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Abstract We study the connection between the affine degenerate Grassmannians in

typeA, quiver Grassmannians for one vertex loop quivers, and affine Schubert varieties.

We give an explicit description of the degenerate affine Grassmannian of typeGLn and

identify it with semi-infinite orbit closure of typeA2n−1. We show that principal quiver

Grassmannians for the one vertex loop quiver provide finite-dimensional appro-

ximations of the degenerate affineGrassmannian.Finally,we give an explicit description

of the degenerate affineGrassmannian of typeA(1)
1 , propose a conjectural description in

the symplectic case, and discuss the generalization to the case of the affine degenerate

flag varieties.

Introduction

Let G be a simple Lie group, and let G/B be the flag variety attached to G.

These varieties enjoy many nice properties; in particular, they are spherical, that

is, the Borel subgroup acts on a flag variety with an open orbit. The varieties

G/B can be degenerated in such a way that the action of the Borel subgroup

degenerates (modulo torus) into an action of the abelian unipotent group of the

same dimension, acting with an open orbit on the degenerate flag variety (see

[6], [5], [8]). The construction is of Lie-theoretic nature and uses the theory of

highest weight G-modules.

It was shown in [2] that in type A the degenerate flag varieties are closely

related to the representation theory of the equioriented quivers of type A. More

precisely, the degeneration of SLn /B is isomorphic to a certain quiver Grassman-

nian of subrepresentations of a direct sum of injective and projective representa-

tions. This observation, on the one hand, allows one to use the representation the-

ory of quivers in order to study the geometry of the degenerate flag varieties and,

on the other hand, produces links between Lie theory and quiver Grassmannians.
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Both the degenerate flag varieties and the quiver Grassmannians are known

to be related to the theory of Schubert varieties. More precisely, one can identify

certain quiver Grassmannians and degenerate flag varieties with certain Schubert

varieties (see [3], [14], [21]). The main question we ask in this article is to what

extent one can generalize the degeneration constructions above to the case of the

affine Lie algebras and affine Lie groups? Is there a connection with the theory of

quivers and with Schubert varieties in this case? We give partial answers to the

questions above. In short, the affine story is rather complicated (even in type A);

the correct replacement of the equioriented type A quiver is the (equioriented)

cycle quiver.

In our article we concentrate on the case of the degenerate affine Grassman-

nians, although the general case is also discussed. From the point of view of

representation theory this means that we restrict to the basic level one module

of the affine Lie algebras. The general definition of the degenerate flag varieties

goes through the theory of highest weight modules. In the affine case the same

definition works perfectly. Unfortunately, we are not able to identify the resulting

ind-variety even for affine sln. (However, we completely describe the A1 case and

put forward a conjecture for the symplectic Lie algebras.) The problems pop up

even on the level of representations: we do not have a good enough description

of the Poincaré–Birkhoff–Witt (PBW) graded level one basic representation La
0

of the affine sln. In Section 2 we formulate a conjecture saying that La
0 can be

realized inside the semi-infinite wedge space. Unfortunately, we cannot prove the

conjecture at the moment.

It turns out that there exists a similar object attached to the affine Lie

algebra ĝln. More precisely, using the formalism of semi-infinite wedge spaces,

we define the PBW degeneration Gra(gln) of the affine Grassmannians. The

definition is very similar to the general Lie-theoretic one, and we are able to

describe the degenerate object in linear algebra terms. Using this description, we

make a connection to the theory of quiver Grassmannians for the one vertex loop

quivers. More precisely, Gra(gln) can be realized as an inductive limit of quiver

Grassmannians, which are analogues of Schubert varieties. We use representation-

theoretic techniques to derive algebro-geometric properties of this finitization.

In particular, we study the structure of orbits and construct desingularizations

explicitly. We also identify them with certain classical affine Schubert varieties

for larger groups.

Yet another approach to the study of the ĝln degenerate Grassmannians

comes from the identification with the closure of the semi-infinite orbit for the

classical parabolic flag varieties for ŝl2n. We identify the finitization as above

with concrete subvarieties inside the closure. We thus realize Gra(gln) as a semi-

infinite orbit closure inside the sl2n classical affine Grassmannian.

The article is organized as follows. In Section 1 we collect the basic objects

and constructions on affine algebras and PBW degenerations. In Section 2 we

define and study degenerate affine Grassmannians of type A. Section 3 is devoted

to the quiver part of the story: the principal quiver Grassmannians for the one
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vertex loop quivers are studied, and the identification with subvarieties in the

degenerate flag varieties and with affine Schubert varieties is constructed. In

Section 4 we discuss the degenerate affine Grassmannians of types ŝl2 and ŝp2n.

1. The setup

1.1. Affine Lie algebras
Let g be a simple Lie algebra, and let ĝ be the corresponding affine algebra. We

have

ĝ= g⊗C[t, t−1]⊕CK ⊕Cd,

where K is central and [d,x⊗ ti] =−ix⊗ ti. Let g= n− ⊕ h⊕ n be the Cartan

decomposition. Consider the decomposition for the affine algebra ĝ= ĝ− ⊕ ĝ0 ⊕
ĝ+, where

ĝ− = n− ⊗ 1⊕ g⊗ t−1
C[t−1], ĝ0 = h⊗ 1⊕CK ⊕Cd,

ĝ+ = n+ ⊗ 1⊕ g⊗ tC[t].

Let θ be the highest root for g. For a dominant integral g-weight λ and a

nonnegative integer k such that (λ, θ) ≤ k, let Lλ,k be the corresponding irre-

ducible integrable highest weight ĝ-module with a highest weight vector vλ,k. We

have

ĝ+vλ,k = 0, U(ĝ−)vλ,k = Lλ,k,

(h⊗ 1)vλ,k = λ(h)vλ,k, Kvλ,k = kvλ,k, dvλ,k = 0.

