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EIGENMODES OF LENS AND PRISM SPACES
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Abstract

Cosmologists are taking a renewed interest in multiconnected spherical 3-manifolds

(spherical spaceforms) as possible models for the physical universe. To understand the

formation of large scale structures in such a universe, cosmologists express physical

quantities, such as density fluctuations in the primordial plasma, as linear combinations

of the eigenmodes of the Laplacian, which can then be integrated forward in time. This

need for explicit eigenmodes contrasts sharply with previous mathematical investigations,

which have focused on questions of isospectrality rather than eigenmodes. The present

article provides explicit orthonormal bases for the eigenmodes of lens and prism spaces.

1. Introduction

In recent years cosmologists have taken a renewed interest in multiply
connected 3-manifolds as possible models for the universe [1, 2, 3], motivated
by upcoming opportunities to determine the topology of the real universe using
satellite measurements of the microwave background [4] and galaxy catalogs [5].
Cosmologists initially focused on closed hyperbolic 3-manifolds, favored by the
low observed matter density in the universe, as well as the more easily understood
flat 3-manifolds. But since 1998 it has become clear that the modest amount
of matter in the universe (30%) is complemented by a large amount of exotic
energy (70%). This extra energy implies that the observable universe is approx-
imately flat, or perhaps slightly spherical [6]. Cosmologists have therefore shifted
their interest from hyperbolic 3-manifolds to flat and spherical ones. Beyond
the data’s very slight preference for a spherical universe, the cosmologists’ new
interest in multiply connected spherical 3-manifolds (spherical spaceforms) is due
to the fact that the volume of a spherical 3-manifold decreases as the topology
gets more complicated, unlike hyperbolic 3-manifolds whose volumes increase
as the topology gets more complicated. Thus even though both hyperbolic and
spherical 3-manifolds are consistent with an approximately flat observable uni-
verse, the spherical topologies would be more easily detectable observationally [7].

To understand and simulate microwave background measurements in a
multiply connected spherical universe, cosmologists must first understand the
density fluctuations in the primordial plasma (see [8] for a review). Such density
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fluctuations are expressed as linear combinations of the eigenmodes (eigenfunc-
tions) of the Laplacian, just as the vibration of a drumhead may be expressed as
a linear combination of the drumhead’s eigenmodes. But unlike mathematicians’
studies of isospectrality [9], where the spectrum was the primary object of inter-
est (‘‘Can you hear the shape of a lens space?’’) and the eigenmodes were sec-
ondary, the cosmologists’ research puts the eigenmodes at center stage. More
specifically, for each wave number k (corresponding to eigenvalue kðk þ 2Þ), the
cosmologists want an explicit orthonormal basis for the corresponding space of
eigenmodes. The present paper provides such an eigenbasis for all lens spaces
(Theorem 2, Section 9) and prism spaces (Theorem 3, Section 10).

2. Toroidal coordinates

The determination of the eigenmodes of a lens space (resp. prism space) is

elementary and constructive. Visualize such a manifold as the 3-sphere S3 under
the action of a cyclic (resp. binary dihedral) group G of covering transforma-
tions. The key to simplicity is to choose a coordinate system that respects the
covering transformations G. A toroidal coordinate system meets our needs per-
fectly (Figure 1).

Let x, y, z and w be the usual coordinates in R4, so the 3-sphere S3 is
defined by x2 þ y2 þ z2 þ w2 ¼ 1. The coordinates w, y and j parameterize the
3-sphere as

Figure 1. Toroidal coordinates. Nested tori fill the 3-sphere like layers of an onion. Just as the

layers of an onion collapse to a line at the onion’s core, the nested tori collapse to two circles, one at

w ¼ 0 and the other at w ¼ p=2.

roland lehoucq, jean-philippe uzan and jeffrey weeks120



x ¼ cos w cos y

y ¼ cos w sin y

z ¼ sin w cos j

w ¼ sin w sin j

ð1Þ

for
0a wa p=2

0a ya 2p

0a ja 2p:

ð2Þ

For each fixed value of w A ð0; p=2Þ, the y and j coordinates sweep out a torus.
Taken together, these tori almost fill S3. The exceptions occur at the endpoints
w ¼ 0 and w ¼ p=2, where the stack of tori collapses to the circles x2 þ y2 ¼ 1 and
z2 þ w2 ¼ 1, respectively.

