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THE GRADIENT OF A POLYNOMIAL AT INFINITY

Jacek Chądzyński and Tadeusz Krasiński

Abstract

We give a description of growth at infinity of the gradient of a polynomial in two

complex variables near any of its fiber.

1. Introduction

Let f : C n ! C be a non-constant polynomial and let ‘f : C n ! C n be its
gradient. There exists a finite set Bð f ÞHC such that f is a locally trivial Cy-
bundle over CnBð f Þ ([Ph], Appendix A1, [V], Corollary 5.1). The set Bð f Þ is
the union of the set of critical values Cð f Þ of f and critical values Lð f Þ cor-
responding to the singularities of f at infinity. The set Lð f Þ is defined to be the
set of all l A C for which there are no neighbourhood U of l and a compact set
K HC n such that f : f �1ðUÞnK ! U is a trivial Cy-bundle. It turns out that
for l A C the property of being in Lð f Þ depends on the behaviour of the gradient
‘f near the fiber f �1ðlÞ.

Ha in [H2] defined the notion of the Łojasiewicz exponent ~LLy;l0ð f Þ of the
gradient ‘f at infinity near a fibre f �1ðl0Þ in the following way

~LLy;l0ð f Þ :¼ lim
d!0þ

Lyð‘f j f �1ðDdÞÞ;ð1:1Þ

where Dd :¼ fl A C : jl� l0j < dg and Lyð‘f j f �1ðDdÞÞ is the Łojasiewicz ex-
ponent at infinity of the mapping ‘f on the set f �1ðDdÞ (see the definition in
Section 3) and gave, without proof, a characterization of Lð f Þ for n ¼ 2 in terms
of ~LLy;l0ð f Þ. Namely, l0 A Lð f Þ if and only if ~LLy;l0ð f Þ < 0 (or equivalently
~LLy;l0ð f Þ < �1). A generalization of this result was given by Parusiński in
[P]. Moreover, Ha also gave a formula for ~LLy;l0ð f Þ in terms of Puiseux
expansions of roots of the polynomial f � l0 at infinity for l0 A Lð f Þ (this
formula is analogous to the formula for the local Łojasiewicz exponent of the
gradient ‘f , given in [KL]).
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The aim of this paper is to give in the case n ¼ 2 a complete description of
the behaviour of the gradient ‘f near any fibre f �1ðlÞ for l A C . To achieve
this we define a more convenient Łojasiewicz exponent at infinity of ‘f near a
fibre f �1ðlÞ (equivalent to the above one, see Section 5 for n ¼ 2 and [Sk] for
arbitrary n) as the infimum of the Łojasiewicz exponents at infinity of ‘f on
meromorphic curves ‘‘approximating’’ f �1ðlÞ at infinity. Precisely, for a non-
constant polynomial f : C n ! C and l A C we define Ly;lð f Þ by

Ly;lð f Þ :¼ inf
F

deg ‘f �F
deg F

;ð1:2Þ

where F ¼ ðj1; . . . ; jnÞ is a meromorphic mapping at infinity (i.e. each ji is a
meromorphic function defined in a neighbourhood of y in C) such that deg F :¼
maxðdeg j1; . . . ; deg jnÞ > 0 and degð f � lÞ �F < 0, where deg j for j mero-
morphic at infinity is defined as follows: if jðtÞ ¼

P�y
n¼k akt

k, ak 0 0, is the
Laurent series of j in a neighbourhood of y then deg j :¼ k; if j1 0 then
deg j :¼ �y. We shall also call such mappings meromorphic curves.

The main results of the paper are e¤ective formulas for Ly;lð f Þ for each
l A C and properties of the function l 7!Ly;lð f Þ for n ¼ 2. To describe them
we outline the contents of the sections.

Section 2 has an auxiliary character and contains technical results on re-
lations between roots of a polynomial and its derivatives.

In Section 3 we investigate Ly;lð f Þ for l A Lð f Þ. In particular we obtain
the all results of Ha with complete proofs.

The main theorems are given in Section 4. They are Theorems 4.1, 4.5 and
4.6 which give e¤ective formulas for Ly;lð f Þ for each l A C in terms of the
resultant Resyð f ðx; yÞ � l; f 0

y ðx; yÞ � uÞ, where l; u are new variables, ðx; yÞ is a
generic system of coordinates in C 2 and f 0

y is the partial derivative of f with
respect to y. As a consequence we obtain (Corollary 4.7) a basic property of
the function l 7!Ly;lð f Þ. Namely,

Ly;lð f Þ ¼ const:b 0 for l B Lð f Þ;
Ly;lð f Þ A ½�y;�1Þ for l A Lð f Þ:

The key role in the proof of Theorems 4.5 and 4.6 plays Proposition 4.4 which
says that the function CnLð f Þ C l 7!Lyð‘f j f �1ðlÞÞ is constant.

In Section 5 we shall give a short proof of the equality

~LLy;lð f Þ ¼ Ly;lð f Þ for l A Cð1:3Þ

for n ¼ 2. Recently Skalski in [Sk] proved (1.3) in n-dimensional case. His
proof is based on an appropriate choice of a semi-algebraic set and the Curve
Selection Lemma.

In Section 6 characterizations (in terms of the exponents Ly;lð f Þ and
~LLy;lð f Þ) of sets for which the Malgrange and Fedorjuk conditions for f do not
hold in n-dimensional case is given.
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In the end of Introduction we explain some technical assumptions occured in
Sections 2–5. Since one can easily show that the exponent Ly;lð f Þ does not
depend on linear change of coordinates in C n we shall assume in Sections 2–5
that the polynomial f A C ½x; y� is monic with respect to y and deg f ¼ degy f .
Then we have a simple characterization of the set Lð f Þ, which will be used in the
paper. Namely, in [H1] and [K1] there was proved that

Lð f Þ ¼ fl A C : c0ðlÞ ¼ 0g;ð1:4Þ
where the polynomial c0ðlÞxN þ � � � þ cNðlÞ, c0 0 0, is the resultant of the poly-
nomials f ðx; yÞ � l, f 0

y ðx; yÞ with respect to the variable y.

2. Auxiliary results

Let f be a non-constant polynomial in two complex variables of the form

f ðx; yÞ ¼ yn þ a1ðxÞyn�1 þ � � � þ anðxÞ; deg ai a i; i ¼ 1; . . . ; n:ð2:1Þ
It can be easily showed (see [CK1]).

Lemma 2.1. If n > 1, then for every l0 A C there exist D A N and functions
b1; . . . ; bn, g1; . . . ; gn�1, meromorphic at infinity, such that

(a) deg bi aD, deg gj aD,

(b) f ðtD; yÞ � l0 ¼
Qn

i¼1ðy� biðtÞÞ,
(c) f 0

y ðtD; yÞ ¼ n
Qn�1

j¼1 ðy� gjðtÞÞ. r

We shall now give a lemma which directly follows from the property B.3 in
[GP]. Local version of this lemma was proved in [KL].