Let G be a simple simply connected Lie group with a Borel subgroup B, let

g= Lie(G), and let b= Lie(B). Let Ĝ and I be the corresponding affine group

and its Iwahori subgroup, respectively. For a parahoric subgroup P ⊂ Ĝ such that

I ⊂ P ⊂ Ĝ, let Ĝ/P be the corresponding affine flag variety. These varieties are

infinite-dimensional ind-varieties, that is, they are inductive limits of the finite-

dimensional Schubert varieties. More precisely, let T ⊂ Ĝ be the Cartan torus,

and let p be a T -stable point in the affine flag variety. The corresponding Schubert

variety is the closure of the I-orbit through p. If P = P0 is the maximal parahoric

subgroup corresponding to the affine simple root, then the corresponding flag

variety is called the affine Grassmannian. Finally, we note that if P stabilizes

the highest weight line Cvλ,k in P(Lλ,k), then we have a natural embedding

Ĝ/P ⊂ P(Lλ,k).

1.2. Sato Grassmannians and flag varieties of type A∞
We consider an infinite-dimensional vector space V with a basis vi, i ∈ Z. The

semi-infinite wedge space F =Λ∞/2 is spanned by the elements

vi0 ∧ vi1 ∧ · · · , i0 > i1 > · · · , ik+1 = ik − 1 for k large enough.

The charge of the wedge product vi0 ∧ vi1 ∧ · · · is defined as (ik + k) for k large

enough. We have the decomposition F =
⊕

m∈Z
F (m), where F (m) is spanned by
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the wedge products of charge m. We define the vacuum vectors

|m〉= vm ∧ vm−1 ∧ vm−2 ∧ · · · ∈ F (m).

The Lie algebra gl∞ is spanned by the matrix units Ei,j , that is, it consists of

the infinite matrices with finite support. The natural action of gl∞ on the space

V extends to an action on each space F (m). It is easy to see that each F (m) is

an irreducible gl∞-module with highest weight vector |m〉.
The Sato Grassmannian SGrm sits inside P(F (m)) via the Plücker embed-

ding; it consists of subspaces U ⊂ V with the property that there exists N ∈ Z

such that

span(vN , vN−1, . . . )⊂ U and dimU/ span(vN , vN−1, . . . ) =m−N.

In particular, the line C|m〉 belongs to (the image of) SGrm. It is easy to see

that all the varieties SGrm are isomorphic (via shifts of the indices of the vk’s).

Following [15] we define the flag variety F∞ of type A∞ as the subvariety of the

product
∏

m∈Z
SGrm consisting of collections (Um)m∈Z, Um ∈ SGrm, such that

Um ⊂ Um+1.

1.3. Type A
(1)
n−1 case

Now let us consider an n-dimensional vector space W with a basis w1, . . . ,wn.

Let us identify the space W ⊗C[t, t−1] with V by

(1.1) vnk+j =wj ⊗ t−k−1, j = 1, . . . , n, k ∈ Z.

In particular,

|0〉= (w1 ⊗ 1)∧ · · · ∧ (wn ⊗ 1)∧ (w1 ⊗ t)∧ · · · ∧ (wn ⊗ t)∧ · · · .

This gives an embedding sln ⊗ C[t, t−1] ⊂ gl∞ and induces an action of ŝln on

each F (m). The irreducible highest weight ŝln-modules can thus be realized in

the semi-infinite picture. In particular, the level one module Lωi,1, i = 0, . . . ,

n − 1, can be seen as the subspace of F (i) generated by |i〉. We also see that

the affine Grassmannian ŜLn/P0 of type An is naturally embedded into the Sato

Grassmannian. The image of this embedding can be described explicitly:

(1.2) ŜLn/P0 = {U ∈ SGr0 : tU ⊂ U}.

The complete flag variety for affine SLn is formed by the collections (Ui)i∈Z,

Ui ∈ SGri, such that Ui ⊂ Ui+1, tUi ⊂ Ui+n.

1.4. PBW filtration and degenerate flag varieties
We first collect some facts on the PBW degeneration in type A (see [10], [11], [6]).

Given a highest weight representation Vλ of sln, we have an increasing filtration

on Vλ induced by the PBW filtration on U(n−). The associated graded spaces

V a
λ are modules over the abelian algebra (n−)a with the underlying vector space

n−. The degenerate flag variety Fa
λ(g)⊂ P(V a

λ ) is the closure of the orbit of the

group exp((n−)a) through the line containing the highest weight vector vλ.
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Let λ be a regular dominant weight for g = sln. Then the corresponding

degenerate flag variety does not depend on λ and can be described explicitly as

follows. Let W =Cn with a basis w1, . . . ,wn, and let prk be the projection along

wk to the span of the remaining basis vectors. Then the degenerate flag variety

attached to a regular dominant weight consists of collections (V1, . . . , Vn−1), Vk ∈
Grk(W ), such that prk+1Vk ⊂ Vk+1. We denote this variety by Fa(sln). Note that

it was shown recently in [3, Theorem 1.2] that Fa(sln) is isomorphic to a Schubert

variety for sl2n−2. We also note that the degenerate Grassmann varieties for sln
coincide with their classical analogues.

The explicit realization of Fa(sln) can be naturally generalized to the A∞
case. Recall the basis vi of V =C

∞. We define the operators prk : V → V as pro-

jections along vk to the span of vi, i 
= k. The following definitions are degenerate

versions of the classical analogues (see, e.g., [15]).

DEFINITION 1.1

The full degenerate flag variety Fa
∞ of type A∞ is the subvariety of the product∏

m∈Z
SGrm consisting of all collections of subspaces (Um)m∈Z, Um ∈ SGrm, such

that prm+1Um ⊂ Um+1.

We note that these varieties can be seen as infinite limits of the type An degen-

erate flag varieties.

REMARK 1.2

The degeneration procedure from F∞ to Fa
∞ can be described as follows. Let F∞

be the subvariety inside A
1 ×

∏
m∈Z

SGrm, consisting of the points (t, (Um)m∈Z)

such that prm+1(t)Um ⊂ Um+1, where prm+1(t) : V → V is the map defined by

prm+1(t)vk = vk, k 
=m+1, and prm+1(t)vm+1 = tvm+1. Then we have the natu-

ral projection F→A
1. The fiber over t= 0 is isomorphic to FA

∞, and the general

fiber is isomorphic to F∞.