3. The Laplacian in toroidal coordinates

The coordinates w, y and j are everywhere orthogonal to each other. Thus
the metric on the 3-sphere may be written as

ds2 ¼ h2w dw2 þ h2y dy2 þ h2j dj2ð3Þ
where

hw ¼ 1

hy ¼ cos w

hj ¼ sin w:

ð4Þ

The Laplacian is just the divergence of the gradient of a function C, and the
divergence is, in turn, just the ‘‘net outflow per unit volume’’. So by visualizing
the small volume element dwdydj we may write down the Laplacian for any
orthogonal coordinate system as

‘2 ¼ 1

hwhyhj

q

qw

hyhj

hw

q

qw
þ q

qy

hwhj

hy

q

qy
þ q

qj

hwhy

hj

q

qj

� �
ð5Þ

with no calculation required. In the present case, substituting (4) into (5) gives
the Laplacian in toroidal coordinates

‘2 ¼ 1

cos w sin w

q

qw
cos w sin w

q

qw
þ q

qy

sin w

cos w

q

qy
þ q

qj

cos w

sin w

q

qj

� �
:ð6Þ

4. The Helmholtz equation in toroidal coordinates

The wave number k parameterizes the eigenmodes of the Laplacian on
the 3-sphere S3. Each integer wave number k > 0 corresponds to an eigen-
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value �kðk þ 2Þ with multiplicity ðk þ 1Þ2 [10, 11]. The Helmholtz equation
thus takes the form

‘2C ¼ �kðk þ 2ÞC:ð7Þ
We will look for solutions that factor as

Cðw; y; jÞ ¼ X ðwÞYðyÞFðjÞ:ð8Þ
We have no a priori guarantee that all solutions must take this form, but in
Section 6 we’ll see that the number of independent solutions of this form does
indeed equal the dimension ðk þ 1Þ2 of the full eigenspace.

Substituting the expression (6) for ‘2 and the factorization (8) of C into the
Helmholtz equation (7) gives

YF

cos w sin w

q

qw
cos w sin w

qX

qw
þ XF

cos2 w

q2Y

qy2
þ XY

sin2 w

q2F

qj2
¼ �kðk þ 2ÞXYF:ð9Þ

Multiplying through by cos2 w sin2 w=ðXYFÞ isolates the Y and F factors

cos w sin w

X

d

dw
cos w sin w

dX

dw
þ sin2 w

1

Y

d 2Y

dy2

� �
þ cos2 w

1

F

d 2F

dj2

� �
ð10Þ

¼ �kðk þ 2Þ cos2 w sin2 w:

The expressions in Y and F must each be constant, and to allow a periodic
solution the constants must be negative,

1

Y

d 2Y

dy2
¼ �l2ð11Þ

1

F

d 2F

dj2
¼ �m2:ð12Þ

The solutions are the usual circular harmonics

YlðyÞ ¼ cosjljy or sinjljyð13Þ
and

FmðjÞ ¼ cosjmjj or sinjmjj:ð14Þ
By convention, nonnegative l indicates cosjljy while negative l indicates sinjljy,
and similarly for m.

Substituting (11) and (12) into the Helmholtz equation (10) reduces it to a
second order ordinary di¤erential equation for X

(15)
cos w sin w

X

d

dw
cos w sin w

dX

dw
� l2 sin2 w�m2 cos2 w ¼ �kðk þ 2Þ cos2 w sin2 w:

For integers k, l and m satisfying jlj þ jmja k and lþm1 k ðmod 2Þ, equa-
tion (15) is a close relative of the Jacobi equation and admits the solution
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XklmðwÞ ¼ cosjlj w sinjmj wP
ðjmj; jljÞ
d ðcos 2wÞð16Þ

where P
ðjmj; jljÞ
d is the Jacobi polynomial

P
ðjmj; jljÞ
d ðuÞ ¼ 1

2d

Xd
i¼0

jmj þ d

i

� � jlj þ d

d � i

� �
ðuþ 1Þ iðu� 1Þd�ið17Þ

and

d ¼ k � ðjlj þ jmjÞ
2

:ð18Þ

5. The eigenmodes of S3 in trigonometric and polynomial forms

Substituting the expressions for X, Y and F from (16), (13) and (14) gives
the eigenmode

~CCklmðw; y; jÞ ¼ cosjlj w sinjmj wP
ðjmj; jljÞ
d ðcos 2wÞð19Þ

� ðcosjljy or sinjljyÞ
� ðcosjmjj or sinjmjjÞ

where as usual the choice of cosjljy or sinjljy (resp. cosjmjj or sinjmjj) depends
on the sign of l (resp. m).

The Jacobi polynomial may be expanded as a homogeneous polynomial of
degree 2d in x, y, z and w,

P
ðjmj; jljÞ
d ðcos 2wÞ ¼ 1

2d

Xd
i¼0

jmj þ d

i

� � jlj þ d

d � i

� �
ðcos 2wþ 1Þ iðcos 2w� 1Þd�ið20Þ

¼
Xd
i¼0

jmj þ d

i

� � jlj þ d

d � i

� �
ðcos2 wÞ ið�sin2 wÞd�i

¼
Xd
i¼0

jmj þ d

i

� � jlj þ d

d � i

� �
ðx2 þ y2Þ ið�ðz2 þ w2ÞÞd�i:

The cosjlj w factor combines felicitously with the cosjljy or sinjljy factor to create
a homogeneous polynomial of degree jlj in x and y, for example,

cosjlj w cosjljy ¼ cosjlj w
X

0aiajlj=2
ð�1Þ i jlj

2i

� �
cosjlj�2i y sin2i yð21Þ

¼
X

0aiajlj=2
ð�1Þ i jlj

2i

� �
ðcos w cos yÞjlj�2iðcos w sin yÞ2i

¼
X

0aiajlj=2
ð�1Þ i jlj

2i

� �
xjlj�2i y2i:
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Similarly, sinjmj w combines with cosjmjj or sinjmjj to create a degree jmj poly-
nomial in z and w. Multiplied together, these factors express ~CCklm as a homo-
geneous degree k harmonic polynomial in ðx; y; z;wÞ coordinates. For example,
when k ¼ 7, l ¼ 3 and m ¼ �2 we have

~CC7;3;�2ðw; y; jÞ ¼ ½Pð2;3Þ
1 ðcos 2wÞ�½cos3 w cos 3y�½sin2 w sin 2j�ð22Þ

¼ ½3ðx2 þ y2Þ � 4ðz2 þ w2Þ�½x3 � 3xy2�½2zw�:

The fact that each ~CCklm may be expressed as a polynomial proves that the
~CCklm are smooth even along the circles w ¼ 0 and w ¼ p=2, where the toroidal
coordinate system collapses.

6. The eigenmodes form a basis

For each k, the set of ~CCklm forms a basis for the space of eigenfunctions on
S3 with wave number k. More precisely, define the basis

Bk ¼ f ~CCklm j jlj þ jmja k and lþm1 k ðmod 2Þg:ð23Þ
To prove that Bk is a basis, we must show that the ~CCklm it contains are linearly
independent and span the full eigenspace.

Linear independence. The inner product of two elements ~CCklm and ~CCkl 0m 0 of
Bk is

h ~CCklm; ~CCkl 0m 0ið24Þ

¼
ð
S 3

~CCklm
~CCkl 0m 0 dV

¼
ð p=2
w¼0

ð2p
y¼0

ð2p
j¼0

ðXklmYlFmÞðXkl 0m 0Yl 0Fm 0 Þ cos w sin w djdydw

¼
ð p=2
w¼0

XklmXkl 0m 0 cos w sin w dw

 ! ð2p
y¼0

YlYl 0 dy

!

�
 ð2p

j¼0

FmFm 0 dj

!
:

If l0 l 0 (resp. m0m 0), then the orthogonality of the circular harmonics
hYl;Yl 0i ¼ 0 (resp. hFm;Fm 0i ¼ 0) immediately implies h ~CCklm; ~CCkl 0m 0i ¼ 0,
proving that ~CCklm and ~CCkl 0m 0 are orthogonal. Because the ~CCklm in Bk are non-
zero and pairwise orthogonal, they must be linearly independent.

Span. We have shown that the ~CCklm in Bk are linearly independent. To
prove that they span the full eigenspace, it su‰ces to check that the number of
elements of Bk equals the dimension of the full eigenspace, which is known to
be ðk þ 1Þ2. The set B0 ¼ f ~CC0;0;0g has ð0þ 1Þ2 ¼ 1 element, and the set B1 ¼
f ~CC1;þ1;0; ~CC1;�1;0; ~CC1;0;þ1; ~CC1;0;�1g has ð1þ 1Þ2 ¼ 4 elements, as required. For
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the remaining Bk, with kb 2, we proceed by induction, assuming that the set
Bk�2 is already known to contain ððk � 2Þ þ 1Þ2 ¼ ðk � 1Þ2 elements. Each ele-

ment ~CCk�2;l;m A Bk�2 corresponds to an element ~CCk;l;m A Bk. The set Bk also

contains the additional elements ~CCk;0;Gk; ~CCk;G1;Gðk�1Þ; . . . ; ~CCk;Gðk�1Þ;G1; ~CCk;Gk;0.

Taking into account the plus-or-minus signs, this gives 2þ 4þ � � � þ 4þ 2 ¼ 2þ
4ðk � 1Þ þ 2 ¼ 4k additional elements. Adding these to the ðk � 1Þ2 elements
corresponding to Bk�2, we get a total of ðk � 1Þ2 þ 4k ¼ ðk þ 1Þ2 elements, as
required.

This completes the proof that Bk is a basis for the space of eigenfunctions
on S3 with wave number k.

7. Normalization

The ~CCklm are already mutually orthogonal (Section 6), so if we normalize
them to unit length they will form an orthonormal basis for the eigenspace. An
orthonormal basis is convenient in cosmological applications, because it makes it
easy to construct an unbiased random density fluctuation with wave number k.

