g(Y, Z)

-g(X, φZ)g(Y, ΨW)+g(X, ψW)g(Y, ψZ).

With this theorem in mind we give

DEFINITION 2.4. An almost C(a)-manιfold M is an almost co-Hermitian
manifold such that the Riemann curvature tensor satisfies the following property :

3a e β such that for all X, Y, Z, W

R(X, Y, Z, W) = R{X, Y, φZ, φW)+a{-g(X, Z)g(Y, W)+g(X, W)g(Y, Z)

+g{X, ΨZ)g{Y, ΨW)-g{X, φW)g{Y, φZ)}.
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A normal almost C(a)-manifold is a C(a)-manifold.

Co-Kahlerian, Sasakian and Kenmotsu manifolds are respectively C(0)-, C(l)-
and C(—l)-manifolds. We give now some examples for other values of a.

DEFINITION 2.5. An almost a-Sasakian manifold M is an almost co-Hermitian

manifold such that Φ=—drj, a^R0. M is an a-Sasakian manifold if the struc-

ture is normal.

Just as for Sasakian manifolds [4] one can prove

THEOREM 2.6.

( i ) An almost co-Hermitian manifold M is a-Sasakian if and only if for all
X, Y(ΞX(M)

Wxφ)Y=a{g(X, Y)ξ-V(Y)X}.

(ii) If M is a-Sasakian, then ξ is a Killing vector field and

for all X<=2C(M).
(iii) An a-Sasakian manifold is a C(a2)-manιfold.

If M is a Sasakian manifold, then by a so-called D-homothehc transformation
one can modify the Sasakian structure into an α-Sasakian structure for α>0. A
D-homothetic transformation is a transformation of the original metric g into a
new Riemannian metric g' defined as follows:

g\x, γ)=^g{-χ+η{χ)ξ, -y+?(TO+?(ί)j?(n

for all X, Y^TXM and all I G M . The two metrics are homothetic when
restricted to the distribution η=0. On the other hand (M, g, φ, ~ξ, - ^ ) is a
(—1)-Sasakian structure if (M, g, φ, ξ, η) is Sasakian. Starting with the (—1)-
Sasakian structure one constructs α-Sasakian structures for α<0. We note that
α-Sasakian manifolds are quasi-Sasakian [3]. They provide examples of C(λ)-
manifolds with Λ>0.

To obtain examples for Λ<0, we use the same procedure but starting now
with Kenmotsu manifolds.

DEFINITION 2.7. An almost a-Kenmotsu manifold is an almost co-Hermitian
manifold such that

dV=0,

Y,Z)=~(x © {η(X)Φ(Y,Z)}9
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for a^R0 and all X, Y, Z^3C(M). M is an a-Kenmotsu manifold if the structure
is normal.

Here we have

THEOREM 2.8.

(i) An almost co-Hermitian manifold is an a-Kenmotsu manifold if and only if

Wxφ)Y=a{g(φX, Y)ξ-η(Y)φX},

where X, Fe^(M).
(ii) An a-Kenmotsu manifold is a C(—-a2)-manιfold.

Using the D-homothetic transformation defined by

g'(X,Y)=a{g(X,Y)-η(X)η(Y)}, α>0,

on a Kenmotsu manifold, one obtains an α-Kenmotsu manifold with α>0. By
starting with (M, g, —φ, —ξ, —η) we obtain a (—α)-Kenmotsu manifold with
- α < 0 .

It is just for the class of almost C(α)-manifolds that we shall define a
Bochner curvature tensor. Therefore we develop a decomposition theory on an
appropriate space of curvature tensors over a co-Hermitian vector space. This
purely algebraic theory will give later on more information about important
special classes of almost C(α)-manifolds.

3. C(α)-curvature tensors.

Let V be an n-dimensional real vector space with inner product g. A tensor
L of type (1, 3) over V is a bilinear mapping L : Vx F-^Hom(F, V), (x, y)>->L(x, y).
L is called a curvature tensor if it has the following properties for all x, y, z, w
e F :

(i) L(x,y)=-Uy,x);
(ii) L(x, y) is a skew symmetric endomorphism of V, i.e.

L(x, y, z, w)+L(x, y, w, z)=0,
where

L(x, y, zy w)=g(L(x, y)z, w);

(iii) <δ L(x, y)z=0 where © denotes the cyclic sum (this is the first Bianchi
x , y > z

identity).
This means also that L is a symmetric double form of type (2, 2) which satisfies
the first Bianchi identity [8], [13].

The Ricci tensor LR of type (0, 2) associated with L is the symmetric bilinear
function on VxV defined by LR(x, ^ ^ t r a c e ^ e V^L(z, x)y^ V). The Ricci
tensor Q=QR(L) of type (1, 1) is given by LR(x, y)=g(Qx, y) and the trace of Q
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is called the scalar curvature l—l{L) of L.
Let P be a 2-plane of V with orthonormal basis {x, y}. Then kL(P)—

g{L{x, y)y, x) is independent of the chosen orthonormal basis and is called the
L-sechonal curvature of P. If the function kL: P—>kL(P) is constant, we say
that L has constant sectional curvature.