Lemma 2.2. Under notation and assumptions of Lemma 2.1 for every i; j A
f1; . . . ; ng, i0 j, there exists k A f1; . . . ; n� 1g such that

degðbi � bjÞ ¼ degðbi � gkÞð2:2Þ
and conversely for every i A f1; . . . ; ng and k A f1; . . . ; n� 1g there exists j A
f1; . . . ; ng such that (2.2) holds. r

Now we prove a proposition useful in the sequel. A local version of it is
given in [P1] and [R1]. We put ClðtÞ :¼ ðtD; glðtÞÞ, l A f1; . . . ; n� 1g.

Proposition 2.3. Under notations and assumptions of Lemma 2.1 we have

min
n

i¼1

Xn
j¼1; j0i

degðbi � bjÞ þ min
n

j¼1; j0i
degðbi � bjÞ

 !
¼ min

n�1

l¼1
ðdegð f � l0Þ �ClÞ:ð2:3Þ

Proof (after [R1]). There exists i0 A f1; . . . ; ng such that the left hand side
in (2.3) is equal to
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Xn
j¼1; j0i0

degðbi0 � bjÞ þ min
n

j¼1; j0i0
degðbi0 � bjÞ

and j0 A f1; . . . ; ng such that

min
n

j¼1; j0i0
degðbi0 � bjÞ ¼ degðbi0 � bj0Þ:ð2:4Þ

By Lemma 2.2 there exists k0 A f1; . . . ; n� 1g such that

degðbi0 � bj0Þ ¼ degðbi0 � gk0Þ:ð2:5Þ

We shall lead the further part of the proof in four steps.
A. We first show that for each j A f1; . . . ; ng we have

degðgk0 � bjÞb degðbi0 � bj0Þ:ð2:6Þ

Take any j A f1; . . . ; ng and consider two cases:
(a) degðbi0 � bj0Þaminn

s¼1; s0j degðbs � bjÞ,
(b) degðbi0 � bj0Þ > minn

s¼1; s0j degðbs � bjÞ.
In case (a) by Lemma 2.2 there exists p A f1; . . . ; ng such that

degðgk0 � bjÞ ¼ degðbp � bjÞb min
n

s¼1; s0j
degðbs � bjÞb degðbi0 � bj0Þ;

which gives (2.6).
In case (b) by definition of i0 and (2.4) we have

Xn
s¼1; s0i0

degðbs � bi0Þ þ degðbj0 � bi0Þ

a
Xn

s¼1; s0j

degðbs � bjÞ þ min
n

s¼1; s0j
degðbs � bjÞ:

Hence and from (b) we get

Xn
s¼1; s0i0

degðbs � bi0Þ <
Xn

s¼1; s0j

degðbs � bjÞ:

Then there exists s0 i0, s0 j such that

degðbs � bi0Þ < degðbs � bjÞ:
Hence and from (2.5) we get

degðbj � bi0Þ ¼ degðbj � bs þ bs � bi0Þ > degðbs � bi0Þ

b degðbj0 � bi0Þ ¼ degðgk0 � bi0Þ:

In consequence
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degðgk0 � bjÞ ¼ degðgk0 � bi0 þ bi0 � bjÞ > degðgk0 � bi0Þ ¼ degðbj0 � bi0Þ:

This gives (2.6) in case (b).
B. We shall now show that for each j A f1; . . . ; ng, j0 i0, we have

degðgk0 � bjÞ ¼ degðbi0 � bjÞ:ð2:7Þ

Take j A f1; . . . ; ng, j0 i0, and consider two cases:
(a) degðgk0 � bjÞ > degðgk0 � bi0Þ,
(b) degðgk0 � bjÞ ¼ degðgk0 � bi0Þ.
By (2.5) and (2.6) there are no more cases. In case (a) we have

degðbi0 � bjÞ ¼ degðbi0 � gk0 þ gk0 � bjÞ ¼ degðgk0 � bjÞ;

which gives (2.7).
In case (b) by (2.4) and (2.5) we have

degðbi0 � bjÞ ¼ degðbi0 � gk0 þ gk0 � bjÞa degðbi0 � gk0Þ

¼ degðbi0 � bj0Þa degðbi0 � bjÞ;

which gives (2.7) in case (b).
C. We notice that by Lemma 2.1 and equalities (2.4), (2.5) and (2.7) we

have

degð f � l0Þ �Ck0 ¼
Xn
j¼1

degðgk0 � bjÞ

¼
Xn

j¼1; j0i0

degðgk0 � bjÞ þ degðgk0 � bi0Þ

¼
Xn

j¼1; j0i0

degðbi0 � bjÞ þ min
n

j¼1; j0i0
degðbi0 � bjÞ:

Thus we have shown

min
n

i¼1

Xn
j¼1; j0i

degðbi � bjÞ þ min
n

j¼1; j0i
degðbi � bjÞ

 !
bmin

n�1

l¼1
ðdegð f � l0Þ �ClÞ:ð2:8Þ

D. We shall now show the inequality opposite to (2.8). There exist l0 A
f1; . . . ; n� 1g and j0 A f1; . . . ; ng such that

min
n�1

l¼1
ðdegð f � l0Þ �ClÞ ¼ degð f � l0Þ �Cl0 ;ð2:9Þ

min
n

j¼1
degðgl0 � bjÞ ¼ degðgl0 � bj0Þ:ð2:10Þ

Observe first that for any j A f1; . . . ; ng, j0 j0, we have by (2.10)
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degðbj � bj0Þ ¼ degðbj � gl0 þ gl0 � bj0Þa degðbj � gl0Þ:ð2:11Þ
By Lemma 2.2 there exists k0 A f1; . . . ; n� 1g such that degðgl0 � bj0Þ ¼
degðbk0 � bj0Þ. Hence using Lemma 2.1 and (2.11) we get

degð f � l0Þ �Cl0 ¼
Xn
j¼1

degðgl0 � bjÞb
Xn

j¼1; j0j0

degðbj0 � bjÞ þ degðgl0 � bj0Þ

b
Xn

j¼1; j0j0

degðbj0 � bjÞ þ min
n

j¼1; j0j0
degðbj � bj0Þ;

which gives the inequality opposite to (2.8).
This ends the proof. r

3. Critical values at infinity

Let F : C n ! C m, nb 2, be a polynomial mapping and let SHC n be an
unbounded set. We define

NðF jSÞ :¼ fn A R : bA;B > 0 Ez A S; ðjzj > B ) jF ðzÞjbAjzjnÞg;
where j � j is the polycylindric norm. If S ¼ C n we put NðFÞ :¼ NðF jC nÞ.

By the Łojasiewicz exponent at infinity of F jS we shall mean LyðF jSÞ :¼
sup NðF jSÞ when NðF jSÞ0j, and �y when NðF jSÞ ¼ j. Analogously
LyðFÞ :¼ sup NðFÞ when NðF Þ0j, and �y when NðF Þ ¼ j.

