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Abstract

A new class of semi-Riemannian and lightlike manifolds (including globally null) is

constructed by using a hypersurface of an orientable Riemannian manifold, endowed

with the second fundamental form instead of a metric induced from the ambient

space. We show the existence (or non-existence) of harmonic tensor fields and har-

monic maps and extend to the semi-Riemannian and lightlike case a result of Chen-

Nagano [4]. Then we deal with general lightlike submanifolds immersed in a semi-

Riemannian manifold and propose a definition of minimal lightlike submanifolds, which

generalize the one given in [7] in the Minkowski space R4
1 . Several examples are given

throughout.

0. Introduction

Since the middle of the twentieth century Riemannian geometry has created
a substantial influence on several main areas of mathematical sciences. For
example, see Berger’s recent survey book [2], with voluminous bibliography.
Primarily, semi-Riemannian (in particular global Lorentzian) geometry [10] has
its roots in global Riemannian geometry, with many similarities. On the other
hand, the situation is quite di¤erent for lightlike (null) manifolds, as one fails to
use, in the usual way, the theory of non-degenerate geometry.

To deal with this anomaly, lightlike manifolds have been studied by several
ways corresponding to their use in a given problem. In 1996, Duggal-Bejancu
[7] published a book on general theory of lightlike submanifolds of semi-
Riemannian manifolds and their applications to general relativity. They in-
troduced a non-degenerate screen distribution to construct a lightlike transversal
vector bundle which is non-intersecting to its lightlike tangent bundle and de-
veloped local geometry of lightlike curves, hypersurfaces and submanifolds.
Having a di¤erent approach than presented in [7], this paper has two objectives.
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The first objective is to produce new examples of certain types of lightlike
manifolds. For this reason, we start with a hypersurface H of an orientable
Riemannian manifold ð ~MM; ~ggÞ endowed with the second fundamental form B
instead of the metric gH induced from the ambient space and we deal with a
semi-Riemannian or a lightlike ðH;BÞ. In particular, H is a globally null
manifold which admits a global null vector field and a complete Riemannian
hypersurface (Definition 1). We also construct a hypersurface L of a proper
semi-Riemannian ðH;BÞ on which B is lightlike. Then, we study harmonic
properties of some geometric objects on semi-Riemannian and lightlike manifolds.
We recall the concept of harmonic tensor field [4] and extend it in two di¤erent
ways. We show that if the null distribution RadðTHÞ of the lightlike manifold
ðH;BÞ is Killing, then B is harmonic w.r.t. the Riemannian metric gH over
RadðTHÞ. We also prove a characterization result (Theorem 2.1) between
harmonic tensors and harmonic maps for a semi-Riemannian manifold ðH;BÞ.
For the second objective, we study a general lightlike submanifold Mm immersed
in a semi-Riemannian manifold ðMmþn; gÞ. We first prove (Theorem 3.1) that if
f : ðM1; g1Þ ! ðM2; g2Þ is an immersion between semi-Riemannian manifolds and
if f�g2 is a semi-Riemannian (resp. lightlike) metric on M1, then f is harmonic i¤
f�g2 is a harmonic tensor w.r.t. g1 and traceg1

h ¼ 0, where h denotes the second
fundamental form of the immersed semi-Riemannian submanifold ðM1; f

�g2Þ
(resp. lightlike submanifold) in ðM2; g2Þ. We give an example of a globally null
hypersurface, which is non-compact and another example of a 3-dimensional
compact lightlike submanifold in an 8-dimensional semi-Euclidean space ðR8

4 ; h iÞ.
Because of the di‰culty coming from the degenerate metric, a definition of
minimality was given in [7] only for a hypersurface of a Minkowski space R4

1 .
Here we introduce the general notion of minimal lightlike submanifolds immersed
in an arbitrary semi-Riemannian manifold (Definition 2) and study their existence
or non-existence.

1. A class of lightlike manifolds

Let ðM; sÞ be a real paracompact smooth manifold endowed with a sym-
metric ð0; 2Þ-tensor field s which has a constant index on M. For any x A M,
let Rad TxM ¼ fu A TxM=sðu; vÞ ¼ 0; Ev A TxMg denote the radical subspace of
TxM. Then M is called a lightlike manifold [7] with a lightlike metric s if the
mapping x A M ! RadðTxMÞ that assigns to each x A M the radical subspace
RadðTxMÞ of TxM, defines a non-zero smooth distribution RadðTMÞ. If the
distribution RadðTMÞ is zero, then ðM; sÞ is called semi-Riemannian [10] and is
proper provided Gs is not Riemannian.

Definition 1 [5]. A lightlike manifold is called globally null if it admits a
globally null vector field and a complete Riemannian hypersurface.