Let us now define the affine degenerate flag varieties of type gln. We denote by

prwi⊗tk :W ⊗C[t, t−1]→W ⊗C[t, t−1] the projections along wi ⊗ tk to the span

of the remaining vectors of the form wj ⊗ tl.

DEFINITION 1.3

The degenerate flag variety Fa(gln) of type gln consists of collections (Ui)
n
i=0

such that Ui ∈ SGri, prwi+1⊗t−1Ui ⊂ Ui+1, and Un = t−1U0.

REMARK 1.4

We note that if (Ui)
n
i=0 ∈ Fa(gln), then

prW⊗1tU0 = prw1⊗1 · · ·prwn⊗1tU0 ⊂ U0.

Indeed,

prW⊗t−1tUn = prw1⊗t−1 · · ·prwn⊗t−1(U0)⊂ Un.
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Since tUn = U0, we obtain prW⊗1tU0 ⊂ U0.

Now let us consider the case of the affine Lie algebras. The standard PBW

filtration F• on the universal enveloping algebra U(ĝ−) induces a filtration on

the module Lλ,k. The associated graded space La
λ,k is a representation of the

abelian Lie algebra ĝ−,a (with the underlying vector space ĝ−).

LEMMA 1.5

For any x ∈ ĝ−,a there exists N such that xNvλ,k = 0 in La
λ,k.

Proof

Recall that the algebra ĝ−,a is abelian. It suffices to prove the lemma for x= r⊗
t−l for some r ∈ g, l > 0. Since r can be included into an sl2-triple, we may assume

g= sl2. Let e,h, f be the standard basis of sl2. We know that for any i there exists

M such that (f⊗t−i)Mvλ,k = 0. Also we have the adjoint action of sl2 = sl2⊗1 on

the symmetric algebra of sl2, generating new relations. Hence, it suffices to prove

that the algebra Sym(sl2)/(U(sl2)f
M ) is finite-dimensional. But this algebra is

known to be finite-dimensional by [12] (see also [7, Corollary 4.3]). �

REMARK 1.6

We note that this lemma does not hold in the nondegenerate situation.

Let Ĝ−,a = exp(ĝ−,a) be the Lie group of the Lie algebra ĝ−,a. This group is iso-

morphic to the sum of (an infinite number of) copies of the groups Ga (one copy

for each negative root of ĝ). Let us now consider the projective space P(La
λ,k).

For a vector v ∈ La
λ,k let [v] ∈ P(La

λ,k) be the corresponding line in the projec-

tivization.

DEFINITION 1.7

The degenerate affine flag variety Fa
λ,k is the closure of the orbit Ĝ−,a[vλ,k] inside

P(La
λ,k).

REMARK 1.8

The orbit Ĝ−,a[vλ,k] makes sense, since the action of the group Ĝ−,a on P(La
λ,k)

is well defined. In fact, thanks to Lemma 1.5, all the operators from the Lie

algebra ĝ−,a of the Lie group Ĝ−,a act as nilpotent operators and hence can be

exponentiated, giving rise to the Ĝ−,a-action.

REMARK 1.9

We do not describe the degeneration procedure in this article. Note, however,

that for finite-dimensional Lie algebras of type An the closure of the orbit of the

group Ĝ−,a (of its finite-dimensional analogue, to be precise) is indeed a (flat)

degeneration of the classical flag variety (see [6, Proposition 5.8]).
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2. Degenerate affine Grassmannians of type A

2.1. Main theorems
DEFINITION 2.1

The degenerate affine Grassmannian Gra(gln) of type gln is the subvariety of

the Sato Grassmannian SGr0 consisting of subspaces U such that prW⊗1tU ⊂ U ,

where prW⊗1 is the projection along W ⊗ 1 to the span of W ⊗ ti, i 
= 0.

We also define finite-dimensional approximations of the varieties Gra(gln).

DEFINITION 2.2

We define GraN (gln) as the subvariety of Gra(gln) consisting of U such that

W ⊗ tNC[t]⊂ U ⊂W ⊗ t−N
C[t].

REMARK 2.3

Let SN,n be the quotient space W⊗t−N
C[t]

W⊗tNC[t]
. Then GraN (gln) is isomorphic to the

variety of Nn-dimensional subspaces U ⊂ SN,n such that prW⊗1tU ⊂ U .

We note that Gra(gln) is naturally the inductive limit of its finite-dimensional

pieces GraN (gln). We will prove the following theorems.

THEOREM 2.4

• GraN (gln) is an irreducible projective variety of dimension Nn2.

• GraN (gln) carries an action of an abelian unipotent group GNn2

a with an

open dense orbit.

• GraN (gln) is isomorphic to an affine Schubert variety for the group ŜL2n.

THEOREM 2.5

• Gra(gln) carries an action of an infinite-dimensional abelian unipotent

group with an open dense orbit. The group is the inductive limit of the groups

GNn2

a from Theorem 2.4.

• Gra(gln) is isomorphic to a semi-infinite orbit closure inside the affine

Grassmannian for the group ŜL2n.

LEMMA 2.6

We have that GraN (gln) is an irreducible projective variety of dimension Nn2.

Proof

We prove the claim by constructing a resolution of singularities. We consider

the space SN,n = W⊗t−N
C[t]

W⊗tNC[t]
. The operator prW⊗1t naturally acts on SN,n. In

particular, (prW⊗1t)
N = 0. Let SN,n(k) = Im(prW⊗1)

k for k = 0,1, . . . ,N − 1. In

particular, dimSN,n(k) = n(2N − 2k).

Let RN,n be the variety of collections of vector spaces (U0,U1, . . . ,UN ) such

that the following holds:
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(i) Ui ⊂ SN,n(k),dimUi = n(N − k),

(ii) prW⊗1tUi ⊂ Ui+1, i= 0, . . . ,N − 1.

One easily sees that RN,n is an N -floor tower of fibrations over a point, each fibra-

tion having fiber Gr(n,2n). In addition, RN,n surjects onto GraN (gln) (forgetting

all the Ui’s with i > 0), and this surjection is generically one-to-one. In fact,

let R0
N,n ⊂RN,n be the subvariety cut out by the condition dim(prW⊗1)

ktU0 =

n(N − k). By the definition of RN,n, the restriction of the surjection RN,n →
GraN (gln) to R0

N,n is one-to-one. Now one easily sees that R0
N,n is an open dense

part of RN,n. This proves the lemma. �

REMARK 2.7

We generalize the claim of Lemma 2.6 in Example 3.2 and Corollary 3.7.