We give now a lemma needed in the sequel, which gives known formulas for
the Łojasiewicz exponent at infinity of a polynomial on the zero set of another
one. Let g; h be polynomials in two complex variables ðx; yÞ and

0 < deg h ¼ degy h:

Let t A C and Rðx; tÞ :¼ Resyðgðx; yÞ � t; hðx; yÞÞ be the resultant of gðx; yÞ � t
and hðx; yÞ with respect to y. We put

Rðx; tÞ ¼ R0ðtÞxK þ � � � þ RKðtÞ; R0 0 0;

T :¼ h�1ð0Þ:

Lemma 3.1 ([P2], Proposition 2.4). Under above notation and assumptions
there is:

(i) LyðgjTÞ > 0 if and only if R0 ¼ const:,
(ii) LyðgjTÞ ¼ 0 if and only if R0 0 const: and R0ð0Þ0 0,
(iii) �y < LyðgjTÞ < 0 if and only if there exists r such that R0ð0Þ ¼ � � � ¼

Rrð0Þ ¼ 0 and Rrþ1ð0Þ0 0,
(iv) LyðgjTÞ ¼ �y if and only if R0ð0Þ ¼ � � � ¼ RKð0Þ ¼ 0.

Moreover, in case (i)

LyðgjTÞ ¼ max
K

i¼1

deg Ri

i

� ��1
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and in case (iii)

LyðgjTÞ ¼ � min
r

i¼0

ord0 Ri

rþ 1� i

� ��1

: r

Let f be a polynomial in two complex variables of the form (2.1) and
deg f > 1. Fix l0 A C , denote z :¼ ðx; yÞ and define

Sl0 :¼ fz A C 2 : f ðzÞ ¼ l0g;

Y :¼ fz A C 2 : f 0
y ðzÞ ¼ 0g:

In notation of Lemma 2.1 we put FiðtÞ :¼ ðtD; biðtÞÞ for i A f1; . . . ; ng and as
previously CjðtÞ :¼ ðtD; gjðtÞÞ for j A f1; . . . ; n� 1g.

Under these notation we give, without proof, a simple lemma which follows
easily from Lemma 2.1.

Lemma 3.2. We have
(i) deg Fi ¼ D, i ¼ 1; . . . ; n, deg Cj ¼ D, j ¼ 1; . . . ; n� 1,
(ii) Lyð f 0

y jSl0Þ ¼ ð1=DÞ minn
i¼1 deg f 0

y �Fi,

(iii) Lyð f � l0 jY Þ ¼ ð1=DÞ minn�1
j¼1 degð f � l0Þ �Cj. r

Now, we give a theorem important in the sequel.

Theorem 3.3. If Lyð f � l0; f
0
y Þ < 0, then

(i) Lyð f � l0; f
0
y Þ ¼ Lyð f � l0 jYÞ,

(ii) l0 A Lð f Þ.
Moreover, if additionally Lyð f � l0; f

0
y Þ0�y then

Lyð f � l0 jYÞ < Lyð f 0
y jSl0Þ:ð3:1Þ

Proof. Let us start from (i). In the case Lyð f � l0; f
0
y Þ ¼ �y we get

easily (cf. [CK3], Theorem 3.1(iv)) that Lyð f � l0 jYÞ ¼ �y, which gives (i) in
this case.

Let us assume now that Lyð f � l0; f
0
y Þ0�y. In this case by the Main

Theorem in [CK1], (cf. [CK4], Theorem 1) we have

Lyð f � l0; f
0
y Þ ¼ minðLyð f � l0 jYÞ;Lyð f 0

y jSl0ÞÞ:ð3:2Þ

Hence to prove (i) in this case it su‰ces to show (3.1).
Assume to the contrary that (3.1) does not hold. Then by (3.2) and the

assumption of the theorem we have Lyð f 0
y jSl0Þ < 0. On the other hand, by

Lemma 3.2(ii) there exists i A f1; . . . ; ng such that

deg f 0
y �Fi ¼ DLyð f 0

y jSl0Þ:ð3:3Þ

By the above we get deg f 0
y �Fi < 0. Hence we have
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deg f 0
y �Fi ¼

Xn
j¼1; j0i

degðbi � bjÞ

>
Xn

j¼1; j0i

degðbi � bjÞ þ min
n

j¼1; j0i
degðbi � bjÞ:

In consequence we get

deg f 0
y �Fi > min

n

k¼1

Xn
j¼1; j0k

degðbk � bjÞ þ min
n

j¼1; j0k
degðbk � bjÞ

 !
:

Hence by Proposition 2.3, Lemma 3.2(iii) and (3.3)

Lyð f � l0 jYÞ < Lyð f 0
y jSl0Þ;

which gives a contradiction. Then (3.1) holds.
Assertion (ii) is a simple consequence of the facts Lyð f � l0 jYÞ < 0,

Lemma 3.1 and (1.4).
This ends the proof. r

Let us fix the same notation as in Theorem 3.3.

Theorem 3.4. If Lyð f � l0; f
0
y Þ < 0, then

Ly;l0ð f Þ ¼ Lyð f � l0; f
0
y Þ � 1:ð3:4Þ

Proof. If Lyð f � l0; f
0
y Þ ¼ �y, then by Theorem 3.3(i) Lyð f � l0 jY Þ ¼

�y. Hence by Lemma 3.2(iii) there exists j A f1; . . . ; n� 1g such that ð f � l0Þ �
Cj 1 0. This implies f 0

y �Cj 1 f 0
x �Cj 1 0. Hence deg ‘f �Cj ¼ �y and in

consequence Ly;l0ð f Þ ¼ �y, which gives (3.4) in this case.
If �y < Lyð f � l0; f

0
y Þ < 0 then again by Theorem 3.3(i) it su‰ces to show

that

Ly;l0ð f Þ ¼ Lyð f � l0 jYÞ � 1:ð3:5Þ
We shall first show the inequality

Ly;l0ð f ÞbLyð f � l0 jY Þ � 1:ð3:6Þ
According to definition (1.2) of Ly;l0ð f Þ it su‰ces to show that for any mer-
omorphic curve FðtÞ ¼ ðj1ðtÞ; j2ðtÞÞ satisfying

deg F > 0;ð3:7Þ
degð f � l0Þ �F < 0;ð3:8Þ

we have

deg ‘f �F
deg F

bLyð f � l0 jYÞ � 1:ð3:9Þ
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From (3.7) and (3.8) it easily follows deg j1 > 0. Superposing F, if necessary,
with a meromorphic function at y of degree 1, we may assume that FðtÞ ¼
ðtdeg j1 ; jðtÞÞ. Then by (3.8) we also get easily that deg F ¼ deg j1. On the
other hand, by Lemma 3.2(iii) it follows that there exists l� A f1; . . . ; n� 1g such
that