The curvature tensors L over V form a subspace of the vector space of
(1, 3)-tensors over V, and we denote this subspace by JC(V). It has a natural
inner product <,> induced from that on V:

<L, L>= Σ £(L(e», £ > * , L(el} ej)ek),
l,J, k = l

{βi} being an arbitrary orthonormal basis of V.
Next, let V be a (2n+l)-dimensional real vector space with a cocomplex

structure (φ, ξ, η) and a co-Hermitian scalar product g, i. e. φ is a linear operator
on F, J ^ O G F and ^ £ F * (the dual space of V) such that

\/χ, y£ΞV: g(φx, φy)=g(x, y) —

/ is the identity transformation on V. From this we deduce at once

and Ύ] is the dual vector of ξ. Further, every co-Hermitian vector space has a
special type of orthonormal basis, called a φ-basis, consisting of (eτ, φeτ, ζ
2=1, •••, n). A 2-plane P of F containing ξ is called a ξ-plane while a 2-plane
P c { f } x is called a φ-plane. A ^9-plane for which φ(P)=P is a holomorphic
φ-plane. Such plane has an orthonormal basis of type (x, φx) with g(ξ, x)=0.

Now let L be a curvature tensor over the co-Hermitian vector space V. The
restriction of kL to a f-plane P is called the ξ-sectional curvature of P and the
restriction to a holomorphic <p-plane P is called the φ-holomorphic sectional cur-
vature of P. This will be denoted by φL.

Based on theorem 2.3 and definition 2.4 we consider now a special class of
curvature tensors over V.

DEFINITION 3.1. A C-curvature tensor L over a co-Hermitian vector space
V is a curvature tensor such that

L(x, y, z, w)=L(x, y, φz, φw)Jra{g{/\(x, y)z, w)—g(Λ(x, y)φz, φiv)}

for an a^R and for all x, y, z, U Έ F . Here Λ is the curvature tensor defined
by Λ(x, y)z=(xΛy)z=g(y, z)x—g{x, z)y. The number a is called the type of
L and a C-curvature tensor of type a is called a C{a)-curvature tensor.

A C(l)-curvature tensor is a Sasakian curvature tensor) a C(O)-curvature
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tensor is a co-Kdhler or CK-curvature tensor and a C(—l)-curvature tensor is a
Kenmotsu curvature tensor.

The set of all C(α)-curvature tensors over V will be denoted by JCc
and the union of all JCctaΛV), a^R (thus the set of all C-curvature tensors) is
a subspace of JC(V). For this space we use the notation JCC(V). We note that
jCccω(V)=CK(V) is a subspace of JCC(V).

As one can see from the definition, there is a strong relation between the
notion of type of a C-curvature tensor and the notion of type of a incurvature
tensor on a Hermitian vector space [24], [25], [27], [29].

To precise the analogy of Cif-tensors with ^-tensors (or Kahler curvature
tensors on a Hermitian vector space [16]) we consider the notion of a cocomplex
linear map.

DEFINITION 3.2. Let V(φ, ξ, η) and V'(φ', ζf, ηf) be cocomplex vector spaces
over R. A linear map φ: V—»V is cocomplex if

( i ) φΌf=f*φ\
(ii) 3 k €= R+ such that fξ= kξ'
(iii) 3t^R+ such that f*η'=lη.

It follows easily that for a cocomplex map k=l and that an orthogonal map
/ : V-*V, where V and V are co-Hermitian, is cocomplex linear if and only if
φ'of=foφ and / ? = £ ' .

THEOREM 3.3. LeJC(y) is a CK-tensor over V if and only if L(x, y) is
cocomplex linear for all x, y^V.

Proof. Let L(x, y) be cocomplex linear. Then L(x, y)ξ=kξ and so
g(L(x,y)ξ9ξ)=Ux9y,ζ,ξ)=Q=kg{ξ9ξ)=k. This means that L(x, y, z, f)=0
for x, y, z^ V. Further we have

g(L(x, y)ψz, φw)=g(φL(x, y)z, φw)=g{L(x, y)z, w)-η{L{x, y)z)rj{w)

and so L(x, y, φz, φw)—L{xy y, z, w).
Conversely, let L be a C/ί-tensor. Then we have for all x, y, ZG V that

L(x, y, ξ, w)=L(x, y, φξ, φw)=0 and thus L(x, y)ξ=0. Further η{L{x, y)z)=
L(x, y, z, f)=0 and

g(φ(L(x, y)z), φw)—g{L{x, y)z, w)—Ύ](L(x, y)z)η(w)

=g(L(x, y)z, w)=g(L(x, y)φz, φw).

Since this holds for all φw and also for ξ, we get φ°L(x, y)—L(x} y)°φ.

The following theorem is an immediate consequence of the definition of a
C(α)-curvature tensor.
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THEOREM 3.4. // L^JCCCcO(V), then
( i ) Vχ(ΞV,Vy,zcΞ{ξ}±: L(y,z, x,ξ)=0;
(ii) Vx, y^V: L(x, ξ, y, ξ)=-ag(φx, φy).

If LeiCK(V), then
(iii) V X G F : L(X, £)=0;

(iv) Mx, y, z, W<Ξ {ξ}1: L(x, y, z} w)=L(x, y, φz, φw).

For each L e JC(V) we construct an α-associated curvature tensor P(L, a) by

P{L, a)(x, y)=L(x, y)-a/\(x, y)

and it follows that L^JCC(aΛV) if and only if P(L, a)^CK(V). So the spaces
<̂ σcα)(V") are affine subspaces of JC(V) for each a. The C(α)-curvature tensor
L has constant ^-holomorphic sectional curvature c if and only if P(L, a) has
constant ^-holomorphic sectional curvature c—a.

Concerning the sectional curvatures of L e JCctaΛV), we see at once that the
ξ-sectional curvature is always constant and equal to a. For the case of constant
^-holomorphic sectional curvature we have an explicit expression for L.