In order to prove the remaining statements of Theorems 2.4 and 2.5 we construct

a projective embedding of Gra(gln) and hence of its finite-dimensional pieces

GraN (gln).

2.2. Semi-infinite abelianization
Let us decompose the Lie algebra gl∞ into four blocks

gl∞ = gl
−,−
∞ ⊕ gl

−,+
∞ ⊕ gl

+,−
∞ ⊕ gl

+,+
∞ ,

where gl
−,+
∞ is spanned by the matrix units Ei,j with i ≤ 0, j > 0, gl

+,−
∞ is

spanned by the matrix units Ei,j with i > 0, j ≤ 0, and the two other summands

are similarly spanned. For example, gl+,−
∞ is spanned by the operators mapping

v≤0 to v>0.

REMARK 2.8

The summand gl
+,−
∞ is abelian.

Let p : gl∞ → gl
+,−
∞ be the projection along the three other summands. Recall the

embedding gln ⊗C[t, t−1]⊂ gl∞. Combining this embedding with p we obtain a

map

gln ⊗ t−1
C[t−1]→ gl

+,−
∞ .

We define the space

L0(gl
a
n) = U

(
p
(
gln ⊗ t−1

C[t−1]
))
|0〉.

Since gl+,−
∞ is abelian, L0(gl

a
n) is a cyclic representation of the abelian Lie algebra

gl
a
n ⊗ t−1

C[t−1].

EXAMPLE 2.9

Let us consider the Lie algebra ĝl1. This is nothing but the Heisenberg algebra.

Let F (0) be the Fock module. Let us denote by hi, i ∈ Z, the basis of ĝl1. Then

the elements hi, i < 0, are represented by the formula hi =
∑

k∈Z
Ek−i,k.
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The projection p to gl
+,−
∞ defines a representation of the abelian Lie algebra

spanned by hi, i < 0, on F (0). This representation is no longer irreducible. In

particular, the subspace generated from the highest weight vector is defined by

the relation (h−1 + zh−2 + · · · )2 = 0. Here z is a variable and the relation above

means that the coefficients of zk vanish for all k ≥ 0.

Let us consider the affine Lie algebra ŝl2n and its vacuum representation L0(sl2n)

with the highest weight vector l0. Let us embed gl
a
n into sl2n as the unipotent

radical corresponding to the weight ωn. Explicitly, we consider the abelian sub-

algebra a in sl2n, spanned by the matrix units Ei,j , n+ 1 ≤ i ≤ 2n, 1 ≤ j ≤ n.

Clearly, a� gl
a
n.

LEMMA 2.10

The identification a� gl
a
n induces an isomorphism between L0(gl

a
n) and the sub-

space U(a⊗ t−1
C[t−1])l0 of L0(sl2n).

Proof

Consider the space R with basis r1, . . . , r2n. We write R=R< ⊕R>, where R<

is spanned by r1, . . . , rn and R> is spanned by rn+1, . . . , r2n. Then L0(sl2n) sits

inside Λ∞/2(R⊗C[t, t−1]) with l0 being the wedge product

l0 =
∧
i≥0

(r1 ⊗ ti ∧ · · · ∧ r2n ⊗ ti).

Let us write R⊗C[t, t−1] as a direct sum of four subspaces R<,+, R<,−, R>,+,

and R>,−, where

R<,+ =R< ⊗C[t], R<,− =R< ⊗ t−1
C[t−1],

and similar statements hold for R>,+ and R>,−. For example, l0 is the wedge

product of the “top” wedge powers of R<,+ and of R>,+.

Now let us look at the subspace U(a ⊗ t−1
C[t−1])l0. We take a ∈ a and

consider the vector (a⊗ ti)l0. Clearly, the only nontrivial terms showing up come

from the action of a⊗ ti sending R<,+ to R>,−. Recall the space W with the

basis w1, . . . ,wn used to construct the wedge representation for ĝln. Let us embed

W ⊗C[t, t−1] into R⊗C[t, t−1] as follows:

wj ⊗ ti → rj ⊗ ti, i≥ 0, wj ⊗ ti → rj+n ⊗ ti, i < 0.

Thus, the image of this embedding coincides with R<,+ ⊕R>,−. Now it remains

to note that the operators of the form p(glan) map W ⊗C[t] to W ⊗ t−1
C[t−1]. �

Let us consider the Lie group GLa
n(t

−1
C[t−1]) = exp(glan⊗ t−1

C[t−1]). The group

GLa
n(t

−1
C[t−1]) is isomorphic to the direct sum of an infinite number of copies

of the additive group Ga of the base field. Consider the action of GLa
n(t

−1
C[t−1])

on the projectivization P(L0(gl
a
n)), and (temporarily) denote by G(n) the closure

of the orbit through the line containing the highest weight vector. Our goal is to

identify G(n) with Gra(gln). Let us define a finite-dimensional approximation of
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G(n) as

GN (n) = exp
( N⊕

i=1

gl
a
n ⊗ t−i

)
·C|0〉.

LEMMA 2.11

Let U ∈GN (n). Then prW⊗1(tU)⊂ U and W ⊗ tNC[t]⊂ U ⊂W ⊗ t−N
C[t].

Proof

Take an element g = exp(
∑N

i=1 xi ⊗ t−i), xi ∈ gln. Then the space corresponding

to the line g ·C|0〉 is spanned by the vectors

wj ⊗ tk + xiwj ⊗ tk−i, j = 1, . . . , n, i= 1, . . . ,N, k = 0, . . . ,N − 1, k− i < 0.

Now the claim is clear. �

PROPOSITION 2.12

We have GN (n)�GraN (gln).