Lyð f � l0 jY Þ ¼ degð f � l0Þ �Cl�

deg Cl�

:ð3:10Þ

Hence we get that inequality (3.9) can be replaced by the inequality

deg ‘f �F
deg F

b
degð f � l0Þ �Cl�

deg Cl�

� 1:ð3:11Þ

At the cost of superpositions of F and Cl� , if necessary, with appropriate powers
of ta and tb, which does not change the value of fraction in (3.11), we may
assume that deg F ¼ deg Cl� . Moreover, increasing D in Lemma 2.1 we may
also assume that deg F ¼ D. Summing up, to show (3.6) it su‰ces to prove

deg ‘f �Fb degð f � l0Þ �Cl� �D:ð3:12Þ
Before the proof of this we notice that inequality (3.8) implies easily the

following

degð f � l0Þ �Fa deg ‘f �FþD:ð3:13Þ
Consider now two cases:
(a) there exists l0 A f1; . . . ; n� 1g such that

degðj� gl0Þ < min
n

i¼1
degðj� biÞ;

(b) for each l A f1; . . . ; n� 1g

degðj� glÞb min
n

i¼1
degðj� biÞ:

In case (a) for each j A f1; . . . ; ng we have

degðgl0 � bjÞ ¼ degðgl0 � jþ j� bjÞ ¼ degðj� bjÞ:
Then

degð f � l0Þ �Cl0 ¼ degð f � l0Þ �F:

Hence, from (3.10) and Lemma 3.2(iii) we get

degð f � l0Þ �Cl� a degð f � l0Þ �F:ð3:14Þ
By (3.13) and (3.14) we get (3.12) in case (a).

We shall now show (3.12) in case (b). Let minn
i¼1 degðj� biÞ ¼ degðj� bi0Þ

for some i0 A f1; . . . ; ng. Then for each l A f1; . . . ; n� 1g
degðbi0 � glÞ ¼ degðbi0 � jþ j� glÞa degðj� glÞ:
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Hence

deg f 0
y �Fi0 a deg f 0

y �F:ð3:15Þ
On the other hand, by Proposition 2.3, Lemma 3.2(iii), and (3.10)

deg f 0
y �Fi0 ¼

Xn
j¼1; j0i0

degðbi0 � bjÞ

¼
Xn

j¼1; j0i0

degðbi0 � bjÞ þ min
n

j¼1; j0i0
degðbi0 � bjÞ � min

n

j¼1; j0i0
degðbi0 � bjÞ

b min
n

k¼1

Xn
j¼1; j0k

degðbk � bjÞ þ min
n

j¼1; j0k
degðbk � bjÞ

 !
�D

¼ DLyð f � l0 jYÞ �D ¼ degð f � l0Þ �Cl� �D:

Hence and by (3.15) we get

deg f 0
y �Fb degð f � l0Þ �Cl� �D:ð3:16Þ

By (3.16) and the obvious inequality deg ‘f �Fb deg f 0
y �F we get inequality

(3.12) in case (b). Then we have proved (3.12) and in consequence (3.6).
To finish the proof we have to show

Ly;l0ð f ÞaLyð f � l0 jY Þ � 1:ð3:17Þ

By assumption, Theorem 3.3(i) and (3.10) we have

degð f � l0Þ �Cl� < 0:ð3:18Þ
Hence

degð f � l0Þ �Cl� ¼ deg ‘f �Cl� þD:ð3:19Þ
Hence and from (3.10) we get

Lyð f � l0 jY Þ � 1 ¼ deg ‘f �Cl�

deg Cl�

:

Hence taking into account (3.18) and (1.2) we obtain (3.17).
This ends the proof of the theorem. r

We shall now give three simple corollaries of Theorems 3.3 and 3.4.

Corollary 3.5. The following conditions are equivalent:
(i) Lyð f � l0; f

0
y Þ < 0,

(ii) Ly;l0ð f Þ < �1,
(iii) Ly;l0ð f Þ < 0,
(iv) l0 A Lð f Þ,
(v) Lyð f � l0 jYÞ < 0.
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Proof. (i) ) (ii). Theorem 3.4.
(ii) ) (iii). Obvious.
(iii) ) (i). By definition of Ly;l0ð f Þ there exists a meromorphic curve F,

deg F> 0, such that degðð f � l0Þ �F; f 0
y �FÞ ¼: a< 0. Hence Lyð f � l0; f

0
y Þa

a=deg F < 0.
(i) ) (iv). Theorem 3.3(ii).
(iv) ) (i). [CK3], Theorem 3.1.
(i) ) (v). Theorem 3.3(i).
(v) ) (i). By Lemma 3.2 (iii) there exists a meromorphic curve C, deg C> 0,

such that degðð f � l0Þ �C; f 0
y �CÞ ¼: a < 0. Hence Lyð f � l0; f

0
y Þa a=deg C

< 0.
This ends the proof. r

Corollary 3.6. If Lyð‘f Þa�1, then
(i) there exists l0 A C such that Lyð‘f Þ ¼ Ly;l0ð f Þ,
(ii) Lyð‘f Þ ¼ Lyð‘f jY Þ.

Proof. Let F, deg F > 0, be a meromorphic curve on which the Łojasiewicz
exponent Lyð‘f Þ is attained. Then

Lyð‘f Þ ¼ deg ‘f �F
deg F

:ð3:20Þ

We shall show

deg f �Fa 0:ð3:21Þ

Indeed, it su‰ces to consider the case deg f �F0 0. Then

deg f �F
deg F

a
deg ‘f �F

deg F
þ 1 ¼ Lyð‘f Þ þ 1a 0;

which gives (3.21).
Inequality (3.21) implies that there exists l0 A C such that

degð f � l0Þ �F < 0:ð3:22Þ

Then by (3.20), (3.22) and (1.2) we get Ly;l0ð f ÞaLyð‘f Þ. The opposite in-
equality is obvious. This gives (i).

From (3.22), the assumption and (3.20) we get Lyð f � l0; f
0
y Þ < 0. Hence

according to (i) and Theorems 3.4 and 3.3(i) we get

Lyð‘f Þ ¼ Lyð f � l0 jY Þ � 1:

Hence and from the obvious inequality

Lyð f � l0 jYÞ � 1bLyð‘f jY Þ

we obtain
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Lyð‘f ÞbLyð‘f jYÞ:
The opposite inequality is obvious, which gives (ii).