THEOERM 3.5. L^JCC(aΛV) has constant φ-holomorphic sectional curvature c
if and only if for all x, y, Z G F

Γ l jθί c—(x
L(x, y)z=—i—Λ(x, y)zJ

{ ^— {A(φx, φy)z+2g(x, φy)φz

Jrη{x)yη{z)-η(y)xη(z)Jr7]{y)ξg(x, z) — η(x)ξg(y, z)}.

Proof. Let P<BCK(V) with constant ^-holomorphic sectional curvature c—a.
By a well known linearization technique we get for all x, y, z, w^ {f}1:

P(x, y, z, w)=—^-{g(x, w)g{y, z)-g{y, w)g(x, z)—g{x, φw)g(z, φy)

+g(y> ψw)g(z> φx)+2g(φx, y)g{z, φw)}.

Now, let i e F . Then x=—φ2xJ

rη(x)ζ. Hence for all x, y, z, w^V

P{x, y, z> w)=P(φ2x, φ2y, φ2z, φ2w).

Since φ2x<^{ξ}1 and (φ3jrφ)x=0 we obtain easily

P(x, y)z=^~^L{A{x, y)z+Λ(φx, φy)zJr2g(x, φy)φz

Λ-η(x)yη(z)-η(y)xη(z)+Ύ]{y)ξg{x, z)-η{x)ξg(y, z)}.

The result follows now from L(x, y)z—P{xy y)z-\-a/\(x} y)z.

This result is well known for C(l)-curvature tensors [4], C(O)-curvature
tensors [14] and C(—l)-curvature tensors [12]. There is a formal analogy with
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the expression for the curvature tensor of a generalized complex space form [26].

Just as for Kahler curvature tensors, the behaviour of the Ricci tensor plays

an important role in the decomposition theory (the tensor is complex linear for

/ί-curvature tensors). We have

T H E O R E M 3.6. Let L^J{C(V). Then QR{L) is cocomplex linear.

Proof. Let P denote the associated curvature tensor of L. Then

QR(P)=QR(L)-2naI.

Since P^CK(V) we have g(QR{P)x, ξ)=Ί?P(x, ex, et, f ) = 0 where {et} is an
%=\

orthonormal basis of V. Hence QR(P)ς=0 and so QR(L)ξ=2naξ.

Next we have g(QR(L)x, ξ)=g(x, QR(L)ξ)=0 for r]^{ζ}L and so rj{QR{L)x)

= 0 . Further η(QR(L)ξ)=2na so η°QR(L)=2naτ}.

Finally we prove φ°QR(L)=QR(L)°φ. Let {el} φex, ξ, ι=l, •••, n) be a ^-basis

for V. Then for x, y^{ξ}L

g(QR(L)φx, y)=Έ L(φx, elf et, y)+L(φx, ξ, ζ, y).
1 = 1

Now

in 2n 2n

Σ L(φx, et, el} y)= Σ L(φ2x, ψex, φexy φy)=— Σ L(x, et, et, φy)

and L(φx, ξ, ξ, y)=ag(φ2x, φy)=-ag{x, φy)= — L(x, ξ, ζ, φy).

Hence

g(QR(L)φx, y)=-g(QR(L)x, <py)=g(φQR(L)x, y).

Since g{QR(L)φx, ξ)=0=g(φQR(L)x, ξ) we obtain for x<={S}L

(QR(L)°φ)x = (

Finally

which proves the required result.

To finisch this section we give some examples of C-curvature tensors we

need later on. We frequently use the curvature tensor M over V, defined by

JC(x, y)z=η{x)y7]{z)-Ύ]{y)xΎj{z)JrτJ{y)ξg{x> z)—η(x)ξg(y, z).

Further Hom c o s (F) denotes the space of all symmetric cocomplex linear endomor-

phisms of the co-Hermitian vector space (V, φ, ξ, rj, g) with dimension 2n+L

E X A M P L E 3.7. Let a, a&R and Λ, B^Homcos(V). Then CΛ,B,a,a with
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CA.B.a,a(x, y)=Λ(Ax, Ay)-\-/\{Bx, Ay)+Λ(φAx, φBy)J

ΓA(Bx, ψAy)

+2g(Ax, φy)ψB-2g{φx, By)φA+M{Ax, By)^M{Bx, Ay)

, y)+(a—a){Λ(φx, φy)J

ΓM(x, y)+2g(x, φy)ψ]

is a C(α)-curvature tensor.
If Aξ=kξ and Bξ=lξ, we obtain

QάCA,B,a,a)=(χr B-l)A+(K A-k)B+2(AB + BA)

+2{α(n + l ) - α } / - {2kl+k tr B+l tr

KCA,B, a, «)=2 tr A tr B-21 tr A-2k tr B+2 tr AB+2 tr

Some special cases have special importance later on. Therefore we put

4

EXAMPLE 3.8. For C~CLliI a ( C G Λ ) we have ife = -̂ -, /=1 and
8

, y)+2g{x, φy)φ},

n(c-\-3a)+c—a (n + l)(c—α)
= ^ ^ 2

{(

C has constant ^-holomorphic sectional curvature c. By theorem 3.5 we know
that conversely, any C(α)-curvature tensor with constant ^-holomorphic sectional
curvature is of this form C.

4. The decomposition theorem.

Let (F, g, φ, ξ, η) be a co-Hermitian vector space of dimension 2 n + l and
JCC(V) the subspace of JC(V) formed by the C-curvature tensors. The natural
induced inner product on JCC(V) will also be denoted by g. Just as for the
Weyl tensor [17], [20] and for the Bochner tensor [16], [21], we determine a
decomposition of JCC{V) into a direct sum of orthogonal subspaces. The con-
sidered subspaces are in some sense inspired by the decomposition given in [24],
[27] for incurvature tensors. In section 5 we shall show that the components
are irreducible for a natural induced representation of cU(w)Xl on JCC(V).