Proof

We know that both GN (n) and GraN (gln) are irreducible. According to

Lemma 2.11, GN (n) sits inside Gra(gln). Also note that the open orbit

exp
( N⊕

i=1

gl
a
n ⊗ t−i

)
·C|0〉

consists of all U ∈ W⊗t−N
C[t]

W⊗tNC[t]
such that the Plücker coordinate of U , correspond-

ing to the set of vectors wj ⊗ ti, i≤ 0, does not vanish. Hence, the open parts of

GN (n) and Gra(gln) coincide. �

Proof of Theorem 2.4

The first claim follows from Lemma 2.6, and the second claim follows from Propo-

sition 2.12. The proof of the last claim is postponed until the end of the next

section (see Corollary 3.16). �

Proof of Theorem 2.5

Since GN (n)�GraN (gln), we obtain G(n)�Gra(gln). By Lemma 2.10 we obtain

that Gra(gln) is naturally embedded into the classical affine Grassmannian for

the group ŜL2n. The image of this embedding is the closure of the orbit of the

abelian unipotent group exp(a⊗ t−1
C[t−1]) through the highest weight line. �

2.3. sln case
Let L0(sln) be the basic level one sln-module with highest weight vector l0. Recall

the PBW graded version La
0(sln); in particular, La

0(sln) = U(slan ⊗ t−1
C[t−1])l0.

We define

L̃0(sln) = U
(
p
(
sln ⊗ t−1

C[t−1]
))
|0〉.
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CONJECTURE 2.13

The n−,a ⊗ t−1
C[t−1]-modules L̃0(sln) and La

0(sln) are isomorphic.

We prove the following lemma.

LEMMA 2.14

There exists a surjection La
0(sln)→ L̃0(sln) of slan ⊗ t−1

C[t−1]-modules.

Proof

We need to show that any relation which holds in La
0(sln) is true in L̃0(sln). We

consider a grading on the semi-infinite wedge space Λ∞/2(V ). The sth graded

component is spanned by vectors vi1 ∧ vi2 ∧ · · · such that the number of positive

indices among the il’s is equal to s. For example, the zeroth component is spanned

by |0〉. Then any x ∈ gl
+,−
∞ increases this grading by one. The operators from the

three remaining summands either decrease the grading or preserve it.

Now assume that we have a relation in La
0(sln). To make it explicit, let us

fix a basis x1, x2, . . . in n− ⊗ t−1
C[t−1]. Then any relation can be represented by

a homogeneous total degree N polynomial p(x1, x2, . . . ), which vanishes in La
0 .

This means that we have an equality in L0:

p(x1, x2, . . . )|0〉= q(x1, x2, . . . )|0〉 for some q of degree less than N.

This equality implies that p(x1, x2, . . . )|0〉 vanishes in L̃0(sln), since this is exactly

the degree N component of p(x1, x2, . . . )|0〉 considered as a vector in L0(sln). �

REMARK 2.15

To complete the proof of Conjecture 2.13 it thus suffices to show that the char-

acter of La
0(sln) is equal to the character of L̃0(sln). Unfortunately, we are not

able to do this at the moment.

2.4. Flatness
In this section we discuss the infinite-dimensional analogue of the flatness of

the degeneration of the sln flag varieties. We consider the space W ⊗ C[t, t−1],

W =C
n. Let U ∈ SGr0 be a subspace with tU ⊂ U . We start with the open cell

containing the base point U0 =W ⊗C[t]. The coordinates in this cell are given

by the collection of linear mappings (Ak,i), k ≥ 1, i ≥ 0, Ak,i ∈ End(W ), such

that for a fixed i the operators Ak,i vanish for k large enough. The subspace U

corresponding to a collection (Ak,i) is defined as the linear span of the vectors

(2.1) w⊗ ti +A1,iw⊗ t−1 +A2,iw⊗ t−2 + · · · .

Now we introduce the operator α� ∈ (End W ⊗C[t, t−1]) defined by

α�(w⊗ ti) =

{
w⊗ ti if i 
= 0,

�w⊗ t0 if i= 0.
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We consider the ind-subscheme Gr⊂ SGr0×A1 in the product of the Sato

Grassmannian and the affine line with coordinate � cut out by the equations

α�tU ⊂ U . We note that if � 
= 0, then the fiber of Gr over � is isomorphic to

the affine Grassmannian for gln. The special fiber Gr0 is the degenerate affine

Grassmannian.

PROPOSITION 2.16

The morphism Gr→A
1 is flat.

Proof

For each connected component Grn, n ∈ Z, of Gr, it suffices to produce a dense

open affine subscheme Sn ⊂Grn such that � ∈ C[Sn] is not a zero divisor. We

will exhibit S0; the other connected components are taken care of similarly. We

define S0 as the intersection of Gr0 with the open cell in SGr0 formed by the

subspaces transversal to W ⊗ t−1
C[t−1].

LEMMA 2.17

Let U ∈ SGr0 be defined by the collection of operators (Ak,i). Then (U,�) ∈Gr

if and only if

(2.2) Ak,i =Ak−1,i+1 + �Ak−1,0A1,i

for all k, i≥ 1.

Proof

We need

(2.3) w⊗ ti+1 + �A1,iw⊗ t0 +A2,iw⊗ t−1 + · · · ∈ U.

This means that the vector (2.3) is a linear combination of the vectors (2.1)

starting with w ⊗ ti+1 and w ⊗ t0 with coefficients 1 and �A1,i. This gives the

desired system of equations. �

REMARK 2.18

If �= 0, then (2.2) reduces to Ak,i =Ak−1,i+1 (block Hankel matrices).

Now the ind-scheme S0 is a union of the finite-type subschemes S0(N) cut out

by the conditions Ak,i = 0 if k > N or i ≥ N . The relations (2.2) allow one to

express any operator Ak,i with k > 0 in terms of A1,i. Hence, the coordinate

ring C[S0] is a certain completion of the polynomial ring in � and the matrix

coefficients of A1,0,A1,1,A1,2, . . . . The relations (2.2) are homogeneous if we set

deg�= 0,degAk,i = k + i. If we had a relation �f = 0 for 0 
= f ∈ C[S0], then it

would imply that �f (n) = 0 for each homogeneous component f (n) of f . Since

each f (n) is an element of the polynomial ring in � and the matrix coefficients of

A1,0,A1,1,A1,2, . . . , we conclude that f (n) = 0. Hence, f = 0. The proposition is

proved. �
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REMARK 2.19

The special fiber Gr0 is a union of reduced finite-type schemes of growing dimen-

sions. For � 
= 0, in the case of gl1, the fiber Gr� is a union of 0-dimensional

schemes with nilpotents. So the flatness of Gr over A1 holds only at the level of

the inductive limit and looks somewhat counterintuitive.