Let ð ~MMmþ1; ~ggÞ, with mb 2, be an orientable smooth Riemannian manifold
with an orientable hypersurface Hm. From the orientation, there exists a unique
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globally defined unit normal vector field, say n A GðT ~MMÞ. Let ~‘‘ and ‘ be the
Levi-Civita connections on ~MM and H respectively. Then, the Gauss-Weingarten
formulas are

~‘‘XY ¼ ‘XY þ BðX ;YÞn;
~‘‘Xn ¼ �AnX ;

for any tangent vectors X and Y of H. Here Bð�; �Þn is the second fundamental
form tensor and B is the second fundamental form, related with the shape operator
An by

BðX ;YÞ ¼ ~ggðAnX ;Y Þ; EX ;Y A GðTHÞ:ð1:1Þ

The eigenvalues of An in a point p A H are called the principal curvatures of H
in p.

Now, we consider H endowed not with the Riemannian structure inherited
from ð ~MM; ~ggÞ, but with the symmetric ð0; 2Þ-tensor field B which is its second
fundamental form. Therefore, ðH;BÞ is one of the following:

(1) proper semi-Riemannian;
(2) lightlike;
(3) Riemannian (for instance, H umbilical in ð ~MM; ~ggÞÞ;
(4) None of the above three (for example, the saddle z ¼ x2 � y2 A R3).
Next we deal with the first two cases, which are useful for our purpose.

Case (1). The manifold ðH;BÞ is semi-Riemannian i¤ it has nowhere zero
principal curvatures and the same number of negative ones (by taking into
account their multiplicity) in each point of H.

Example 1. Let S3 be endowed with the standard inner product induced

from R4. For any y A 0;
p

2

� �
, identify the torus S1 � S1 with the tori

Ty ¼ fðcos y cos u; cos y sin u; sin y cos v; sin y sin vÞ A S3=u; v A ½0; 2p�g;

which are Cli¤ord tori, in particular the one corresponding to y ¼ p

4
. The

second fundamental form of any such torus is proper semi-Riemannian on Ty.

This example can be generalized as follows:

Example 2. If H is a minimal hypersurface of ð ~MM; ~ggÞ, then its second
fundamental form is either proper semi-Riemannian or lightlike on (possibly
some open subsets of ) H.

Case (2). If the manifold ðH;BÞ is lightlike, then we have RadðTHÞ ¼
ker An. Moreover, H is globally null i¤ H has a global zero principal curvature
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in each point and there exists a complete hypersurface of H on which all
principal curvatures are positive.

Remark 1. If instead of being positive we let the principal curvatures to
have only the same sign, then in the negative case by changing the orientation of
H, we choose the inward unit normal vector field �n instead of the outward one
n and then the above statement remains valid since B changed to �B, as in the
next:

Example 3. The hypercylinder

C ¼ fðx1; . . . ; xmþ1Þ A Rmþ1=x2
1 þ � � � þ x2

m ¼ 1g
in Rmþ1, endowed with its second fundamental form derived from the inward unit
normal vector field n ¼ �ðx1q1;þ � � � þ xmqmÞ, is globally null and RadðTCÞ ¼
spanfqmþ1g.

Proposition 1.1. Let ðH;BÞ be a proper semi-Riemannian hypersurface of
ð ~MM; ~ggÞ and L be a hypersurface of ðH;BÞ on which B is lightlike.

(i) Then %x ¼ fx A TxL=Anx A T?
x Lg0 f0g, Ex A L, where T?L denotes the

orthogonal of TL in TH with respect to ~gg.
(ii) The map x ! %x defines a 1-dimensional distribution on L.
(iii) Let S be a complementary distribution of % in TL, that is, TL ¼ Sl %.

Then, there exists a unique vector bundle trðTLÞ of rank 1 over L such that to
every non-zero (local ) null section x A %, there is a unique null section N A trðTLÞ
for which ~ggðAnN; xÞ ¼ 1 and AnN is orthogonal to N and S, with respect to ~gg.

Proof. From the definition of a lightlike manifold and (1.1) we have that
% ¼ RadðTLÞ which yields (i). Then (ii) holds since the manifold ðH;BÞ is semi-
Riemannian and L is a hypersurface of it, which is lightlike with respect to B.
The statement (iii) follows by using (1.1) and proceeding exactly as presented in
[7, Theorem 1.1, page 79], which complete the proof.

Example 4. Let H ¼ fx A Rmþ1=x2
1 þ � � � þ x2

m � x2
mþ1 ¼ 1g be a hyper

quadric in the Euclidean space Rmþ1 and denote by B its second fundamental
form derived from the unit normal vector field

n ¼ �ðx1q1 þ � � � þ xmqm � xmþ1qmþ1Þ=s; s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2x2

mþ1

q
:

It turns out that ðH;BÞ is Lorentzian, since the principal curvatures of H are 1=s
(with the multiplicity m� 1) and �ð1=s3Þ. The timelike 1-dimensional distri-
bution on H is spanned by the vector field

xmþ1ðx1q1 þ � � � þ xmqmÞ þ ð1 þ x2
mþ1Þqmþ1:

For any c A R, we restrict h to

Lc ¼ fx A H=xmþ1 � xm ¼ cðgþ 1Þg; g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ � � � þ x2
m�1

q
;

c. l. bejan and k. l. duggal134



to obtain a family of lightlike manifolds which are globally null. For instance,
when m ¼ 3, then RadðTLcÞ, S and trðTLcÞ are spanned respectively by
x2q1 � x1q2, gW � V and gW þ V , where V ¼ x1x3q1 þ x2x3q2 � gq3 and W ¼
x1x4q1 þ x2x4q2 þ x3x4q3 þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ x2

2

q
Þq4.