To compute the norm of a given ~CCklm, set l 0 ¼ l and m 0 ¼ m in equation
(24), giving

h ~CCklm; ~CCklmi ¼
ð p=2
w¼0

X 2
klm cos w sin w dw

 ! ð2p
y¼0

Y2
l dy

! ð2p
j¼0

F2
m dj

!
:ð25Þ

The Y and F integrals are easy to evaluate. Substituting in the solutions (13)
and (14) immediately gives

ð2p
y¼0

Y2
l dy ¼ p and

ð2p
j¼0

F2
m dj ¼ pð26Þ

when l and m are nonzero, along with the special casesð2p
y¼0

Y2
0 dy ¼ 2p and

ð 2p
j¼0

F2
0 dj ¼ 2p:ð27Þ

The X integral seems daunting, but luckily the cosjlj w sinjmj w factor in the
expression (16) for X provides exactly the standard weighting function relative to
which the Jacobi polynomials are normalized!ð p=2

w¼0

X 2
klm cos w sin w dwð28Þ

¼
ð p=2
w¼0

½cosjlj w sinjmj wP
ðjmj; jljÞ
d ðcos 2wÞ�2 cos w sin w dw

¼
ð p=2
w¼0

ðcos2 wÞjljðsin2 wÞjmj½Pðjmj; jljÞ
d ðcos 2wÞ�2 cos w sin w dw
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then, changing the variable to u ¼ cos 2w,

¼ 1

2jljþjmjþ2

ðþ1

u¼�1

ð1þ uÞjljð1� uÞjmj½Pðjmj; jljÞ
d ðuÞ�2 duð29Þ

and using the standard normalization for Jacobi polynomials [12, 13], we get

¼ ðjlj þ dÞ!ðjmj þ dÞ!
2ðk þ 1Þd!ðjlj þ jmj þ dÞ! :ð30Þ

Define the normalized eigenmodes Cklm to be

Cklm ¼
~CCklmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h ~CCklm; ~CCklmi
q ¼

~CCklmffiffiffiffiffiffiffiffiffiffi
2l̂lþm̂m

p
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjljþdÞ!ðjmjþdÞ!

2ðkþ1Þd!ðjljþjmjþdÞ!

rð31Þ

where l̂l is 1 when l is 0, and l̂l is 0 when l is nonzero, and similarly for m̂m, to
accommodate the special cases in equations (26) and (27).

The results of this section and the previous one together prove

Theorem 1. The Cklm, taken over all integers k, l and m satisfying
jlj þ jmja k and lþm1 k ðmod 2Þ, comprise an orthonormal basis for the
eigenspace of the Laplacian on the 3-sphere.

8. The action of an isometry of S3 on the space of eigenmodes

An arbitrary orientation-preserving isometry of the 3-sphere has matrix

cos Dy �sin Dy 0 0

sin Dy cos Dy 0 0

0 0 cos Dj �sin Dj

0 0 sin Dj cos Dj

0
BBB@

1
CCCAð32Þ

relative to an appropriate orthonormal ðx; y; z;wÞ coordinate system on R4. In
toroidal coordinates ðw; y; fÞ, the same isometry may be described as

w ! w

y ! yþ Dy

j ! jþ Dj:

ð33Þ

The action of this isometry on the space of eigenfunctions is much simpler in
toroidal coordinates than in traditional polar coordinates. For example, if l > 0
and �m < 0, then the isometry (33) maps

Ck;þl;�mðw; y; jÞ ! Ck;þl;�mðw; yþ Dy; jþ DjÞ
¼ XklmðwÞYþlðyþ DyÞF�mðjþ DjÞ
¼ XklmðwÞ cos lðyþ DyÞ sin mðjþ DjÞ
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¼ XklmðwÞðcos lDy cos ly� sin lDy sin lyÞ
� ðsin mDj cos mjþ cos mDj sin mjÞ

¼ cos lDy sin mDj XklmðwÞYþlðyÞFþmðjÞ
þ cos lDy cos mDj XklmðwÞYþlðyÞF�mðjÞ
� sin lDy sin mDj XklmðwÞY�lðyÞFþmðjÞ
� sin lDy cos mDj XklmðwÞY�lðyÞF�mðjÞ

¼ cos lDy sin mDj Ck;þl;þmðw; y; jÞ
þ cos lDy cos mDj Ck;þl;�mðw; y; jÞ
� sin lDy sin mDj Ck;�l;þmðw; y; jÞ
� sin lDy cos mDj Ck;�l;�mðw; y; jÞ

. . . and similarly for the images of Ck;þl;þm; Ck;�l;þm and Ck;�l;�m:ð34Þ
Thus the subspace spanned by the Ck;Gl;Gm is invariant (setwise but not
necessarily pointwise) under the action of the isometry (33). Typically this
subspace is 4-dimensional, but when l or m is zero it is 2-dimensional, or only 1-
dimensional when both l and m are zero.

Thus the complete eigenspace factors into orthogonal 1-, 2- and 4-
dimensional invariant subspaces, each spanned by a set Ck;Gl;Gm. To under-
stand the full action of the isometry, it su‰ces to understand its action on each
invariant subspace.

Case 1. l ¼ m ¼ 0.