LEMMA 4.1. Let C1(V)={L^JCc(V)\φL=0}. Then for LSΞC^V) we have
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L(x> 3;)=-|-{3Λ(x, y)-Λ(φx, φy)—JC(x, y)-2g(x, φy)φ},

where αe_R.

Proof. This is a special case of theorem 3.5 with c=0. Cλ(V) is thus a
l-dimensional subspace of JCC(V).

LEMMA 4.2. Let C{(V) be the orthogonal complement of Cλ(V) in JCC(V).
Then Ci(V)=CK(V).

Proof. Let L^Cλ{V) with type a and let L be an arbitrary element of
JCC(V). We take an orthonormal basis {ea, φeay ξ; a = l, •••, n) and put e2n+i:=1ξ,
ea*=φea, a*—nJra. We consider now

σr T f\ v T T
A,B,C,D=1

where LABCD—L(eA, eB, eC) eD). When A=2n+l we write LABCD as LξBCD
First we have by lemma 4.1

4

Hence

^ 2n ^ 2n

i, 3, k, 1 = 1 i, k = l

*^(χ 2n r j (χ in r+s

— c) _ _ -^ijji Q~ •^-J \^ιj3*i*~^~ •L*'i*i3j*) '
_ 1,3=1 Δ t,j-i

Using the first Bianchi identity and the fact that L is a C(αO-curvature tensor,
we get

(4.1) g(L, L)=2n(3n + l)aa'.

Hence, L^Cf(V) if and only if α /=0.

LEMMA 4.3. Let C2(V)={L^CK(V) with φL constant}. Then for L^C2(V)
we have

c
L(x, y)=z-j-{/\(x, y)-\~A(φXy φy)JrJC(x, y)Jr2g(x, ψy)φ\,

where c^R.

Proof. Apply theorem 3.5 with a=0. So C2(V) is a l-dimensional subspace

of CK(V).
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Now let C(V) be the orthogonal complement of Cλ{V)®C2{V) in JCC(V).
Then we have

LEMMA 4.4. C(V)={L^CK(V) with Z(L)=O}.

Proof. Let L^Cλ{V)®C2{V) and L^C(V). Lemma 4.2 implies that L<ΞΞCK(V).
From theorem 3.5 we have

L(x, y)=—-—A(x, y)-\ -. — {Λ(φx, φy)JrM{x} y)Jr2g(x, φy)φ).
4 4

Hence
r-j 2n Λ, in ^

g(L L)= Σ L L +4 Σ L • L
1,3, k, 1 = 1 l, k = l ς

^ r , 3(c-a) *n ~

Further, since Liξξi=0 we have

(4.2) g(L, Γ)=2c/(Γ),

which proves the required result.

LEMMA 4.5. Let CB(V)={L^CK(V) with QR(L)=0}. Then CB(V) is a sub-
space of C(V).

Proof. Trivial.

So we get

THEOREM 4.6. We have

JCC( V)=C1{ V)@C2{ V)®CB{ V)®C,{ V) (orthogonal)

where C3(V) is the orthogonal complement of CB(V) in C(V).

To find the dimensions of the subspaces C3(V) and CB(V) we use essentially
a result proved in [21].

THEOREM 4.7. // (V, φ, ξ, η, g) is a (2nJrl)-dimensιonal co-Hermitian vector

space, then dim JCC(V)= ^ p ^ + 1 , dim CS(V)= n 2 - l and dim CB(V) =

j n 2 ( n - l ) ( n + 3 ) .

Proof. Let l̂ Γ=Ker η. Then W is a Hermitian vector space with (g\ W, φ\ W)
as Hermitian structure. We consider Jίι{W), the space of curvature tensors L
over W satisfying the Kahler identity L(x, y, z, w)=L(x, y, φ\wz, ψ\ww). It is
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clear that JCX(W) is isomorphic with CK(V). Indeed, the restriction Lλ of
L^CK(V) to W belongs to JC^V) and conversely any L^JC^W) can be extended
uniquely to an element L of CK(V) (see theorems 3.3 and 3.4). Further, QR{Lλ)
—0 if and only if QR(L)=Q and the holomorphic ^-sectional curvature of L is
the holomorphic sectional curvature of Lx. This means that C2(V), CB(V), C3(V)
are isomorphic with the subspaces in the decomposition of JCX{W) given in [16],
[21]. The dimensions of these subspaces and of JC^W) are given in [21]. This
gives the required result.

Now let L^JCccaAV). Then we have

3

L= Σ Li-\-LB,
1

1=1

where Lτ^Cτ(V) and LB^CB(V). We determine the explicit expressions for
these projections.

First, Lx has to be a C(α)-tensor and the expression is given by lemma 4.1.
To know L2 we use lemma 4.3 and determine c. Since l(L)=l(L1)

Jrl(L2) (using
lemma 4.4) we get from example 3.8

and hence

To determine L3 we prove

LEMMA 4.8. For all a, b^R and all /leHom c o s(7), the CK-curvature tensors
L defined by

L = aCΛi i + bCj, /
belong to CB(V).

Proof. Let L(=CB(V). Then LtiCK(V) and Γ^=0. Further, since . 4 G
Homcos(y), φx is an eigenvector of A if x is an eigenvector and both have the
same eigenvalue. Hence we may choose a 92-basis of eigenvectors {ea, φea,ξ;
a = l, •••, n} for V. We have

g(L, L)— Σ LljkiLlJkl
ι,3, k, 1 = 1

and using example 3.7 we obtain

g(L, L)=8 Σ {a(λι+λj)+2b}LιJJt

where λt is the eigenvalue of eτ. So
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g(L, L)=8a Σ /ii(ΓΛ)tt+8α Σ λtfώjj+lβb Σ (LR)U.
1 = 1 J = l 1 = 1

Since LR=0 we get g(L, L)=0.