Remark 2. Proposition 1.1 can be generalized for a lightlike submanifold of
a semi-Riemannian manifold ðH;BÞ. We deal with this case in section 3.

2. Harmonic tensor fields

We recall that B. Y. Chen and T. Nagano introduced in [4, page 297] the
concept of (relatively) harmonic tensor field. If M is a manifold endowed with
both a Riemannian tensor field s and a symmetric ð0; 2Þ-tensor field s and ‘s

denotes the Levi-Civita connection of s, then s is called a harmonic tensor w.r.t. s
if for any X A GðTMÞ it satisfies:

tracesð‘s
XsÞ ¼ 2ðdiv sÞðXÞ;ð2:1Þ

where the divergence is defined by ðdiv sÞðXÞ ¼ tracesð‘s
� sÞð�;XÞ. More general,

if D is a distribution on M, we say that s is harmonic w.r.t. s over D if (2.1) is
satisfied for any X A GðDÞ. Another way to generalize the above concept is to
take s to be semi-Riemannian, instead of Riemannian, as we use later on.

Under the previous notations, H is a hypersurface embedded in ð ~MM; ~ggÞ. In
this section we assume that the manifold H is endowed with both the Rie-
mannian metric gH induced from ð ~MM; ~ggÞ and its second fundamental form B and
let ‘ denote the Levi-Civita connection of gH .

Proposition 2.1. Let the manifold ðH;BÞ be lightlike. Then the distribution
RadðTHÞ is Killing (i.e. each vector field in RadðTHÞ is Killing w.r.t. B) i¤ we
have:

ð‘XBÞðY ;ZÞ ¼ ð‘YBÞðX ;ZÞ þ ð‘ZBÞðX ;Y Þ;ð2:2Þ
EX A GðRadðTHÞÞ; Y ;Z A GðTHÞ:

Moreover, in that case B is harmonic w.r.t. gH over RadðTHÞ.

Proof. We have:

ðLXBÞðY ;ZÞ ¼ XBðY ;ZÞ � Bð‘XY ;ZÞ þ Bð‘YX ;ZÞ
� BðY ;‘XZÞ þ BðY ;‘ZX Þ

¼ ð‘XBÞðY ;ZÞ � ð‘YBÞðX ;ZÞ � ð‘ZBÞðX ;YÞ;

since BðX ;UÞ ¼ 0, EX A GðRadðTHÞÞ, U A GðTHÞ. Thus, (2.2) is satisfied i¤
any X A GðRad THÞ is Killing. The last statement follows from (2.1) and the
above equivalence, which complete the proof.
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Remark 3. In 1959, Reinhart [12] introduced a class of Riemannian foliated
manifolds with bundle-like metrics which are now called as Reinhart man-
ifolds. A lightlike manifold is a Reinhart lightlike manifold if and only if its
radical distribution is Killing [7, page 49].

Example 5. The hypercylinder in Example 1.3 is a Reinhart lightlike
manifold, since its tangent space is spanned by qmþ1 and all vector fields tangent
to the unit sphere Sm�1, which shows that the radical distribution is Killing.

Example 6. If ðH;BÞ is lightlike and the second fundamental form B is
parallel (i.e. ‘B ¼ 0), then from Proposition 2.1 it follows that ðH;BÞ is a
Reinhart lightlike manifold.

The concept of harmonic maps constitutes a very useful tool for both Global
Analysis and Di¤erential Geometry (see the harmonic maps and harmonic
morphisms bibliographies [3] and [9], respectively). Among them only few
ones deal with semi-Riemannian case and even less with the lightlike case (i.e.
Duggal [6], Pambira [11]). We provide some work in Section 3. A map
f : ðM1; g1Þ ! ðM2; g2Þ between semi-Riemannian manifolds is harmonic (resp.
totally geodesic) if its tension field tðfÞ ¼ div df ¼ traceg1

‘ df (resp. ‘ df) is
identically zero. If ðxiÞ are local coordinates on M1, then

tðfÞ ¼ g
ij
1 ‘M2

q=qxi df
q

qx j

� �
� df ‘M1

q=qxi

q

qx j

� �� �
;

where ‘M1 and ‘M2 denote the Levi-Civita connections of g1 and g2 respectively.
The stress-energy tensor field of f is given by SðfÞ ¼ eðfÞg1 � f�g2, where
eðfÞ : M1 ! Rþ is the energy density of f, defined by [1]

eðfÞ ¼ 1

2
traceg1

f�g2:

A harmonic map is called minimal if it is an isometric immersion. For
instance, in the context of this paper, the inclusion map i : ðH; gHÞ ! ð ~MM; ~ggÞ is
minimal (resp. totally geodesic) i¤ tracegH B ¼ 0 (resp. B ¼ 0).