The 1-dimensional invariant subspace spanned by Ck;0;0 is pointwise fixed by
every isometry of the form (33).

Case 2. l ¼ 0 or m ¼ 0 (but not both).

For sake of discussion, assume l > 0 and m ¼ 0. Relative to the basis

d1 ¼ Ck;þl;0

d2 ¼ Ck;�l;0

ð35Þ

the isometry (33) acts as a rotation through an angle lDy, with matrix

cos lDy sin lDy

�sin lDy cos lDy

� �
:ð36Þ

A quick computation similar to (34) verifies that matrix (36) is correct. Thus if
lDy1 0 ðmod 2pÞ the whole subspace is fixed pointwise; otherwise only the
origin is fixed. Similar conclusions hold when l ¼ 0 and m > 0.
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Case 3. l > 0 and m > 0.

Computation (34) expresses the isometry’s action on each of the Ck;Gl;Gm as a
linear combination of the Ck;Gl;Gm themselves. For best results use the rotated
basis

e1 ¼
ffiffiffi
1

2

r
ðCk;þl;þm þCk;�l;�mÞ ¼

ffiffiffi
1

2

r
Xklm cosðly�mjÞ

e2 ¼
ffiffiffi
1

2

r
ðCk;�l;þm �Ck;þl;�mÞ ¼

ffiffiffi
1

2

r
Xklm sinðly�mjÞ

e3 ¼
ffiffiffi
1

2

r
ðCk;þl;þm �Ck;�l;�mÞ ¼

ffiffiffi
1

2

r
Xklm cosðlyþmjÞ

e4 ¼
ffiffiffi
1

2

r
ðCk;�l;þm þCk;þl;�mÞ ¼

ffiffiffi
1

2

r
Xklm sinðlyþmjÞ

ð37Þ

relative to which the action has matrix

(38)

cosðlDy�mDjÞ sinðlDy�mDjÞ 0 0

�sinðlDy�mDjÞ cosðlDy�mDjÞ 0 0

0 0 cosðlDyþmDjÞ sinðlDyþmDjÞ
0 0 �sinðlDyþmDjÞ cosðlDyþmDjÞ

0
BBB@

1
CCCA:

Clearly the subspace spanned by fe1; e2g (resp. fe3; e4g) is pointwise fixed if and
only if lDy1mDj ðmod 2pÞ (resp. lDy1�mDj ðmod 2pÞ). If lDy1mDj1 0
or p, then the whole 4-dimensional subspace is pointwise fixed.

In summary, an isometry (33) fixes the subspace spanned by

fCk;0;0g always

fCk;þl;0;Ck;�l;0g i¤ lDy1 0 ðmod 2pÞ
fCk;0;þm;Ck;0;�mg i¤ mDj1 0 ðmod 2pÞ( ffiffiffi

1

2

r
ðCk;þl;þm þCk;�l;�mÞ;ffiffiffi

1

2

r
ðCk;�l;þm �Ck;þl;�mÞ

) i¤ lDy1mDj ðmod 2pÞ

( ffiffiffi
1

2

r
ðCk;þl;þm �Ck;�l;�mÞ;ffiffiffi

1

2

r
ðCk;�l;þm þCk;þl;�mÞ

) i¤ lDy1�mDj ðmod 2pÞ

ð39Þ
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and this is the complete description of the fixed point set. When working with
fixed point sets, please keep in mind that the eigenmode Cklm exists if and only if
jlj þ jmja k and lþm1 k ðmod 2Þ.

9. Eigenmodes of lens spaces

The lens space Lðp; qÞ is the quotient of the 3-sphere S3 by the cyclic group
whose generator g is the isometry (33) with Dy ¼ 2p=p and Dj ¼ 2pq=p. Each
eigenmode of Lðp; qÞ lifts to a g-invariant eigenmode of S3, and conversely each
g-invariant eigenmode of S3 projects down to an eigenmode of Lðp; qÞ. Thus
the eigenmodes of Lðp; qÞ correspond to the g-invariant eigenmodes of S3.

Substituting Dy ¼ 2p=p and Dj ¼ 2pq=p into (39) yields a set of simple
integer conditions showing which eigenmodes of S3 are g-invariant:

Theorem 2. The eigenspace of the Laplacian on the lens space Lðp; qÞ has
an orthonormal basis that, when lifted to Zp-invariant eigenmodes of the 3-sphere,
comprises those eigenmodes in the left column for which the corresponding condition
in the right column is satisfied, subject to the restriction that an eigenmode Cklm

exists if and only if the integers k, l and m satisfy jlj þ jmja k and lþm1 k
ðmod 2Þ.

basis vectors condition

Ck;0;0 always
Ck;þl;0;Ck;�l;0 l1 0 ðmod pÞ
Ck;0;þm;Ck;0;�m qm1 0 ðmod pÞffiffiffi

1

2

r
ðCk;þl;þm þCk;�l;�mÞ;

ffiffiffi
1

2

r
ðCk;�l;þm �Ck;þl;�mÞ l1 qm ðmod pÞffiffiffi

1

2

r
ðCk;þl;þm �Ck;�l;�mÞ;

ffiffiffi
1

2

r
ðCk;�l;þm þCk;þl;�mÞ l1�qm ðmod pÞ

(40)

For a given lens space Lðp; qÞ and wave number k, the number of basis vectors
gives the multiplicity of the eigenvalue kðk þ 2Þ (see Table 1).