This ends the proof. r

Corollary 3.7. If Lyð f � l0; f
0
y Þ< 0 and functions b1; . . . ; bn, meromorphic

at infinity, are as in Lemma 2.1 then

Ly;l0ð f Þ þ 1 ¼ 1

D
min
n

i¼1

Xn
j¼1; j0i

degðbi � bjÞ þ min
n

j¼1; j0i
degðbi � bjÞ

 !
:ð3:23Þ

Proof. By Theorems 3.4 and 3.3 (i) we get

Ly;l0ð f Þ þ 1 ¼ Lyð f � l0 jYÞ:

Hence, using Lemma 3.2 (iii) and Proposition 2.3 we obtain (3.23).
This ends the proof. r

At the end of this section we notice that from Corollary 3.5 it follows that
all results of this section concern critical values of f at infinity. Indeed, by
Corollary 3.5 one can always replace the assumption Lyð f � l0; f

0
y Þ < 0 with the

assumption l0 A Lð f Þ.
We shall now discuss the relation of the above three corollaries with the

results by Ha [H2]. It shall be shown in Section 5 that the above Łojasiewicz
exponent Ly;lð f Þ, defined by (1.2), coincides with the Łojasiewicz exponent
~LLy;lð f Þ, defined by (1.1), introduced by Ha in [H2]. Thus Corollary 3.5 is a
changed and extended version of Theorems 1.3.1 and 1.3.2 in [H2]. A proof of
Theorem 1.3.2 in [H2] was also given by Kuo and Parusiński ([KP], Theorem
3.1). In turn, Corollaries 3.6(i) and 3.7 correspond exactly to Theorems 1.4.3
and 1.4.1 in [H2], respectively.

4. E¤ective formulas for Ly;lð f Þ

In this section f is a polynomial in two complex variables of the form

(2.1). Let ðl; uÞ A C 2 and Qðx; l; uÞ :¼ Resyð f � l; f 0
y � uÞ be the resultant of the

polynomials f � l and f 0
y � u with respect to the variable y. By the definition

of the resultant we get easily that Qð0; l; 0Þ ¼ Gnnln�1 þ terms of lower degrees.
Hence Q0 0. We put

Qðx; l; uÞ ¼ Q0ðl; uÞxN þ � � � þQNðl; uÞ; Q0 0 0:ð4:1Þ

Let us pass now to the e¤ective calculations of Ly;lð f Þ. We start with the
first main theorem concerning the case when l0 is a critical value of f at infinity.

Theorem 4.1. A point l0 A C is a critical value of f at infinity if and only if
Q0ðl0; 0Þ ¼ 0. Moreover
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(i) Ly;l0ð f Þ ¼ �y if and only if Q0ðl0; 0Þ ¼ � � � ¼ QNðl0; 0Þ ¼ 0,
(ii)

Ly;l0ð f Þ ¼ �1� min
r

i¼0

ordðl0;0Þ Qi

rþ 1� i

� ��1

if and only if there exists r A f0; . . . ;N � 1g such that Q0ðl0; 0Þ ¼ � � � ¼
Qrðl0; 0Þ ¼ 0, Qrþ1ðl0; 0Þ0 0.

Proof. By Corollary 3.5 (iv) , (i) and Theorem 3.1 in [CK3] we get the
first assertion of the theorem. The second one follows from Theorems 3.1 and
3.3 in [CK3] and Theorem 3.4. r

The next considerations will be preceded by two lemmas. First we introduce
notations.

Let MðtÞ be the field of germs of meromorphic functions at infinity i.e.
the field of all Laurent series of the form

Pþy
n¼�k a�nt

�n, k A Z, convergent in a

neighbourhood of y A C . Let MðtÞ� :¼ 6y
k¼1

Mðt1=kÞ be the field of convergent
Puiseux series at infinity. Similarly as in the local case MðtÞ� is an algebra-
ically closed field. If j A MðtÞ� and jðtÞ ¼ cðt1=kÞ for c A MðtÞ, then we define
deg j :¼ ð1=kÞ deg c.

Using simple properties of the function deg and the Vieta formulae we
obtain

Lemma 4.2. Let

Pðx; tÞ ¼ c0ðtÞxN þ c1ðtÞxN�1 þ � � � þ cNðtÞ ¼ c0ðtÞðx� j1ðtÞÞ � � � ðx� jNðtÞÞ;
where c0; c1; . . . ; cN A MðtÞ, c0 0 0, j1; . . . ; jN A MðtÞ�. Then

max
N

i¼1
deg ji ¼ max

N

i¼1

deg ci � deg c0

i
: r

Let f be, as previously, a polynomial of the form (2.1). For every l A C we
put, as before, Sl :¼ f �1ðlÞ. Directly, by Lemmas 2.1 and 3.2, we get for every
l A C

Lyð‘f jSlÞ ¼ Lyð f 0
y jSlÞ:ð4:2Þ

Lemma 4.3. The function CnLð f Þ C l 7!Lyð‘f jSlÞ is lower semicontin-
uous.

Proof. Take l0 A CnLð f Þ. Theorem 2 in [K2] gives that there exist a
neighbourhood K of l0, a positive integer D, a vicinity U of infinity in C and
holomorphic functions K �U C ðl; tÞ 7! biðl; tÞ, i ¼ 1; . . . ; n, such that for every
l A K we have:

(a) functions U C t 7! biðl; tÞ, i ¼ 1; . . . ; n, are meromorphic at infinity,
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(b) degt biðl; tÞaD, i ¼ 1; . . . ; n,
(c) f ðtD; yÞ � l ¼

Qn
i¼1ðy� biðl; tÞÞ.

Put Fiðl; tÞ :¼ ðtD; biðl; tÞÞ. By (a), (b), (c) and Lemma 3.2 we have for every
l A K

Lyð f 0
y jSlÞ ¼

1

D
min
n

i¼1
degt f

0
y �Fiðl; tÞ:

Since for every i A f1; . . . ; ng the holomorphic function K �U C ðl; tÞ 7! f 0
y �

Fiðl; tÞ has an expansion in U in a Laurent series in variable t with coe‰cients
holomorphic in K , then the function K C l 7! minn

i¼1 degt f
0
y �Fiðl; tÞ is constant

in a vicinity ~KK HK of l0 and takes a value not greater than this constant at l0.
In consequence CnLð f Þ C l 7!Lyð f 0

y jSlÞ is lower semicontinuous. Hence and
by (4.2) we get the assertion of the theorem. r

Now, we shall prove an important proposition, which was indicated to us by
A. Płoski. He obtained this result by studying the polar quotients. We shall
give another direct proof of it.

Let

d :¼ max
N

i¼1

degu Qi

i

� ��1

:ð4:3Þ

By an elementary property of the resultant Q it follows d > 0.

Proposition 4.4. The function CnLð f Þ C l 7!Lyð‘f jSlÞ is constant.
Moreover,

(i) if degu Q0 ¼ 0, then Lyð‘f jSlÞ ¼ d for l A CnLð f Þ,
(ii) if degu Q0 > 0, then Lyð‘f jSlÞ ¼ 0 for l A CnLð f Þ.

Proof. According to (4.2) it su‰ces to show the function CnLð f Þ C l 7!
Lyð f 0

y jSlÞ is constant.