Proposition 2.2. If the manifold ðHm;BÞ is semi-Riemannian, then the
inclusion map I : ðH;BÞ ! ð ~MM; ~ggÞ is never harmonic.

Proof. Let ~‘‘, ‘ and D denote the Levi-Civita connections of ~gg, gH and B,
respectively. If we suppose that I is harmonic, then for any local coordinates
ðxiÞ on H, we have

Bij ~‘‘q=qxi

q

qx j
�Dq=qxi

q

qx j

� �
¼ 0;
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which is equivalent to

Bij ~‘‘q=qxi

q

qx j
� ‘q=qxi

q

qx j

� �
¼ Bij ‘q=qxi

q

qx j
�Dq=qxi

q

qx j

� �
¼ 0:

Thus, BijBij ¼ m ¼ 0, which is a contradiction so the proof is complete.

Remark 4. More general, to study the harmonicity of an immersion
f : ðM1; g1Þ ! ðM2; g2Þ between semi-Riemannian manifolds in terms of the
second fundamental form of the immersed submanifold ðM1; f

�g2Þ in ðM2; g2Þ,
one should take into account that f�g2 can be degenerate on M1. We deal with
this general case in Section 3.

Theorem 2.1. If the manifold ðH;BÞ is semi-Riemannian, then the following
assertions are equivalent:

(1) the identity map 1H : ðH;BÞ ! ðH; gHÞ is harmonic;
(2) gH is harmonic w.r.t. B;
(3) traceBðLZBÞ ¼ traceBðLAnZg

HÞ, EZ A GðTHÞ;
(4) the stress-energy tensor Sð1HÞ is divergence free.

Proof. The equivalence (1) , (2) holds for the metric B, which is semi-
Riemannian, in a similar way as in the Riemannian context [4, page 296], where
the identity map is harmonic i¤ the metric on the target is a harmonic tensor
w.r.t. the metric on the domain. The same for the equivalence (1) , (4), which
holds as in the Riemannian case [1, Proposition 3.4.7], where a di¤eomorphism
between Riemannian manifolds is harmonic i¤ it is divergence free. To prove
the equivalence (1) , (3) we use the definition of the Levi-Civita connections ‘
and D of gH and B respectively, which yield:

2Bð‘XY �DXY ;ZÞ ¼ 2½gHð‘XY ;AnZÞ � BðDXY ;ZÞ�

¼ ðLZBÞðX ;Y Þ � ðLAnZg
HÞðX ;YÞ; EX ;Y ;Z A GðTHÞ:

To above formula we apply the trace operator w.r.t. B and since B is semi-
Riemannian, we use that 1H is harmonic i¤ Bðtð1HÞ;ZÞ ¼ 0, EZ A GðTHÞ.

Corollary 2.1. If the manifold ðHm;BÞ is semi-Riemannian, then any two
of the following assertions imply the third:

(i) the identity map 1H : ðH;BÞ ! ðH; gHÞ is harmonic;
(ii) the energy density eð1HÞ is constant;
(iii) div gH ¼ 0, where div denotes the divergence operator w.r.t. B.

Proof. From Theorem 2.1 it follows that 1H is harmonic i¤ the stress-
energy tensor field Sð1HÞ ¼ eð1HÞB� gH is divergence free (on the domain
manifold ðH;BÞ). If D denotes the Levi-Civita connection of B, then:
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½div Sð1HÞ�ðX Þ ¼ traceBðD�SÞð�;XÞ

¼ traceBð�eð1HÞÞBð�;X Þ � traceBðD�g
HÞð�;X Þ

¼
Xm
i¼1

eiðuieð1HÞÞBðui;X Þ � ðdiv gHÞðXÞ; EX A GðTHÞ;

where fuig is an orthonormal frame on ðHm;BÞ for 1a iam and ei ¼
Bðui; uiÞ ¼G1. Replacing X consecutively by each ui we complete the proof.

Remark 5. Under the condition that ðH;BÞ is semi-Riemannian, Propo-
sition 2.2 and Corollary 2.1 hold if gH and B are interchanged.

3. Minimal lightlike submanifolds

A submanifold Mm immersed in a semi-Riemannian manifold ðMmþn; gÞ
is called a lightlike submanifold if it is a lightlike manifold w.r.t. the metric
g induced from g and the radical distribution RadðTMÞ is of rank r, where
1a ram. We note that RadðTMÞ ¼ TM VTM?, where

TM? ¼ 6
x AMfu A TxM=gðu; vÞ ¼ 0; Ev A TxMg:

By following Duggal-Bejancu [7], let SðTMÞ be a screen distribution which is a
semi-Riemannian complementary distribution of RadðTMÞ in TM, i.e.