REMARK 2.20

Again let us consider the case of gl1. Then for � 
= 0 the fiber lives in the projec-

tivization of the Fock module C[h−1, h−2, . . . ]. (The Fock module can be naturally

identified with the space of sections of the tautological line bundle.) However,

in the degenerate situation the space of sections of the tautological line bundle

is smaller. (More precisely, C[h−1, h−2, . . . ]/(h(z)
2), that is, the ideal we quo-

tient out is generated by all the coefficients of the series (
∑

i>0 z
i−1h−i)

2 (see

Example 2.9).)

3. Quiver Grassmannians for (truncated) loop quivers

3.1. Basics
For N ≥ 1, let AN =C[t]/(tN ) be the truncated polynomial ring, which we view

as a finite-dimensional and self-injective algebra over C (AN being an indecom-

posable projective and injective module over itself).

For a finitely generated (possibly noncommutative) algebra A, a finite-

dimensional A-module M , and an integer k ≤ dimM , we denote by GrAk (M)

the Grassmannian of k-dimensional subrepresentations U of M . This is a pro-

jective variety, admitting a closed embedding into the Grassmannian Grk(M) of

k-dimensional C-linear subspaces of M .

Let W be an m-dimensional vector space, and consider W ⊗AN as an AN -

module, which is thus projective and injective of dimension mN . Our aim is to

study the following varieties and to relate them to degenerate affine Grassman-

nians and to affine Schubert varieties.

DEFINITION 3.1

With notation as above, define

X
(N)
k,m =GrAN

k (W ⊗AN )

as the Grassmannian of k-dimensional AN -subrepresentations of W ⊗AN .

EXAMPLE 3.2

We have X
(N)
Nn,2n �GraN (gln) (see Remark 2.3).

Let us interpret this definition in linear algebra terms. Consider the operator ϕ

on W ⊗ AN which is given by ϕ = idW ⊗t, where t means multiplication by t

on AN (which is a regular nilpotent operator on AN ). Thus, ϕ is nilpotent, and

its Jordan canonical form consists of m nilpotent Jordan blocks, each of size N .
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The variety X
(N)
k,m parameterizes ϕ-invariant k-dimensional subspaces of W ⊗AN ;

thus, it is naturally a closed subvariety of Grk(W ⊗AN ).

Note that the group GLm(AN ) � GL(W ⊗ AN ) acts on X
(N)
k,m . This group

is of dimension mN , with reductive part GLm(C) and unipotent radical 1 +

Matm(tAN ).

Our aim in the next section is to realize X
(N)
k,m as a geometric quotient of a

well-known variety by a (free) group action. We recall the prototype for such quo-

tient realizations. Let V be a k-dimensional vector space. Then the linear Grass-

mannian Grk(W⊗AN ) can be viewed as the quotient of the set Hom0(V,W⊗AN )

of injective linear maps from V to W ⊗AN modulo the action of GL(V ). Thus,

Grk(W ⊗AN )�Hom0(V,W ⊗AN )/GL(V ).

3.2. Interpretation as framed moduli
We recall a result of classical invariant theory (see [13, Section 5.1]). For two

vector spaces V and W , consider the action of GL(V ) on End(V )×Hom(V,W )

by g · (ϕ,f) = (gϕg−1, fg−1). We call a pair (ϕ,f) stable if
⋂

i≥0Ker(fϕi) = 0.

This is equivalent to the map

dimV−1⊕
i=0

fϕi : V →W dimV

being injective. Denote by (End(V ) × Hom(V,W ))st the open subset of stable

points; the action of GL(V ) is free on this stable locus.

THEOREM 3.3

The set (End(V ) × Hom(V,W ))st admits a geometric quotient by GL(V ). It

embeds into the Grassmannian GrdimV (W
dimV ) of subspaces of W dimV of dimen-

sion dimV by mapping the class of (ϕ,f) to the subspace Im(
⊕dimV−1

i=0 fϕi).

Let N (V ) be the closed subvariety of nilpotent operators in End(V ), and let

N (N)(V ) be the set of operators ϕ such that ϕN = 0, for N ≥ 1.

As restrictions of (geometric) quotients to invariant closed subvarieties are

again (geometric) quotients, we can consider the GL(V )-invariant subset

(N (N)(V )×Hom(V,W ))st of (End(V )×Hom(V,W ))st and get, after some rein-

dexing and using N -nilpotency, the following result.

COROLLARY 3.4

The set (N (N)(V )×Hom(V,W ))st admits a geometric quotient by GL(V ). This

quotient embeds into the Grassmannian GrdimV (W ⊗AN ) of dim V -dimensional

subspaces of W [[t]]/(tN )�W ⊗AN by mapping the class of (ϕ,f) to the subspace

Im(
∑N−1

i=0 fϕN−1−iti).

The main technical result of this section is the following (cf. [18, Section 2]).
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LEMMA 3.5

The image of the above embedding coincides with the subvariety X
(N)
dimV,dimW of

GrdimV (W ⊗AN ).

Proof

For ϕ and f such that ϕN = 0, the image of
∑

i fϕ
N−1−iti is t-invariant, namely,

t

N−1∑
i=0

fϕN−1−iti =

N−1∑
i=0

fϕN−1−iti+1 =

N−1∑
i=0

fϕN−iti =
(N−1∑

i=0

fϕN−1−iti
)
ϕ,

and thus,

t · Im
(∑

i

fϕN−1−iti
)
= Im

(
t
∑
i

fϕN−1−iti
)

= Im
((∑

i

fϕN−1−iti
)
ϕ
)
⊂ Im

(∑
i

fϕN−1−iti
)
.

Conversely, let the image of an injective map
∑N−1

i=0 fit
i be t-invariant. This

means that there exists an endomorphism ϕ such that

N∑
i=1

fi−1t
i = t

N−1∑
i=0

fit
i =

(N−1∑
i=0

fit
i
)
ϕ=

N−1∑
i=0

fiϕt
i.