Now we put Lz~aCA> 7 +6C 7 , 7 and determine a, b and A so that LR~
LIR + L2R-\-LSR. This implies immediately that A — QR(L), which is indeed
cocomplex linear, and

_1 2an-l(L)
Cl~ 2(n+2) ' in(nJ

Γ2) '

We put

l{L)+2an

Then we have proved

THEOREM 4.9. Let L(ΞJCcirύ(V). Then L = Σ Lτ+LB with Li^ΞC^V^ and

LB^CB{V). Further

(X

Lι(x, 3;)=r-j-{3Λ(x, y)—Λ(φx, φy)—M{x, y)—2g(x, φy)ψ\,

Λ— 2k—2>an r

DEFINITION 4.10. Let L^JCC(V). Then L β is called the C-Bochner tensor
associated with L. L is called C-Bochner flat if LB^=0.

This allows us to introduce now in a natural way the notion of C-Bochner
curvature tensor on an almost CfαO-manifold. Indeed, in every tangent space the
Riemann curvature tensor R defines a C(a')-curvature tensor. By taking the
corresponding ^-component at each point, we get the C-Bochner curvature
tensor field B on the almost C(α)-manifold M. If B=0, M is called a C-Bochner
flat manifold.

For Sasakian manifolds our definition coincides with the tensor introduced,
using the Bootby-Wang fibration, in [15] (see also [32]).
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5. The irreducibility of the decomposition.

The decomposition constructed in section 4 can be characterized completely
by showing that the components are the irreducible components of the induced
natural representation of HJ{n)Xl in the space JCC(V). The decompositions given
in [20], [17], [16], [21] have the same irreducibility property if one considers
the structure group O(n) resp. HJin). This may be proved using WeyΓs invariants
theorem and the theory of quadratic invariants of the curvature tensor (see [1],
[10], [11], [31]).

Let V be a (2n+l)-dimensional co-Hermitian vector space and let p be the
standard representation of cU(?z)Xl in V. Thus

p: HJ(n)Xl->GL{V)\ X^p(X),
where

0

v .p(X): V->V; v^\ -B A 0

1

The representation p induces a representation p of ΊJ(n)Xl in the space JC(V)
by

p: V(n)Xl-^GL(JC(V))y g^p(g),
where

p(g){L){x, y, z, w)=L(p(g~1)x, ρ{g~x)y, p(g~x)z, p{g"λ)w).

is the group of all orthogonal cocomplex linear transformations. So
'x, X~1z)=g(x, z) and φoX-1=χ-1oφ for all Xe<U(n)Xl. This implies

THEOREM 5.1. JCC(V) is an invariant subspace of JC(V) for p.

Further we have

THEOREM 5.2. Ct(V) (z=l, 2, 3) and CB(V) are invariant subspaces of JCC(V)
for p.

Proof. This is a straightforward verification using the fact that elements of
cU(n)Xl are cocomplex linear and orthogonal, together with the defining proper-
ties of the subspaces.

Now we prove that there are precisely four irreducible components for the
representation p. Therefore we shall use the notion of the direct sum of two
representations.

LEMMA 5.3. Let p: G-^GL(V) be a representation with a irreducible compo-
nents and ρr: G'-+GL(Vr) a representation with b irreducible components. G, Gf

are groups and V, V subspaces of a real vector space W. Then
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p+p': GxG'-+GL(V®V)
defined by

is a representation with a+b irreducible components.

THEOREM 5.4. The representation p c/cU(τ?)xl in JCC(V) is a direct sum of
two representations.

Proof. As in the proof of theorem 4.7 we consider JC^W) with PF=Ker η.
Let σ: ^(w)—>GL(W) be the standard representation of HJ(n) in W and σ the
induced representation of HJin) in Jί^W).

Next, let 1: {e}—>GL(C1(V)) be the trivial representation. Using the isomor-
phism between CK(V) and JCx(W) (see theorem 4.7) and identifying

A

-B

0

B

A

0

0

0

1

/
with

\

/ Λ

\-B

B \

A
, 1

together with the property ρ(X)L = L for L^C^V), we obtain that the direct
sum σ + 1 is precisely p.

Since σ has three irreducible components if dimί^>2 we obtain by lemma
5.3 that p has four irreducible components if dim V^5. Hence we have

THEOREM 5.5. The decomposition of theorem 4.6 is a decomposition in irre-
ducible components if dim F ^ 5 .

In the case of dim V=3 we have only two irreducible components for p (then
άimW=2) and JCc(V)=6>

1(y)φ^2(y), according with the result of theorem 4.7.
This implies that the C-Bochner tensor vanishes for C(α)-curvature tensors over
V if dim F = 3 .

6. Applications.

We shall give now some natural applications of the decomposition. They will
show the analogy of the C-Bochner tensor with the classical Weyl and Bochner
tensors.

THEOREM 6.1. <?i(F)Θ<?2(t0= {L^JCC(V) with φL constant).

Proof. This is clear from theorem 4.9 and theorem 3.5.

It follows that a C-curvature tensor with constant ^-holomorphic sectional
curvature has vanishing Bochner component.
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DEFINITION 6.2. A C-curvature tensor L is η-Einsteiman if there exist a, b
<ΞR such that

Vx, y^V: LR(x, y)=ag{x, y)Jrbη(x)η(y).