Assume first degu Q0 ¼ 0. By the first assertion of Theorem 4.1 we have
Q0ðl0; 0Þ0 0 for every l0 B Lð f Þ. Then by Lemma 3.1

Lyð f 0
y jSl0Þ ¼ max

N

i¼1

degu Qiðl0; uÞ
i

� ��1

:ð4:4Þ

Hence and (4.3) it follows there exists a finite set W1ð f ÞHCnLð f Þ such that

Lyð f 0
y jSlÞ ¼ d for l B ðLð f ÞUW1ð f ÞÞ

and

Lyð f 0
y jSlÞ > d for l A W1ð f Þ:

On the other hand, by Lemma 4.3, the function CnLð f Þ C l 7!Lyð f 0
y jSlÞ is

lower semicontinuous. Hence W1ð f Þ ¼ j. This gives (i).
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Assume now degu Q0 > 0. Let W2ð f Þ ¼ fl0 A CnLð f Þ : degu Q0ðl0; uÞ ¼ 0g.
Clearly, W2ð f Þ is a finite set. Then by Lemma 3.1 we have

Lyð f 0
y jSlÞ ¼ 0 for l B ðLð f ÞUW2ð f ÞÞ

and

Lyð f 0
y jSlÞ > 0 for l A W2ð f Þ:

By Lemma 4.3 the function CnLð f Þ C l 7!Lyð f 0
y jSlÞ is lower semicontinuous.

Hence W2ð f Þ ¼ j. This gives (ii).
This ends the proof. r

Now, we shall prove the second main theorem of the paper.

Theorem 4.5. If degu Q0 ¼ 0 then

Ly;lð f Þ ¼ d for l A CnLð f Þ:ð4:5Þ

Proof. Let l0 B Lð f Þ. We first show that

daLy;l0ð f Þ:ð4:6Þ

Take an arbitrary meromorphic curve FðtÞ ¼ ðxðtÞ; yðtÞÞ such that deg F > 0 and
degð f � l0Þ �F < 0. To show (4.6) it su‰ces to prove

deg f 0
y �F

deg F
b d:ð4:7Þ

Notice that the inequality degð f � l0Þ �F < 0 and (2.1) imply immediately
deg F ¼ deg x. Put lðtÞ :¼ f �FðtÞ, uðtÞ :¼ f 0

y �FðtÞ. By a property of the
resultant we have

QðxðtÞ; lðtÞ; uðtÞÞ1 0:ð4:8Þ

By the first assertion of Theorem 4.1 and the assumption of the theorem we have
Q0ðl0; 0Þ0 0 and Q0 does not depend on u. Since degðlðtÞ � l0Þ < 0 then

deg Q0ðlðtÞ; uðtÞÞ ¼ 0:ð4:9Þ
By (4.9) and (4.8) taking into account deg x > 0 and deg la 0 we get easily

deg u > 0:ð4:10Þ
Consider the polynomial in variable x

Qðx; lðtÞ; uðtÞÞ ¼ Q0ðlðtÞ; uðtÞÞxN þ � � � þQNðlðtÞ; uðtÞÞ

with coe‰cients meromorphic at infinity. Identifying meromorphic functions at
infinity with their germs in MðtÞ and using (4.8), (4.9) and Lemma 4.2 we get

deg xðtÞa max
N

i¼1

deg QiðlðtÞ; uðtÞÞ
i

:
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Hence and from the inequalities (4.10) and deg lðtÞa 0 we obtain

deg xðtÞa deg uðtÞ max
N

i¼1

degu Qiðl; uÞ
i

¼ 1

d
deg uðtÞ:

This gives (4.7) and then (4.6).
Now, we shall prove that

Ly;l0ð f Þa d:ð4:11Þ

By Proposition 4.4 and (4.2) Lyð f 0
y jSl0Þ ¼ d. Hence and by Lemma 3.2 (ii)

there exists i A f1; . . . ; ng such that

deg f 0
y �Fi

deg Fi

¼ d:

On the other hand we have deg ‘f �Fi ¼ deg f 0
y �Fi. Summing up, deg Fi > 0

and

degð f � l0Þ �Fi ¼ �y;
deg ‘f �Fi

deg Fi

¼ d:

Then by definition (1.2) of Ly;l0ð f Þ we get Ly;l0ð f Þa d.
This ends the proof. r

Now, we shall prove the third main theorem of the paper.

Theorem 4.6. If degu Q0 > 0 then

Ly;lð f Þ ¼ 0 for l A CnLð f Þ:ð4:12Þ

Proof. Let l0 B Lð f Þ.
If deg f ¼ 1 then we check easily that Ly;l0ð f Þ ¼ 0.
Assume that deg f > 1. Let us notice first that by l0 B Lð f Þ and Corollary

3.5 (iii) ) (iv)

Ly;l0ð f Þb 0:ð4:13Þ

So, it su‰ces to show the inequality opposite to (4.13). By Proposition
4.4 and (4.2) Lyð f 0

y jSl0Þ ¼ 0. Hence and by Lemma 3.2 (ii) there exists i A
f1; . . . ; ng such that deg f 0

y �Fi ¼ 0. On the other hand we have deg ‘f �Fi ¼
deg f 0

y �Fi. Summing up, deg Fi > 0 and

degð f � l0Þ �Fi ¼ �y;
deg ‘f �Fi

deg Fi

¼ 0:

Then by definition (1.2) of Ly;l0ð f Þ we get Ly;l0ð f Þa 0.
This ends the proof. r

From Theorems 4.1, 4.5, 4.6 we obtain
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Corollary 4.7. The function C C l 7!Ly;lð f Þ takes values in ½�y;�1Þ
if and only if l A Lð f Þ. This function is constant and non-negative outside Lð f Þ.

r

Now, we compare the functions l 7!Ly;lð f Þ and l 7!Lyð‘f jSlÞ.
Put Lyð f Þ :¼ fl A C : Q0ðl; 0Þ ¼ � � � ¼ QNðl; 0Þ ¼ 0g. By the first assertion

of Theorem 4.1 we have Lyð f ÞHLð f Þ.

Theorem 4.8. The functions C C l 7!Ly;lð f Þ and C C l 7!Lyð‘f jSlÞ are
identical on the set ðCnLð f ÞÞULyð f Þ. Namely,

(a) if degu Q0 ¼ 0, then Ly;lð f Þ ¼ Lyð‘f jSlÞ ¼ d for l B Lð f Þ,
(b) if degu Q0 > 0, then Ly;lð f Þ ¼ Lyð‘f jSlÞ ¼ 0 for l B Lð f Þ,
(c) Ly;lð f Þ ¼ Lyð‘f jSlÞ ¼ �y for l A Lyð f Þ.

For l A Lð f ÞnLyð f Þ we have Ly;lð f Þ < Lyð‘f jSlÞ � 1.