TM ¼ SðTMÞ ? RadðTMÞ

and let ½SðTMÞ�? be its complementary orthogonal vector bundle in TMjM . We
consider a screen transversal vector bundle sðTM?Þ, which is a semi-Riemannian
complementary vector bundle of RadðTMÞ in TM?, i.e.

TM? ¼ RadðTMÞ ? sðTM?Þ:

Since for any local basis fxig of RadðTMÞ, there exists a local frame fNig of

sections with values in the orthogonal complement of sðTM?Þ in ½SðTMÞ�?
such that gðxi;NjÞ ¼ dij and gðNi;NjÞ ¼ 0, it follows that there exists a lightlike
transversal vector bundle ltrðTMÞ locally spanned by fNig [7, Theorem 1.3, page
144]. Then, the following decomposition holds:

TMjM ¼ SðTMÞ ? ½RadðTMÞl ltrðTMÞ� ? sðTM?Þð3:1Þ

and the above direct sum RadðTMÞl ltrðTMÞ is semi-Riemannian. If the
transversal vector bundle is denoted by

trðTMÞ ¼ ltrðTMÞ ? sðTM?Þ;ð3:2Þ
then we have

TMjM ¼ TMl trðTMÞ:
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The following four cases occur:
Case 1: r-lightlike submanifold. r < minfm; ng;
Case 2: Co-isotropic submanifold. r ¼ n < m;
Case 3: Isotropic submanifold. r ¼ m < n;
Case 4: Totally lightlike submanifold. r ¼ m ¼ n.
Under the above notations for ðM; g;SðTMÞ; sðTM?ÞÞ, the Levi-Civita

connection ‘ of ðM; gÞ satisfies the Gauss-Weingarten type formulas:

‘XY ¼ ‘XY þ hðX ;Y Þð3:3Þ

‘XV ¼ �AVX þ ‘ t
XV ; EX ;Y A GðTMÞ; V A GðtrðTMÞÞ;

where f‘XY ;AVXg and fhðX ;YÞ;‘ t
XVg belong to GðTMÞ and GðtrðTMÞÞ,

respectively. We note that the induced linear connection ‘ is torsion free and
the transversal ‘ t is a linear connection. The second fundamental form h is a
symmetric FðMÞ-bilinear form on GðTMÞ with values in GðtrðTMÞÞ and the
shape operator AV is a linear endomorphism of GðTMÞ. From (3.2) we use the
following decomposition:

hðX ;YÞ ¼ hlðX ;Y Þ þ hsðX ;YÞ;ð3:4Þ

‘ t
XV ¼ Dl

XV þDs
XV ; EX ;Y A GðTMÞ; V A GðtrðTMÞÞ;

where fhlðX ;Y Þ;Dl
XVg and fhsðX ;YÞ;Ds

XVg belong to GðltrðTMÞÞ and
GðsðTM?ÞÞ respectively.

Theorem 3.1. Let f : ðM1; g1Þ ! ðM2; g2Þ be an immersion between semi-
Riemannian manifolds. If f�g2 is a semi-Riemannian (resp. lightlike) metric on
M1, then f is harmonic i¤ f�g2 is a harmonic tensor w.r.t. g1 and traceg1

h ¼ 0,
where h denotes the second fundamental form of the immersed semi-Riemannian
submanifold ðM1; f

�g2Þ (resp. lightlike submanifold ðM1; f
�g2;SðTM1Þ; sðTM?

1 ÞÞ)
in ðM2; g2Þ.

Proof. Let ‘M1 and ‘M2 denote the Levi-Civita connections of g1 and
g2, respectively. Let ‘ denote the Levi-Civita (resp. linear) connection of f�g2

according as the manifold ðM1; f
�g2Þ is semi-Riemannian (resp. lightlike). For

any local coordinates ðxiÞ on M1, we have:

tðfÞ ¼ g
ij
1 ‘M2

q=qxi df
q

qx j

� �
� df ‘q=qxi

q

qx j

� �
þ df ‘q=qxi

q

qx j
� ‘M1

q=qxi

q

qx j

� �� �

¼ g
ij
1 df ‘q=qxi

q

qx j
� ‘M1

q=qxi

q

qx j

� �
þ h

q

qxi
;
q

qx j

� �� �
:

This gives a decomposition of tðfÞ A f�1ðTM2Þ, by taking into account first
the identification f�1ðTM2Þ ¼ TM2jM1

and then the splitting of TM2jM1
into the

orthogonal TM1 ? TM?
1 or direct sum TM1 l trðTM1Þ, according as ðM1; f

�g2Þ
is semi-Riemannian or lightlike, which complete the proof.
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Remark 6. (i) If ðM1; f
�g2;SðTM1Þ; sðTM?

1 ÞÞ is lightlike, then the above
theorem is independent on the choice of the screen distribution SðTM1Þ, but it
depends on the choice of the transversal bundle trðTM1Þ; (ii) In the Riemannian
case, the above theorem is proved in [4].