This is equivalent with QR{L)=aI+biη®ξ and L is Einsteinian in the case b=0.
Further we have

LR(ξ, ξ)=a + b=2na.

Using example 3 we get

COROLLARY 6.3. A C-curvature tensor with constant φ-holomorphic sectional
curvature is η-Einsteinian.

THEOREM 6.4. C1(V)®C2(V)®CB(V)={L^JCC(V)\L is ψEinsteiman}.

Proof. Since LBR=0, L is ^-Einsteinian if L e ^ ( y ) © ^ 2 ( y ) φ ^ ( F ) (use
corollary 6.3).

Conversely, let QR(L)—aI+bη(&ξ. A straightforward computation shows
that L 3 =0.

COROLLARY 6.5. L has constant φ-holomorphic sectional curvature if and
only if LB=0 and L is η-Einsteinian.

We consider now again C(α)-manifolds.

DEFINITION 6.6. A C(a)-space form is a C(α)-manifold with pointwise constant
^-holomorphic sectional curvature.

THEOREM 6.7. Let M2n+1 be a connected C{a)-space form with 2?z+1^5.
Then the φ-holomorphic sectional curvature is globally constant.

Proof. This can be done in exactly the same way as for Sasakian space
forms (see [4]).

Co-Kahler space forms, which are C(0)-sρace forms, are considered in [14] and
Kenmotsu space forms (which are C(—l)-space forms) in [12]. These last ones
are automatically real space forms of constant sectional curvature —1.

By defining ^-Einstein almost C(α)-manifolds pointwise using definition 6.2
we get from corollary 6.5.

THEOREM 6.8. Let M be a C(a)-manιfold. Then M is a C{a)-space form if
and only if M rj-Einsteinian and C-Bochner flat.

This theorem can be compared with the well known theorems on conformally
flat Einstein spaces and on Bochner flat Kahler-Einstein manifolds, which are
respectively real and complex space forms.
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Finally we characterize CB(V).

THEOREM 6.9. L<=CUY) {or L is C-Bochner flat) if and only if L~CA>Iya>a

with A^Womco*{V) and a, a<=R.

Proof. Let L^C^(V). From LB=0 we obtain L=CAίI,a,a with

The converse is obtained by straightforward computation.

7. Norm inequalities.

The decomposition gives rise to some interesting inequalities which can be
used to characterize some special curvature tensors as in the Riemann, Kahler
and quaternionic case ([1], [2], [7], [30]). The use of these inequalities will be
illustrated in a forthcoming paper. See also [35].

THEOREM 7.1. Let L^JCc(V2n+1) and L=Σ,LX+LB with Li^Cτ(V), LB(Ξ

CB(V). Then

2{/(L)-n(3tt

Proof. || L J 2 follows from (4.1). Further (4.2) implies

j . I f Γ)=16/(Γ)

for an arbitrary L^CK(V). Using the formulas of example 3.8 and theorem 4.9
we get the formula for | |L2 | |

2.
Next, for L<=CK(V) we have

g(L, C β Λ α ) l / ) = 1 6 ι Σ i 0 » A ^

where (QtJ) and (Qtj) are the matrices of QR(L) resp. QR{L) with respect to an
orthonormal <£-basis. Hence, using the formulas in examples 3.7 and 3.8, we
obtain

, If Cj. 7 )=64(n+l)(/(L)-2nα).
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Then | |L 3 | | 2 follows using theorem 4.9. \\LB\\2 is obtained by using the ortho-
gonality of the decomposition.

Using theorem 6.1, theorem 6.4 and the relations | | L | | 2 ^ | | L 1 | | 2 + | | L 2 | | 2 , ||
we obtain

THEOREM 7.2. For all LeJCCcaΛV2n+1) we have

Equality holds if and only if L has constant ψ-holomorphic sectional curvature.

THEOREM 7.3. For all L^JCCCa^V2n+1) we have

Equality holds if and only if L is η-Einsteinian.

Since | |L 5 | | 2 ^0, theorem 7.3 and corollary 6.5 imply

THEOREM 7.4. For all L<=JCCCa)(V2n+1) we have

Equality holds if and only if L has constant φ-holomorphic sectional curvature.

Remark that theorem 7.3 and theorem 7.4 imply theorem 7.2.

8. Proper generalized C(α)-curvature tensor fields on Sasakian manifolds.

DEFINITION 8.1. Let (M, g, φ, ξ, η) be an almost co-Hermitian manifold and
L a C°° (1, 3)-tensor field on M. L is a (generalized) C-curvature tensor field on
M if for all I G M , L^ is a C-curvature tensor on TXM. If Lx has type a for
all x, then L is called a C{a)-curvature tensor field on M.

Of course, the Riemann curvature tensor field R on an almost C(ίγ)-manifold
M is a natural example of a C(α)-curvature tensor field on M. Other examples
can be obtained from examples 3.7 and 3.8 by taking X, Y<=X(M) instead of
x, y and a^3{M) (a C°° function on M), A and B C°° tensor fields of type (1, 1)
so that for all I G M , A X and Bx are symmetric cocomplex linear maps of TXM.
We use for these examples also the same notations CAjBι a,a, CA<B,a, CAiB as in
these examples 3.7 and 3.8.

For R the second Bianchi identity plays an important role. So we want to
consider C-curvature tensor fields satisfying this identity (see for example [17]).
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DEFINITION 8.2. Let 7 denote the Riemannian connection on M. A C-curva-
ture tensor field L is called a proper field if and only if

VZ, Y, Z^X(M): © {lχL)(Y, Z)=0.
x,γ,z

Proper C-curvature fields are special Riemannian double forms on M (see [8]).