By comparing coefficients, this is equivalent to

f0ϕ= 0, f0 = f1ϕ, f1 = f2ϕ, . . . , fN−2 = fN−1ϕ;

thus, fi = fN−1ϕ
N−1−i for all i = 0, . . . ,N − 1, and fN−1ϕ

N = 0. The latter

condition means that Im(ϕi+1)⊂Ker(fN−1ϕ
N−1−i) for all i; thus,

Im(ϕN )⊂
N−1⋂
i=0

Ker(fN−1ϕ
N−1−i) =

N−1⋂
i=0

Ker(fi) = 0

by the injectivity of
∑

i fit
i, which means ϕN = 0. Thus, the pair (ϕ,fN−1) maps

to the image of
∑

i fit
i. �

We have thus proved the following result.

COROLLARY 3.6

The variety X
(N)
dimV,dimW is isomorphic to the quotient(

N (N)(V )×Hom(V,W )
)st

/GL(V ).

3.3. Geometric consequences
The above corollary allows us to easily derive various geometric properties of the

varieties X
(N)
k,m .
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COROLLARY 3.7

The variety X
(N)
k,m is irreducible, normal, and Cohen–Macaulay with rational sin-

gularities. It has dimension dimN (N)(Ck)+k(m−k). In particular, it has dimen-

sion k(k− 1) + k(m− k) = k(m− 1) for N ≥ k.

Proof

Every variety N (N)(Ck) is irreducible, normal, and Cohen–Macaulay with ratio-

nal singularities by [16, Theorem 0.1], since it is the closure of a single conjugacy

class. These properties are preserved under passing to open subsets and geomet-

ric GLk(C)-quotients. Namely, for irreducibility this is clear, whereas normality

and rational singularities are preserved under arbitrary quotients (the latter by

Boutot’s theorem; see [1, Corollaire]). For the Cohen–Macaulay property, we use

the fact that a geometric GLk(C)-quotient is a principal bundle under a spe-

cial group and, thus, Zariski locally trivial (see [22, Théorème 2]). Finally, the

dimension formula follows by a direct calculation. �

The natural sequence of embeddings of the varieties N (N)(V ), stabilizing in

N (dimV )(V ) =N (V ), induces a chain of embeddings

X
(1)
k,m ⊂X

(2)
k,m ⊂ · · · ⊂X

(k)
k,m =X

(k+1)
k,m = · · · ,

whose limit we define as Xk,m =X
(N)
k,m for N ≥ k, which is the quotient of stable

pairs (ϕ,f) for ϕ an arbitrary nilpotent operator by the action of GLk(C).

3.4. Examples
We give some examples of the varieties Xk,m. First, it is easy to see that X1,m �
Pm−1. Second, let us consider the case k = 2. By the above, we thus consider the

set of 2m× 2 matrices of rank 2 of the form[
AB

A

]
for an (m× 2)-matrix A and a nilpotent 2× 2 matrix B, up to the GL2-action

on columns. We can embed this variety into projective space via the Plücker

embedding. Namely, we choose homogeneous coordinates xi,j for 1≤ i < j ≤ 2m

and map the above matrix to the collection of its (2× 2)-minors Ti,j . A priori

these obey the Plücker relations

Ti,kTj,l = Ti,jTk,l + Ti,lTj,k

for all 1≤ i < j < k < l ≤ 2m. Since det(B) = 0, we have Ti,j = 0 for 1≤ i < j ≤
m. Since tr(B) = 0, we have Ti,j+m = Tj,i+m for all 1 ≤ i, j ≤m. We conclude

that X2,m can be realized as the set of points in projective space with coordinates

xi,j for 1≤ i < j ≤ 2m subject to the relations

xi,kxj,l = xi,jxk,l + xi,lxj,k for 1≤ i < j < k < l≤ 2m,

xi,j = 0 for 1≤ i < j ≤m,

xi,j+m = xj,i+m for 1≤ i, j ≤m.
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For example, in the case in which m= 2 we can eliminate the variables x1,2 and

x2,3 and realize X2,2 as the singular surface in P3 with coordinates x1,3, x1,4, x2,4,

x3,4 and defining equation x1,3x2,4 = x2
1,4. (Then (0 : 0 : 0 : 1) is an isolated sin-

gularity.)

For general m, we can eliminate the variables xi,j for 1 ≤ i < j ≤ m and

xj,i+m for 1 ≤ i < j ≤ m. We can rename the remaining variables as vi,j =

xi+m,j+m for 1 ≤ i < j ≤m and wi,j = xi,j+m for 1 ≤ i, j ≤m and rewrite the

above relations in these terms. Computer experiments with m ≤ 5 suggest the

following.

CONJECTURE 3.8

The variety X2,m is isomorphic to the closed subvariety of projective space with

coordinates vi,j for 1≤ i < j ≤m and wi,j for 1≤ i≤ j ≤m given by the following

equations:

(i) the symmetric matrix W = (wi,j) has rank 1,

(ii) WZ = 0 for the matrix Z with m rows, with columns indexed by tuples

(j, k, l) for 1≤ j < k < l≤m, and with entries

Zi,(j,k,l) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
vk,l i= j,

−vj,l i= k,

vj,k i= l,

0 i 
= j, k, l,

(iii) the Plücker relations for the vi,j’s.

3.5. Orbit structure
Now we consider the action of GLm(AN ) on X

(N)
k,m and determine the orbit struc-

ture. The group GLm(AN ) embeds into the group GL(W ⊗AN ) as the subgroup

of automorphisms commuting with idW ⊗t; every such automorphism can be

written uniquely as

N−1∑
i=0

ψit
i

for ψ0 ∈GL(W ), ψi ∈ End(W ) for i= 1, . . . ,N − 1, where each summand acts on

W ⊗AN by applying the endomorphism ψi in the W -component and multiplying

by ti in the AN -component. In particular, such an element acts on a linear map∑
i fit

i from V to W ⊗AN by(∑
i

ψit
i
)(∑

i

fit
i
)
=
∑
i

( ∑
i′+i′′=i

ψi′fi′′
)
ti.