10. Eigenmodes of prism spaces

The nth prism space is the quotient S3=D�
n , where the binary dihedral

group D�
n is the extension of the binary cyclic group Z �

n ¼ Z2n by an order four
Cli¤ord translation along a perpendicular axis (Figure 2). The generator of the
Z2n action may be written in toroidal coordinates as

ðw; y; jÞ ! w; yþ 2p

2n
; jþ 2p

2n

� �
ð41Þ
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while the generator of the order four Cli¤ord translation may be written as

ðw; y; jÞ ! p

2
� w;�j; p� y

� �
:ð42Þ

Table 1. The number of eigenbasis vectors specified in Theorem 2 tells the multiplicity of each

eigenvalue kðk þ 2Þ in the spectrum of a lens space Lðp; qÞ. Here are the results for pa 9 and

ka 14.

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

S3 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225

Lð2; 1Þ 1 0 9 0 25 0 49 0 81 0 121 0 169 0 225

Lð3; 1Þ 1 0 3 8 5 12 21 16 27 40 33 48 65 56 75

Lð4; 1Þ 1 0 3 0 15 0 21 0 45 0 55 0 91 0 105

Lð5; 1Þ 1 0 3 0 5 12 7 16 9 20 33 24 39 28 45

Lð5; 2Þ 1 0 1 4 5 8 9 12 17 20 25 28 33 40 45

Lð6; 1Þ 1 0 3 0 5 0 21 0 27 0 33 0 65 0 75

Lð7; 1Þ 1 0 3 0 5 0 7 16 9 20 11 24 13 28 45

Lð7; 2Þ 1 0 1 2 3 6 7 10 11 14 17 20 25 28 33

Lð8; 1Þ 1 0 3 0 5 0 7 0 27 0 33 0 39 0 45

Lð8; 3Þ 1 0 1 0 7 0 11 0 23 0 27 0 45 0 53

Lð9; 1Þ 1 0 3 0 5 0 7 0 9 20 11 24 13 28 15

Lð9; 2Þ 1 0 1 2 1 4 7 6 9 14 11 16 21 18 25

Figure 2. The binary dihedral group D�
n has two generators. The first generator acts as a left-

handed 2p=2n corkscrew motion preserving the toroidal layers just as in the lens space Lð2n; 1Þ. The

second generator acts as a lefthanded 2p=4 corkscrew motion along an orthogonal axis (drawn heavy

in the figure), taking, for example, the torus at level w ¼ p=8 to the one at w ¼ 3p=8 and interchanging

the roles of y and j.
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The eigenmodes of the prism space naturally correspond to the D�
n -invariant

eigenmodes of S3. That is, they correspond to the eigenmodes of S3 that are
invariant under both the Z2n generator (41) and the Z4 generator (42). Sections
8 and 9 have already determined the action of the Z2n generator on the space
of eigenmodes, with the fixed subspace specified by Theorem 2 with p ¼ 2n and
q ¼ 1. A similar computation shows how the Z4 generator interchanges the roles
of l and m:

Cklmðw; y; jÞ ! Cklmðp=2� w;�j; p� yÞð43Þ
¼ Xklmðp=2� wÞYlð�jÞFmðp� yÞ
¼ Xklmðp=2� wÞFlð�jÞYmðp� yÞ
¼ ½GXkmlðwÞ�½GYmðyÞ�½GFlðjÞ�
¼GCkmlðw; y; jÞ:

The first plus-or-minus sign in the penultimate line of (43) will be plus (resp.

minus) when d ¼ k � ðjlj þ jmjÞ
2

is even (resp. odd). [Proof: Substituting w !
p

2
� w into (16) and interchanging the roles of sine and cosine introduces a factor

of ð�1Þd .] The third plus-or-minus sign in (43) will be plus when l is nonneg-
ative, minus otherwise. The second plus-or-minus sign will be plus when m is
either nonnegative and even or negative and odd, minus otherwise. Thus we
may rewrite (43) as

Cklmðw; y; jÞ ! ½GXkmlðwÞ�½GYmðyÞ�½GFlðjÞ�ð44Þ
¼ sklmCkmlðw; y; jÞ

with

sklm ¼ ðGÞðGÞðGÞðGÞ
where

the first G is þ if and only if d is even

the second G is þ if and only if lb 0

the third G is þ if and only if mb 0

the fourth G is þ if and only if m is even:

When l0m the action (44) preserves the 2-dimensional plane spanned
by Cklm and Ckml. If the parities of l and m agree (both even or both odd)
then the action is either a positive reflection interchanging Cklm $ Ckml (Figure
3a) or a negative reflection interchanging Cklm $ �Ckml (Figure 3b), according
to the sign of sklm. If the parities of l and m disagree (one even and the other
odd) then the action is a quarter turn taking either Cklm ! Ckml ! �Cklm !
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�Ckml ! Cklm or the opposite (Figure 3cd). The positive and negative reflec-
tions each fix a 1-dimensional line, but the quarter turns fix only the origin.