We give an example for Sasakian manifolds. We consider the C(α)-curvature
tensor field E on M given by

E{X, Y)=sΛ(X, Y) + (s-a){Λ(φX, φY)-\-M(X, Y)+2g(X, ψY)φ),

where s^ΞF(M). Then we have

EXAMPLE. 8.3. Let M2n+1, n>l, be a connected Sasakian manifold. Then E
is proper if and only if s is a constant function on M.

Proof. Suppose E is proper. Then the statement is a direct generalization
of Schur's lemma for the Riemann curvature tensor field on Sasakian manifolds
(see [4]).

The converse is a straightforward calculation using

ί χφ)Y=g(X, Y)ξ~y(Y)X,
(8.1)

which are well known relations on Sasakian manifolds (see theorem 2.6).

In what follows we suppose always that M is a Sasakian manifold and we
consider a generalized C(α)-curvature tensor field on M. By using pointwise the
decomposition theorem we obtain four C-curvature tensor fields Llf L2, Lz and
LB on M. A natural question arises now: if L is a proper field, does then the
same property holds for L% ( i=l , 2, 3) and LB ? As we can see from [16], [17],
the Codazzi equation for QR(L), i. e.

will play an important role. This natural condition (see [9]) has very strong
consequences for C(α)-curvature tensor fields on Sasakian manifolds. We study
this now more in detail.

THEOREM 8.4. Let L be a C(a)-curvature tensor field on a Sasakian manifold
M2n+1. If the Ricci tensor field QR(L)=Q satisfies the Codazzi equation, then

QR(L)=2naI.

To prove this we need a generalization to almost co-Hermitian manifolds of a
theorem of Tanno [23] concerning hybrid tensor fields on Kahler manifolds.
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DEFINITION 8.5. Let M be an almost co-Hermitian manifold. A (0, r)-tensor
field T on M is called C-hybnd with respect to i and j if

: T(Xlt - , Xt, •••, X,, •••, Xr)

COROLLARY 8.6. Let T be a C-hybnd tensor with respect to i and j . Then

n x l f - , ? , " ,χJf . . . , x r ) = n x l f - , x t , - , ? , -',χτ)=o.
t t
* 7

T H E O R E M 8.7. Lei T k a (0, r)-tensor field with r ^ 3 and w/uc/z zs C-hybnd
with respect to (z, ), 0 , ^) and (ί, jfe). Then T = 0 .

First we take Xte3C(M) such that η(X,)=O for all l^i^r. Then
we have ψ2Xι = — Xt and

Xr)

Xk, -,Xr)

ψXky '" > sir)

φ Ak, " , Λr)

'*, -,Xr).

nχu -, x
=nχ» ••

=T(X1, ••

=nxu ••
= -T(X1

• , ψXr,

• , ψXi,

• , ψ'Xu

... χx

'}> ••• > Xk,

' ' ' , iD J\ 1, '

• (Π J\ .

, •••, ψiXJ,

Next we take Xt arbitrary. Then the theorem follows at once using corollary
8.6 and by linearity since (Xι)χ=aί(Yι)x

Jrbiζx where η(Yt)=0.

THEOREM 8.8. Let L be a C(a)-curvature tensor field on a Sasakian manifold.
If QR(L)=Q satisfies the Codazzi equation, then Q is parallel, i.e. VQ=0.

Proof. Let S denote the Ricci tensor field of type (0, 2) associated with L,
i. e. S{X, Y)=g(QX, Y). First the Codazzi equation implies

(8.2) MX, Y, Z^T(M): (7XS)(F, Z)=(VFS)(Z, Z).

Further, since Q is cocomplex linear we have, using theorem 3.6, for all X, F e

S(φX, φY) = g(QφX, φY) = g(φQX, φY)

(8.3) =g(QX, Y)-η{QX)η{Y)

=S(X, Y)-2naη(X)V(Y).
In particular we get

S(f, ξ)=2na.

Next we show that the (0, 3)-tensor field 75 is C-hybrid in the last two
arguments, i.e. (7XS)(F, Z)=C7xS)(φY, ψZ). Using (8.2) it follows then at once
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that 75 is completely C-hybrid and hence, by theorem 8.7, we obtain the required
result.

We start the proof by taking Y, Z e {ξ}1. Then

, φZ)=X{S(φY, ψZ)}-S{1 x{ψY), Z)-S{φY,

= X{S{Y, Z)}-S{g{X, Y)ξ+φlxY, φZ)

S{φY, g(X, Z)ξ+φlxZ)

by (8.1) and (8.3). Since Qξ=2naξ (theorem 3.6) we have S(ξ, φZ)=S(ξ, φY)=0
and hence

C7xS)(φY, φZ) = X{S{Y, Z)}-S{φlxY, φZ)-S(φY, φlXZ)={1 XS){Y, Z),

using again (8.3).
Further, let X, Y±ξ. Then with (8.1) we get

, ξ)=S(Y, φX)-2nag{ΊxY, ξ).
But (8.2) implies

{lχS){Y, ξ)=S(X, φY)-2nag{lγX, ξ)

and, since ξ is Killing, we get by adding the two relations

(V*S)(r,£)=0.

Next
(V*S)(f, ξ)=0 for all X(=3£(M),

since we have lχξ=—φX and S(φX, ξ)=0 (theorem 3.6). The theorem follows
now at once using the Codazzi equation since

(VχS)(r, f ) = 0 = ( 7 z S ) ( ^ r , φξ) for X, F

THEOREM 8.9. Let L be a C{a)-curvature tensor field on M with parallel
Ricci tensor Q=QR(L). Then

QR(L)=2naI.