Proof. Assertion (a) and (b) are simple consequences of Theorems 4.5, 4.6
and Proposition 4.4. We get assertion (c) from Theorem 4.1, Lemma 3.1 and
(4.2).

If l0 A Lð f ÞnLyð f Þ then there exists r A f0; . . . ;N � 1g such that Q0ðl0; 0Þ ¼
� � � ¼ Qrðl0; 0Þ ¼ 0, Qrþ1ðl0; 0Þ0 0. Then by Theorem 4.1 �y < Ly;l0ð f Þ < 0.
Hence and by Corollary 3.5, Lyð f � l0; f

0
y Þ < 0. Then by Theorems 3.4, 3.3

and the formula (4.2) we obtain

Ly;l0ð f Þ þ 1 ¼ Lyð f � l0; f
0
y Þ ¼ Lyð f � l0 jY Þ < Lyð f 0

y jSl0Þ ¼ Lyð‘f jSl0Þ:
This ends the proof. r

We illustrate the above corollary and theorem with two simple examples

Example 4.9. (a) For f ðx; yÞ :¼ ynþ1 þ xyn þ y, n > 1, we have Ly;lð f Þ ¼
Lyð‘f jSlÞ ¼ 1=n for l0 0 and Ly;0ð f Þ ¼ �1� 1=ðn� 1Þ, Lyð‘f jS0Þ ¼ 0.

(b) For f ðx; yÞ :¼ y2 we have Ly;lð f Þ ¼ Lyð‘f jSlÞ ¼ 0 for l0 0 and
Ly;0ð f Þ ¼ Lyð‘f jS0Þ ¼ �y. r

At the end of this section we shall give a theorem that the exponent Ly;lð f Þ
is attained on a meromorphic curve.

Under notation of Lemma 3.2 we have

Theorem 4.10. If l0 2 ðCnLð f ÞÞULyð f Þ then there exists i A f1; . . . ; ng
such that

Ly;l0ð f Þ ¼
deg ‘f �Fi

deg Fi

:ð4:14Þ

If l0 A Lð f Þ then there exists j A f1; . . . ; n� 1g such that

Ly;l0ð f Þ ¼
deg ‘f �Cj

deg Cj

:ð4:15Þ
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Proof. Equality (4.14) is a simple consequence of Theorem 4.8 and Lemma
3.2.

For l0 A Lð f Þ by Theorems 3.3 and 3.4 we obtain

Ly;l0ð f Þ ¼ Lyð f � l0 jY Þ � 1:ð4:16Þ

By Lemma 3.2 there exists j A f1; . . . ; n� 1g such that

Lyð f � l0 jYÞ ¼ degð f � l0Þ �Cj

deg Cj

:

From Corollary 3.5 degð f � l0Þ �Cj < 0. Hence by a simple calculation we get

Lyð f � l0 jYÞ � 1 ¼ deg ‘f �Cj

deg Cj

:

Then, using (4.16) we obtain (4.15).
This ends the proof. r

5. Equivalence of the definitions of ~LLy;lð f Þ and Ly;lð f Þ

In the Introduction we have defined ~LLy;lð f Þ and Ly;lð f Þ by formulas (1.1)
and (1.2), respectively. We notice that the limit in (1.1) always exists (it may
happen to be �y) because by definition of Lyð‘f j f �1ðDdÞÞ the function d 7!
Lyð‘f j f �1ðDdÞÞ is non-increasing.

We now prove (1.3) for n ¼ 2.

Theorem 5.1. Let f : C 2 ! C be a non-constant polynomial and l0 A C .
Then

~LLy;l0ð f Þ ¼ Ly;l0ð f Þ
holds.

Proof. Obviously

~LLy;l0ð f ÞaLy;l0ð f Þ:

We shall now prove the opposite inequality. Since the set Lð f Þ is finite then
there is a d> 0 such that ðDdnfl0gÞVLð f Þ ¼ j, where Dd ¼ fl A C : jl� l0jadg.
According to Corollary 4.7 we have

Ly;lð f ÞbLy;l0ð f Þ for l A Dd:ð5:1Þ

Since the set f �1ðDdÞ is semi-algebraic and closed in C 2, by the Curve Selection
Lemma the exponent Lyð‘f j f �1ðDdÞÞ is attained on a meromorphic curve Fd,
deg Fd > 0, lying in this set (see [CK4], Proposition 1). It is easy to see that

there exists ~ll A Dd such that degð f � ~llÞ �Fd < 0. By definition of Ly; ~llð f Þ and
(5.1) we get Lyð‘f j f �1ðDdÞÞbLy; ~llð f ÞbLy;l0ð f Þ. Hence
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lim
d!0þ

Lyð‘f j f �1ðDdÞÞ ¼ lim
d!0þ

Lyð‘f j f �1ðDdÞÞbLy;l0ð f Þ:

This ends the proof. r

6. n-dimensional case

Let f : C n ! C , nb 2, be a non-constant polynomial. In Section 3 we
have described the set Lð f Þ of critical values of f at infinity for n ¼ 2 in terms
of the exponent Ly;lð f Þ. In this section we shall characterize two another sets
also connected to behaviour of the gradient of f at infinity in terms of Ly;lð f Þ
and ~LLy;lð f Þ.

Let’s start with definitions.
A polynomial f is said to satisfy the Malgrange condition for a value l0 A C

if

bh0; d0;R0 > 0 Ep A C n; ðjpj > R05j f ðpÞ � l0j< d0 ) jpj j‘f ðpÞj > h0Þ:ð6:1Þ

By Kyð f Þ we denote the set of l A C for which the Malgrange condition does not
hold. It is easy to check that l A Kyð f Þ if and only if there exists a sequence
fpkgHC n such that

lim
k!y

jpkj ¼ y; lim
k!y

f ðpkÞ ¼ l; and lim
k!y

jpkj j‘f ðpkÞj ¼ 0:ð6:2Þ

A polynomial f is said to satisfy the Fedorjuk condition for a value l0 A C
if

bh0; d0;R0 > 0 Ep A C n; ðjpj > R05j f ðpÞ � l0j < d0 ) j‘f ðpÞj > h0Þ:ð6:3Þ

By ~KKyð f Þ we denote the set of l A C for which the Fedorjuk condition does not
hold. It is easy to check that l A ~KKyð f Þ if and only if there exists a sequence
fpkgHC n such that

lim
k!y

jpkj ¼ y; lim
k!y

f ðpkÞ ¼ l; and lim
k!y

j‘f ðpkÞj ¼ 0:ð6:4Þ

The known properties of the sets Lð f Þ, Kyð f Þ and ~KKyð f Þ are collected in
the following proposition.

Proposition 6.1 (cf. [JK], [P], [S]). We have
(a) the set Kyð f Þ is finite,
(b) the set ~KKyð f Þ is either finite or equal to C ,
(c) Lð f ÞHKyð f ÞH ~KKyð f Þ,
(d) Lð f Þ ¼ Kyð f Þ ¼ ~KKyð f Þ for n ¼ 2. r

We shall show (see Remark 6.5) that the inclusions in (c) can be proper for
n > 2.