When l ¼ m the situation is even simpler. The action (44) either fixes the
1-dimensional line spanned by Ckll or inverts it, according to whether skll is
positive or negative.

The preceding two paragraphs have found the eigenmodes fixed by (44), i.e.
the eigenmodes invariant under the action of the Z4 generator (42). To find the
eigenmodes of a prism manifold, we must check which of the modes invariant
under the Z4 generator (42) are invariant under the Z2n generator (41) as well.
This is straightforward, because Theorem 2, with p ¼ 2n and q ¼ 1, already tells
us which modes the Z2n generator preserves. We know a priori that the eight
basis vectors fCk;Gl;Gm;Ck;Gm;Glg span a space that is setwise invariant under
both the Z2n and the Z4 generators. Typically this space is 8-dimensional, but
its dimension may be less. Consider the following special cases. Assume l and
m are distinct and positive unless otherwise indicated.

fCk00g (1-dimensional)
The mode Ck00 exists if and only if k is even. When it exists, it is always
fixed by the Z2n generator, as indicated in the first line of the conditions (40)
in Theorem 2. It is fixed by the Z4 generator if and only if sk00 is positive,
which happens if and only if d ¼ k=2 is even.

fCk;Gl;0;Ck;0;Glg (4-dimensional)
According to the second and third lines of conditions (40), the Z2n gener-
ator fixes this whole space pointwise when l1 0 ðmod 2nÞ, and otherwise
fixes nothing.

The Z4 generator leaves the two 2-dimensional subspaces spanned by
fCk;l;0;Ck;0;lg and by fCk;�l;0;Ck;0;�lg setwise invariant. If l is odd,
then the Z4 generator acts on each 2-dimensional subspace as a quarter
turn, fixing nothing but the origin. If l is even (as it must be when
l1 0 ðmod 2nÞ), then the Z4 generator acts on each subspace as a positive
or negative reflection, fixing Ck;l;0 þCk;0;l and Ck;�l;0 �Ck;0;�l if skl0
is positive (when d is even), or Ck;l;0 �Ck;0;l and Ck;�l;0 þCk;0;�l if skl0 is
negative (when d is odd).

fCk;Gl;Glg (4-dimensional)
This 4-dimensional subspace factors into two orthogonal 2-dimensional
subspaces, spanned by fCk;l;l þCk;�l;�l;Ck;�l;l �Ck;l;�lg and fCk;l;l �

Figure 3. The Z4 generator acts on each 2-dimensional subspace fCklm;Ckmlg as a reflection (if l

and m have the same parity) or a rotation (if l and m have opposite parities).
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Ck;�l;�l;Ck;�l;l þCk;l;�lg respectively, each of which is setwise invariant
under both the Z2n and the Z4 generators.

The subspace fCk;l;l þCk;�l;�l;Ck;�l;l �Ck;l;�lg is always fixed by
the Z2n generator, according to the fourth line of conditions (40). It is fixed
by the Z4 generator as well if and only if skll is positive, which happens
if and only if k1 0 ðmod 4Þ. (k must be even for the mode Ckll to exist,
so the only question is whether it is equivalent to 0 or 2 modulo 4.)

The subspace fCk;l;l �Ck;�l;�l;Ck;�l;l þCk;l;�lg is fixed by the Z2n

generator if and only if 2l1 0 ðmod 2nÞ, according to the last line of
(40). If skll is positive the Z4 generator fixes Ck;l;l �Ck;�l;�l but not
Ck;�l;l þCk;l;�l, while if skll is negative the opposite is true.

fCk;Gl;Gm;Ck;Gm;Glg (8-dimensional)
This 8-dimensional subspace factors into four orthogonal 2-dimensional
subspaces, spanned respectively by the bases

fCk;þl;þm;Ck;þm;þlg
fCk;�l;�m;Ck;�m;�lg
fCk;þl;�m;Ck;�m;þlg
fCk;�l;þm;Ck;þm;�lg:

If the parities of l and m do not match (one even and the other odd) then the
Z4 generator acts as a quarter turn on each of the four subspaces and fixes
only the origin. If the parities of l and m do match (both even or both
odd), then the Z4 generator acts as a reflection on each of those same four
subspaces, fixing the following vectors, with the choice of signs (consistent as
shown) depending on whether sklm is positive or negative:

Ck;þl;þm GCk;þm;þl

Ck;�l;�m GCk;�m;�l

Ck;þl;�m HCk;�m;þl

Ck;�l;þm HCk;þm;�l:

These four vectors comprise a basis for the Z4 generator’s 4-dimensional
fixed point space. Taking sums and di¤erences of those vectors gives a new,
more convenient basis for the same space:

ðCk;þl;þm þCk;�l;�mÞG ðCk;þm;þl þCk;�m;�lÞ
ðCk;þl;þm �Ck;�l;�mÞG ðCk;þm;þl �Ck;�m;�lÞ
ðCk;þl;�m þCk;�l;þmÞH ðCk;�m;þl þCk;þm;�lÞ
ðCk;þl;�m �Ck;�l;þmÞH ðCk;�m;þl �Ck;þm;�lÞ:

ð45Þ
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The fourth (resp. fifth) line of the conditions (40) shows that the Z2n gen-
erator fixes the first and fourth (resp. second and third) vectors in (45) if and
only if l1m ðmod 2nÞ (resp. l1�m ðmod 2nÞ).

The above cases completely determine the D�
n -invariant eigenmodes of S3, thus

proving

Theorem 3. The eigenspace of the Laplacian on the prism space S3=D�
n ,

where D�
n is the binary dihedral group of order 4n, has an orthonormal basis that,

when lifted to D�
n -invariant eigenmodes of the 3-sphere, comprises those eigenmodes

in the left column for which the corresponding condition in the right column is
satisfied, subject to the restriction that an eigenmode Cklm exists if and only if the
integers k, l and m satisfy jlj þ jmja k and lþm1 k ðmod 2Þ.

basis vectors condition

Ck;0;0 k1 0 ðmod 4Þffiffi
1
2

q
ðCk;l;0 þCk;0;lÞffiffi

1
2

q
ðCk;�l;0 �Ck;0;�lÞ

l1 0 ðmod 2nÞ
and d evenffiffi

1
2

q
ðCk;l;0 �Ck;0;lÞffiffi

1
2

q
ðCk;�l;0 þCk;0;�lÞ

l1 0 ðmod 2nÞ
and d oddffiffi

1
2

q
ðCk;l;l þCk;�l;�lÞffiffi

1
2

q
ðCk;�l;l �Ck;l;�lÞ

k1 0 ðmod 4Þ

ffiffi
1
2

q
ðCk;l;l �Ck;�l;�lÞ 2l1 0 ðmod 2nÞ

and k1 0 ðmod 4Þffiffi
1
2

q
ðCk;�l;l þCk;l;�lÞ 2l1 0 ðmod 2nÞ

and k1 2 ðmod 4Þ
1
2 ððCk;þl;þm þCk;�l;�mÞ þ ðCk;þm;þl þCk;�m;�lÞÞ
1
2 ððCk;þl;�m �Ck;�l;þmÞ � ðCk;�m;þl �Ck;þm;�lÞÞ

l1m ðmod 2nÞ
and sklm > 0

1
2 ððCk;þl;þm þCk;�l;�mÞ � ðCk;þm;þl þCk;�m;�lÞÞ
1
2 ððCk;þl;�m �Ck;�l;þmÞ þ ðCk;�m;þl �Ck;þm;�lÞÞ

l1m ðmod 2nÞ
and sklm < 0

1
2 ððCk;þl;þm �Ck;�l;�mÞ þ ðCk;þm;þl �Ck;�m;�lÞÞ
1
2 ððCk;þl;�m þCk;�l;þmÞ � ðCk;�m;þl þCk;þm;�lÞÞ

l1�m ðmod 2nÞ
and sklm > 0

1
2 ððCk;þl;þm �Ck;�l;�mÞ � ðCk;þm;þl �Ck;�m;�lÞÞ
1
2 ððCk;þl;�m þCk;�l;þmÞ þ ðCk;�m;þl þCk;þm;�lÞÞ

l1�m ðmod 2nÞ
and sklm < 0

(46)
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Note that when k is odd, none of the above conditions are satisfied, and the
eigenbasis is empty. This is not surprising, because when k is odd the eigen-
modes correspond to odd-degree homogeneous polynomials (Section 5), which are
anti-symmetric under the action of the antipodal map, and all groups D�

n contain
the antipodal map.

When k is even, the total number of eigenmodes for given D�
n and k agrees

with the multiplicities given by Ikeda’s formulas ð2k þ 1Þð½k=n� þ 1Þ (for k even)

and ð2k þ 1Þ½k=n� (for k odd) from Theorem 4.3 of [14], where k ¼ k=2 is half the

wave number and ½k=n� denotes the integer part of k=n.
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Université Paris XI, F-91405 Orsay Cedex, France

e-mail: uzan@amorgos.unige.ch

15 Farmer Street

Canton NY 13617-1120, USA

e-mail: weeks@northnet.org

roland lehoucq, jean-philippe uzan and jeffrey weeks136