Proof. Since Q is parallel and cocomplex linear we get from (x7xQ)φY=0:

X, Y)ξ-η(Y)X}

=2nag(X, Y)ξ-V(Y)QX.
On the other hand

Vχ(φQY)-φQVχY=Φxφ)QY=g(X, QY)ξ-2narj{Y)X.

Combining the two relations and putting Y=ξ we obtain the required result.

Remark that theorem 8.9 is proved in a different way for the Riemann tensor
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in [18]. The result above follows also from the fact that a Sasakian manifold is
irreducible [23'] and from S(ξ, ξ)=2na.

Proof of theorem 8.4. Combine theorems 8.8 and 8.9.

Further we have from theorem 8.4 (or from the fact that a Sasakian manifold
is irreducible)

COROLLARY 8.10. Let M be a Sasakian manifold with parallel Ricci tensor.
Then M is Einsteiman.

This corollary is important in view of the classes studied in [9].
Combining theorem 8.4 and example 8.3 we obtain

THEOREM 8.11. Let M2n+1, n>l, be a connected Sasakian manifold and L a
C(a)-curvature tensor field on M whose Ricci tensor QR(L) satisfies the Codazzi
equation. Then CQRCL^ I IS a proper C(a)-curυature tensor field.

Now we return to our main problem. First we remark that by example 8.3
and because a is constant, the component Lλ is always proper.

THEOREM 8.12. Let L be a {generalized) C(a)-curvature tensor field on a
connected Sasakian manifold M2n+1, n>l, and let

3

L= Σ Lt^Lβ
1 = 1

be the natural decomposition. If L is proper and QR{L) satisfies the Codazzi
equation, then L2, Lz and LB are also proper. Conversely, if L2, L3 and LB are
proper, then QR{L) satisfies the Codazzi equation.

Proof. If L is proper, the theorem follows at once from example 8.3, theo-
rem 8.4 and theorem 4.9 since theorem 8.4 implies that the scalar curvature /(L)
is constant.

Conversely, since L2 is proper, k and so l(L) is constant by example 8.3.
Further, since L3 is proper, CQRCD,I has to be proper and so

© (VχC ρ β ( L ) l / )(r, z)£/=o.

Using
={lxQ)ψY+2nag{X, Y)ξ-η{Y)QX,

xQ)Y-{lγQ)X}=2g{X, ΨY)-2na{η(ΊXY)-V{ΊYX)}

=2g{φX, φY)-4nag(Y, φX),

which are easily verified, we compute the cyclic sum over X, Y, Z of

, Z)U, ξ) for X, Y, Z, U±ξ.



ALMOST CONTACT STRUCTURES AND CURVATURE TENSORS 25

This gives the condition

g{U, φZ)S{X, Y)-2nag{U, φZ)g(X, Y)+g(U, φX)S(Y, Z)

-2nag{U, φX)g{Z, Y)+g(U, <pY)S(X, Z)-2nag{U, φY)g(X, Z)

-2nag(X, U)g(Z, ψY)-2nag{Y, U)g{X, φZ)~-2nag{Z, U)g{φX, Y) = 0.

For X=Y=Z and g(X, X)=l this reduces to

g(U, φX)S(X, X)-2nag(U, φX)=0

and, since ULξ is arbitrary, we get

S(X, X)ψX=2naφX.

Hence S(X, X)=2na. This implies with Qξ—lnaξ that Q—2naI and for Sasakian
manifolds this is equivalent with the Codazzi equation.

COROLLARY 8.13. Let M2n+1, n>l, be a connected Sasakian manifold and L
a proper C(a)-curvature tensor field with constant scalar curvature l(L). Then
LB is proper if and only if QR(L) satisfies the Codazzi equation.

These theorems are analogous with those for the Weyl and Bochner tensor
proved in [16], [17]. This is also true for the following considerations.

Let ΊJC(M) be the vector space of all C°° tensor fields A of type (1, 1) on a
Sasakian manifold M 2 n + 1, satisfying the following properties:

( i ) A is symmetric in each point
(ii) A is cocomplex linear in each point with Aξ=βξ, where β is constant

on M;
(iii) A satisfies the Codazzi equation (1 XA)Y=(1YA)X
(iv) Trace A is constant on M.

Just as in theorem 8.4 one proves that on a Sasakian manifold

cυc={λI\λ<ER}.

On the other hand, let XC(M) be the vector space of all proper generalized
C-curvature tensor fields of constant type on M such that their Ricci tensor
satisfies the Codazzi equation. Then the map

Jl: CUC(M)-»XC(M); A^LA

defined by

1 h

- ^ ψ 2 {-2Λ(Z, Y) + n(Λ(φX, φY)+MX, F)4-2^(X oFk?)}
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. r tr Λ-\-2na ΛP. o , . .. r . . . .

where k = — — and ^4f=2nαf, is a linear map. LA(=£C(M) because

QR(LA)—Λ and (LA)B=0. Further, the map Jί is injective since LA~LA, implies

QR{LA)=QR(LA.) or A=A'.

THEOREM 8.14. Let M2n+1 be a (2n + l)-dimensιonal Sasakian manifold. If

n — 1, Jl is an isomorphism. Otherwise cA is an isomorphism on the subspace

Proof. For n = l we obtain

L(X, Y)=(L1 + L2)(X, Y)=j{Λ(X, Y)-/\{φX, φY)-JC(X, Y)~2g(X, ψY)ψ}.

So Xc(M) is 1-dimensional. If n^2 we have for L^XC(M) with LB=0:

and this implies L—LQRCL). SO the map is surjective on this subspace.
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