Let us pass to characterizations of the sets Kyð f Þ and ~KKyð f Þ in terms of
Ly;lð f Þ and ~LLy;lð f Þ.

the gradient of a polynomial at infinity 335



Proposition 6.2. For l0 A C the following conditions are equivalent:
(i) l0 A Kyð f Þ,
(ii) ~LLy;l0ð f Þ < �1,
(iii) Ly;l0ð f Þ < �1.

Proof. (iii) ) (ii) ) (i). Take l0 B Kyð f Þ. Then by (6.1) we obtain

Lyð‘f j f �1ðDd0ÞÞb�1. Hence by definition (1.1) we get ~LLy;l0ð f Þb�1.
From the obvious inequality

Ly;lð f Þb ~LLy;lð f Þ for l A Cð6:5Þ

we also get Ly;l0ð f Þb�1. This gives the required sequence of implications.
We now show the implication (i) ) (iii). Let l0 A Kyð f Þ and fpkgHC n

be a sequence satisfying (6.2). Since Kyð f Þ is finite there exists a closed disc
Dd :¼ fl A C : jl� l0ja dg such that Dd VKyð f Þ ¼ fl0g. Since f �1ðDdÞ is a
semi-algebraic and closed set in C n, then by the Curve Selection Lemma the
exponent Lyð‘f j f �1ðDdÞÞ is attained on a meromorphic curve F, deg F > 0,
lying in this set (cf. [CK4], Proposition 1). Thus there exists a ~ll A Dd such that
degð f � ~llÞ �F < 0. On the other hand almost all elements of the sequence fpkg
lie in f �1ðDdÞ. Then (6.2) implies Lyð‘f j f �1ðDdÞÞ < �1. In consequence
deg ‘f �F=deg F ¼ Lyð‘f j f �1ðDdÞÞ < �1. Hence we get ~ll A Kyð f Þ and thus
~ll ¼ l0. Summing up, there exists a meromorphic curve F, deg F > 0, such that
degð f � l0Þ �F < 0 and deg ‘f �F=deg F < �1. Then by definition (1.2) we
have

Ly;l0ð f Þ < �1:

This gives the desired implication and ends the proof. r

Proposition 6.3. For l0 A C the following conditions are equivalent:
(i) l0 A ~KKyð f Þ,
(ii) ~LLy;l0ð f Þ < 0,
(iii) Ly;l0ð f Þ < 0.

Proof. (iii) ) (ii) ) (i). This follows, analogously as in the previous prop-
osition, directly from (6.3). The implication (i) ) (iii) is given in [R2]. r

Now, we show an example how with the help of Ly;lð f Þ one can find the
sets Kyð f Þ and ~KKyð f Þ. We consider the Rabier’s polynomial (see [R], Remark
9.1).

Proposition 6.4. Let f R : C 3 ! C , f Rðx; y; zÞ :¼ ðxy� 1Þyz. Then
(a) Kyð f RÞ ¼ f0g,
(b) Ly;lð f RÞ ¼ �1 for l0 0 and Ly;0ð f RÞ ¼ �y,

(c) ~KKyð f RÞ ¼ C .
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Proof. (a) We first show 0 A Kyð f RÞ. Taking ~FFðtÞ :¼ ðt; 1=t; 0Þ, we have

deg ~FF > 0, f R � ~FFðtÞ1 0 and deg ‘f R � ~FF ¼ �y. Hence according to (1.2) we
get Ly;0ð f RÞ ¼ �y and thus 0 A Kyð f RÞ. To prove the opposite inclusion

assume that there exists l0 0 such that l A Kyð f RÞ. Then by Proposition 6.2
Ly;lð f RÞ < �1. Then there exists a meromorphic curve F ¼ ðj1; j2; j3Þ such
that deg F > 0 and

degð f R � lÞ �F < 0;ð6:6Þ
deg ‘f R �F < �deg F:ð6:7Þ

From (6.6)

degððj1j2 � 1Þj2j3Þ ¼ 0;ð6:8Þ

whereas from (6.7) we get deg f 0
z �F < �deg F and thus

degððj1j2 � 1Þj2Þ < �deg F:ð6:9Þ

By (6.8) and (6.9) we get �deg j3 < �deg F, which is impossible.
(b) For every l A C and FlðtÞ :¼ ðt; 1=2t;�4ltÞ we have f R �Fl 1 l and

deg ‘f R �Fl ¼ �1. Hence

Ly;lð f RÞa deg ‘f R �Fl

deg Fl

¼ �1:

From (a), we have l B Kyð f RÞ if l0 0. Hence by Proposition 6.2 Ly;lð f RÞb
�1. In consequence Ly;lð f RÞ ¼ �1 for l0 0.

The equality Ly;0ð f RÞ ¼ �y has been proved in (a).
(c) It follows from (b) and Proposition 6.3. r

Remark 6.5. By Propositon 6.4 we have

Kyð f RÞW ~KKyð f RÞ:ð6:10Þ

One can show that for the polynomial f PZðx; y; zÞ :¼ x� 3x5y2 þ 2x7y3 þ yz
(see [PZ]) we have

j ¼ Lð f PZÞ and Kyð f PZÞ0j:

We shall show now a relation between Lyð‘f Þ and Ly;lð f Þ for nb 2.
Analogously as Corollary 3.6 (i) we prove

Proposition 6.6. Let f : C n ! C , nb 2, be a non-constant polynomial. If
Lyð‘f Þa�1, then there exists l0 A C such that

Lyð‘f Þ ¼ Ly;l0ð f Þ: rð6:11Þ

Directly from the above proposition we obtain
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Corollary 6.7. Let f : C n ! C , nb 2, be a non-constant polynomial.
The following conditions are equivalent:

(i) Kyð f Þ0j,
(ii) Lyð‘f Þ < �1.

Proof. (i) ) (ii). Take l0 A Kyð f Þ. Then by Proposition 6.2 we have
Ly;l0ð f Þ < �1. Then Lyð‘f Þ < �1.

(ii) ) (i). By Proposition 6.6 there exists l0 A C such that Ly;l0ð f Þ ¼
Lyð‘f Þ < �1. Hence by Proposition 6.2 l0 A Kyð f Þ.

This ends the proof. r

At the end we pose one question.

Question 6.8. For a non-constant polynomial f : C n ! C , n > 2, does
there exist a number cf A ½�1;þyÞ such that

Ly;lð f Þ ¼ ~LLy;lð f Þ ¼ cf for any l B Kyð f Þ

(cf. Corollary 4.7 and Proposition 6.4)?
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[KL] Kuo, T. C. and Lu, Y. C.: On analytic function germs of two complex variables.

Topology 16 (1977), 299–310.
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