Proposition 3.1. Let ðM; g;SðTMÞ; sðTM?ÞÞ be a lightlike submanifold of
ðM; gÞ. Then:

(i) hl ¼ 0 on RadðTMÞ;
(ii) hs ¼ 0 (in Cases 2, 4) and hs ¼ 0 on RadðTMÞ i¤ LWg ¼ 0 on

RadðTMÞ, EW A GðsðTM?ÞÞ (in Cases 1, 3).

Proof. From the definition of ‘ we have:

gð‘x 0x 00;KÞ ¼ x 0gðx 00;KÞ þ x 00gðx 0;KÞ � Kgðx 0; x 00Þ þ gð½x 0; x 00�;KÞð3:5Þ
þ gð½K ; x 0�; x 00Þ � gð½x 00;K �; x 0Þ;

Ex 0; x 00 A GðRadðTMÞÞ; K A GðTMjMÞ:

(i) Suppose hl is not identically zero on RadðTMÞ and let xð1Þ; xð2Þ A
GðRadðTMÞÞ such that hlðxð1Þ; xð2ÞÞ0 0. As the direct sum RadðTMÞl
ltrðTMÞ is semi-Riemannian and hlðxð1Þ; xð2ÞÞ is a non-zero section of the
lightlike vector bundle ltrðTMÞ, there exists x A GðRadðTMÞÞ such that

gðhlðxð1Þ; xð2ÞÞ; xÞ ¼ 1. If in (3.5) we substitute K ¼ x, x 0 ¼ xð1Þ, x 00 ¼ xð2Þ, then
from (3.3) and (3.4) we obtain:

gðhlðxð1Þ; xð2ÞÞ; xÞ ¼ gð‘xð1Þx
ð2Þ; xÞ ¼ 0;

which is a contradiction that yields the statement. (ii) From (3.5) we obtain:

gð‘x 0x 00;WÞ ¼ �ðLWgÞðx 0; x 00Þ; Ex 0; x 00 A GðRadðTMÞÞ; W A GðsðTM?ÞÞ:
Using (3.3), (3.4) and sðTM?Þ semi-Riemannian, we complete the proof.

Example 7. Let ðR4
1 ; h iÞ be the Minkowski space with signature

ðþ;þ;þ;�Þ w.r.t. the canonical basis ðq1; . . . ; q4Þ. Then the manifold
ðM; h ijM ;SðTMÞÞ is a lightlike hypersurface, given by an open subset of the
lightlike cone

M ¼ ftðcos u cos v; cos u sin v; sin u; 1Þ A R4
1=t > 0; u A ðo; p=2Þ; v A ½0; 2p�g;

where SðTMÞ ¼ spanfe1 ¼ �sin u cos vq1 � sin u sin vq2 þ cos uq3,

e2 ¼ �sin vq1 þ cos vq2g:
We note that e1 and e2 are orthonormal,

RadðTMÞ ¼ spanfx ¼ cos u cos vq1 þ cos u sin vq2 þ sin uq3 þ q4g;

ltrðTMÞ ¼ span N ¼ 1

2
ðcos u cos vq1 þ cos u sin vq2 þ sin uq3 � q4Þ

� �
;
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and hx;Ni ¼ 1. We have hðe1; e1Þ ¼ � 1

t cos u

� �
N, hðe2; e2Þ ¼ � 1

t cos u

� �
N

and hðe1; e2Þ ¼ 0. It turns out that the open subset of the lightlike cone
ðM; h ijM Þ is globally null, since x is globally defined and SðTMÞ is a spacelike

integrable distribution.

Di¤erent from above non-compact hypersurface, in the next example we
construct a lightlike submanifold of codimension > 1, which is compact.

Example 8. Let ðR8
4 ; h iÞ be the semi-Euclidean space with the signature

ð�;�;þ;þ;�;�;þ;þÞ w.r.t. the canonical basis fq1; . . . ; q8g. Then ðM; h ijM ;
SðTMÞ; sðTM?ÞÞ is a compact lightlike submanifold, given by

M ¼ T 2 � S1 ¼ fðcos u cos v; cos u sin v; sin u cos w; sin u sin w;

sin u cos v; sin u sin v; cos u cos w; cos u sin wÞ=u; v;w A ½0; 2p�g;

where SðTMÞ ¼ spanfe1 ¼ �cos u sin vq1 þ cos u cos vq2

� sin u sin vq5 þ sin u cos vq6;

e2 ¼ �sin u sin wq3 þ sin u cos wq4 � cos u sin wq7 þ cos u cos wq8g:

Here e1 is timelike, e2 is spacelike and

RadðTMÞ ¼ spanfx ¼ �sin u cos vq1 � sin u sin vq2 þ cos u cos wq3

þ cos u sin wq4 þ cos u cos vq5 þ cos u sin vq6

� sin u cos wq7 � sin u sin wq8g;
ltrðTMÞ ¼ spanfN ¼ cos u cos vq1 þ cos u sin vq2 þ cos u cos wq3

þ cos u sin wq4 þ sin u cos vq5 þ sin u sin vq6

� sin u cos wq7 � sin u sin wq8g;

sðTM?Þ ¼ ½spanfe1; e2; e3; e4g�?;

where

e3 ¼ 1

2
½ðcos uþ sin uÞðcos vq1 þ sin vq2Þ þ ðsin u� cos uÞðcos vq5 þ sin vq6Þ�;

e4 ¼ 1

2
½ðcos u� sin uÞðcos vq1 þ sin vq2Þ þ 2 cos uðcos wq3 þ sin wq4Þ

þ ðcos uþ sin uÞðcos vq5 þ sin vq6Þ � 2 sin uðcos wq7 þ sin wq8Þ�

are timelike and spacelike, respectively and e1, e2, e3, e4 are mutually orthogonal.
We have
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hðe1; e1Þ ¼ ð�cos uþ sin uÞðcos vq1 þ sin vq2Þ � cos uðcos wq3 þ sin wq4Þ
� ðsin uþ cos uÞðcos vq5 þ sin vq6Þ

þ sin uðcos wq7 þ sin wq8Þ A sðTM?Þ;
hðe2; e2Þ ¼ �ðsin u cos wq3 þ sin u sin wq4

þ cos u cos wq7 þ cos u sin wq8Þ A sðTM?Þ; hðe1; e2Þ ¼ 0:

From [7, page 166], a lightlike submanifold M of M is called totally geodesic if
any geodesic of M w.r.t. an induced linear connection ‘ is a geodesic of M w.r.t.
the Levi-Civita connection ‘. For example, any lightlike curve of a semi-
Riemannian manifold and any lightlike hyperplane of a semi-Euclidean space are
totally geodesic lightlike submanifolds.

Remark 7. A more general notion, precisely the one of minimal lightlike
submanifold M of a semi-Riemannian manifold M was not introduced yet, as far
as we know. In the semi-Riemannian context, a minimal isometric immersion
is a particular harmonic map. In [11], a harmonic map f between lightlike
manifolds is defined with the assumption that f is radical preserving (i.e. f maps
the radical of the domain into the radical of the target). This does not apply
here to define minimality, since an isometric immersion from M to M is not
radical preserving. In [6], harmonic maps from a semi-Riemannian manifold
into a lightlike manifold are defined only when the target is a Riemannian
hypersurface of a globally null manifold. This also does not apply here to define
minimality, since our domain M is lightlike. In [7, page 131], a minimal
lightlike submanifold is defined only in the particular case when M is a hy-
persurface of the Minkowski space M ¼ R4

1 . We introduce here the notion of
minimal lightlike submanifolds in a general context.

From now on we work in Case 1 or 2 so that SðTMÞ is non-zero. In view
of Proposition 3.1, we introduce the following:

Definition 2. We say that a lightlike submanifold ðM; g;SðTMÞ; sðTM?ÞÞ
isometrically immersed in a semi-Riemannian manifold ðM; gÞ is minimal if:

(i) hs ¼ 0 on RadðTMÞ and
(ii) trace h ¼ 0, where trace is written w.r.t. g restricted to SðTMÞ.

We note that in Case 2, the condition (i) is trivial. From Proposition 3.1,
this definition is independent of SðTMÞ and sðTM?Þ, but it depends on the
choice of the transversal bundle trðTMÞ.

As in the semi-Riemannian case [1, page 435], any lightlike totally geodesic
submanifold is minimal. Next, we construct a proper lightlike minimal sub-
manifold which is not totally geodesic.

Example 9. Let ðR4
1 ; h iÞ be the Minkowski space with the signature

ðþ;þ;þ;�Þ w.r.t. the canonical basis ðq1; . . . ; q4Þ and let
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S3
1 ¼ fp A R4

1=hp; pi ¼ 1g
be the 3-dimensional unit pseudosphere of index 1, which is a Lorentzian hy-
persurface of ðR4

1 ; h iÞ. We denote by ðM ¼ S3
1 � R2

1 ; gÞ the semi-Riemannian
cross product, where R2

1 is semi-Euclidean space with the signature ðþ;�Þ w.r.t.
the canonical basis fq5; q6g and g is the inner product of R6

2 ¼ R4
1 � R2

1 restricted
to M. Then the submanifold ðM; gjM ;SðTMÞ; sðTM?ÞÞ is a minimal lightlike
submanifold of M given by

M ¼ S1 �H� R ¼ fðp; t; tÞ A S3
1 � R2

1=t A R;

p ¼
ffiffiffi
2

p

2
ðcos y; sin y; cosh j; sinh jÞ A S3

1 ; y A ½0; 2p�; j A Rg;

where H is the hyperbola and

SðTMÞ ¼ spanfe1 ¼ �sin yq1 þ cos yq2; e2 ¼ sinh jq3 þ cosh jq4g:

Here e1 ¼ gðe1; e1Þ ¼ 1, e2 ¼ gðe2; e2Þ ¼ �1 and

RadðTMÞ ¼ spanfx ¼ q5 þ q6g;

ltrðTMÞ ¼ span N ¼ 1

2
ðq5 � q6Þ

� �
;

sðTM?Þ ¼ ½spanfe1; e2; q5; q6g�?

¼ span W ¼
ffiffiffi
2

p

2
ðcos yq1 þ sin yq2 � cosh jq3 � sinh jq4Þ

( )
;

where fe1; e2; q5; q6;Wg is an orthonormal basis of M. Let p ¼
ffiffi
2

p

2 ðcos yq1 þ
sin yq2 þ cosh jq3 þ sinh jq4Þ be the position vector of an arbitrary point p of
S3

1 , which is normal to S3
1 in R4

1 . Since the canonical Levi-Civita connection
‘c of R4

1 satisfies ‘c
e1
e1 ¼ � 1

2 ðW þ pÞ and ‘c
e2
e2 ¼ 1

2 ð�W þ pÞ, it follows that
hðe1; e1Þ ¼ � 1

2W , hðe1; e2Þ ¼ 0, hðe2; e2Þ ¼ � 1
2W , from which

tracegjSðTMÞ
h ¼ e1hðe1; e1Þ þ e2hðe2; e2Þ ¼ hðe1; e1Þ � hðe2; e2Þ ¼ 0:

We also have hðx; xÞ ¼ 0 and, therefore, M is a minimal lightlike submanifold of
M, which is not totally geodesic.

Note that the Examples 7 and 8 are not minimal submanifolds. The
classical notion of minimality is connected to the geometric interpretation of
being an extremal of the volume functional [8, page 391]. Here we relate the
classical minimality (in semi-Riemannian case) with the minimality introduced in
the lightlike case by Definition 2, as follows:

Theorem 3.2. Let ðM; g;SðTMÞ; sðTM?ÞÞ be a lightlike submanifold of a
semi-Riemannian manifold ðM; gÞ, with SðTMÞ integrable. If its leaves are
minimal (semi-Riemannian) submanifolds of ðM; gÞ and hs ¼ 0 on RadðTMÞ, then
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M is a lightlike minimal submanifold of M. Conversely, if M is a lightlike
minimal submanifold of M, then RadðTMÞ contains the mean curvature vector field
of any leaf of SðTMÞ.

Proof. Let i : S ! M denote the inclusion map of any leaf S of SðTMÞ.
The tension field tðiÞ of S can be decomposed from (3.1) into:

tðiÞ ¼ t?ðiÞ þ tracegjSðTMÞ h;

where t?ðiÞ A RadðTMÞ and h is defined by (3.3). Since S is minimal in M i¤ the
map i is harmonic, which means tðiÞ ¼ 0, the statement follows from Definition 2.

We observe that Example 9 satisfies Theorem 3.2 with respect to the leaves
S1 �H of SðTMÞ. Let L ¼ fx A Rnþ1

q =hx; xi ¼ 0g be the lightlike cone in the
semi-Euclidean space ðRnþ1

q ; h iÞ. Related to the non-existence result of com-
pact minimal spacelike submanifolds isometrically immersed in semi-Euclidean
spaces, we have the following:

Proposition 3.2. There are no lightlike minimal isometric immersions
f : ðM; h ijM ;SðTMÞ; sðTM?ÞÞ ! ðRnþ1

q ; h iÞ with fðMÞHL.

Proof. Suppose there exists such a map f. Then the function given by
p A M ! 1

2 hfðpÞ; fðpÞi A R is identically zero and hence,

0 ¼ 1

2
XhfðpÞ; fðpÞi ¼ hX ; fðpÞi and

0 ¼ 1

2
XðXhfðpÞ; fðpÞiÞ ¼ h‘c

XX ; fðpÞiþ hX ;Xi; Ep A M; X A GðTMÞ;

where ‘c is the canonical Levi-Civita connection of ðRnþ1
q ; h iÞ. If we replace X

consecutively by ea, where feag is the orthonormal basis of SðTMÞ, then from the
minimality condition we have:

0 ¼ htraceh ijSðTMÞ h; fðpÞi ¼ �
X
a

eahea; eai

 !
< 0;

where h is given by (3.3) and ea ¼ hea; eai, Ea. This contradiction completes the
proof.

In support of Proposition 3.2, Example 7 of the lightlike submanifold M,
which is an open subset of the lightlike cone L of ðR4

1 ; h iÞ is never minimal.
Since L is a proper totally umbilical lightlike submanifold of ðR4

1 ; h iÞ, the
Proposition 3.2 can be generalized, by using the definition of totally umbilical
lightlike submanifolds [7, page 106], as follows:

Theorem 3.3. There are no lightlike minimal submanifolds contained in a
proper totally umbilical lightlike submanifold of a semi-Riemannian manifold.
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