This allows us to conclude the following.
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LEMMA 3.9

Under the isomorphism

X
(N)
dimV,dimW �

(
N (N)(V )×Hom(V,W )

)st
/GL(V ),

the action of GLdimW (AN ) on X
(N)
dimV,dimW translates to(∑

i

ψit
i
)
· (ϕ,f) =

(
ϕ,

∑
i

ψifϕi
)

for
∑

iψit
i ∈GLdimW (AN ), ϕ ∈N (N)(V ), and f ∈Hom(V,W ).

Proof

Compute the action of
∑

iψit
i on

∑
i fϕ

N−1−iti as above, and compare the

tN−1-coefficients. �

To parameterize the orbits of GLm(AN ) in X
(N)
k,m , we use representation theory

of the algebra AN and some of the methods developed in [2]. More precisely, we

will use the following facts.

• The indecomposable representations of AN are (up to isomorphism) Ui =

C[t]/(ti) for i = 1, . . . ,N . The representation Ui has dimension i and socle U1.

We have dimHomAN
(Ui,Uj) = min(i, j). In particular, AN admits only finitely

many isomorphism classes of representations of fixed dimension.

• Two subrepresentations R,R′ of an injective representation I of a finite-

dimensional algebra A are conjugate under Aut(I) if and only if they are isomor-

phic.

• A representation R embeds into an injective representation I of a finite-

dimensional algebra A if and only if the socles embed, that is, soc(R) embeds

into soc(I).

• If an A-representation M admits only finitely many isomorphism classes

of subrepresentations of a given dimension k, then the Grassmannian of sub-

representations GrAk (M) is stratified into locally closed subsets S[R] consist-

ing of subrepresentations in a fixed isomorphism class [R]; we have dimS[R] =

dimHom(R,M)− dimEnd(R).

Combining the above statements, we have the following result.

PROPOSITION 3.10

Suppose that A is an algebra of finite representation type, and let I be an injective

representation of A. Then the Aut(I)-orbits O[R] in Grk(I) are parameterized by

the isomorphism classes [R] such that R is k-dimensional and soc(R)⊂ soc(I).

The orbit O[R] has dimension dimHom(R,I)− dimEnd(R).

This proposition applies to our setting since A= AN is of finite representation

type and I = Um
N is injective. Every Ui has simple socle; thus, a representation

embeds into Um
N if and only if it has at most m indecomposable direct summands.
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A k-dimensional such representation can be written as Uλ = Uλ1 ⊕· · ·⊕Uλm for a

partition N ≥ λ1 ≥ · · · ≥ λm ≥ 0 with
∑

i λi = k. (Note that the parts are allowed

to be zero.)

COROLLARY 3.11

The GLm(AN )-orbits Oλ in X
(N)
k,m are parameterized by partitions λ of k of length

m with at most N parts. We have

dimOλ =mk−
∑
i

(λ′
i)

2,

where λ′ denotes the conjugate partition of λ.

Proof

We know that the dimension of dimOλ is equal to

dimHom(Uλ,U
m
N )− dimEnd(Uλ).

We note that dimHom(Uλi ,UN ) = λi and dimHom(Uλi ,Uλj ) = λmax(i,j). Hence,

dimOλ = (m+ 1)k − 2
∑m

i=1 iλi. Now using [19, Chapter I, (1.6)], we arrive at

the desired formula. �

Let us determine the closure relation of these orbits. We recall some facts on

orderings on partitions from, for example, [19].

• We write λ ≥ μ (the so-called dominance ordering on partitions) if∑
j≤i λj ≥

∑
j≤i μj for all i.

• We have λ > μ minimally if and only if there exist entries i < j such that

μi = λi − 1, μj = λj + 1, and μk = λk for all k 
= i, j.

• We have λ≥ μ if and only if for the conjugate partitions one has μ′ ≥ λ′.

Consider partitions λ, μ as in the corollary.

THEOREM 3.12

The closure of Oλ contains Oμ if and only if λ≥ μ.

Proof

Suppose λ≥ μ. To prove that Oμ is contained in the closure of Oλ, it suffices to do

this in the case where λ≥ μminimally; thus, μ differs from λ only in two positions

i < j as above. We can then reduce to the case m= 2. Thus, we want to prove

that the closure of the orbit corresponding to the partition (λ1, λ2) contains the

orbit corresponding to (λ1 − 1, λ2 +1). (In particular, λ1 ≥ λ2 +2.) We consider

the following family Uz for z ∈C of t-invariant subspaces of A2
N : the subspace Uz

is generated by (ztN−λ1 , tN−λ1+1) and (tN−λ2−1, ztN−λ2). Then Uz belongs to

O(λ1,λ2) for z 
= 0,1,−1 and to O(λ1−1,λ2+1) for z = 0. (The z = 0 case is clear; if

z 
= 0, then Uz � Uλ1 ⊕Uλ2 if and only if the vectors tλ1−λ2−1(ztN−λ1 , tN−λ1+1)

and (tN−λ2−1, ztN−λ2) are linearly independent, which is equivalent to z 
=±1.)
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To prove the converse, we define for a sequence k∗ = (k1, . . . , kN ) the subset

C(k∗) = {U ∈X
(N)
k,m : dim tiU ≤ ki+1 for i= 0, . . . ,N − 1}.

This is a closed subset since the dimension inequalities can be interpreted as rank

conditions. For U ∈Oλ, we have

dim tiU =
∑

j:λj≥i

(λj − i).

Thus, defining k∗(λ) by

ki(λ) =
∑

j:λj≥i−1

(λj − i+ 1) =
∑
j≥i

λ′
j ,

we have Oλ ⊂ C(k∗(λ)). This immediately implies Oλ ⊂ C(k∗(λ)). Since we

already know that Oλ contains all Oμ’s for λ ≥ μ, the claim follows once we

prove that C(k∗(λ)) is contained in the union of the Oμ’s for λ ≥ μ. So let us

assume that Oμ is contained in C(k∗(λ)). Then we know, by the definitions, that∑
j:μj≥i

(μj − i)≤
∑

j:λj≥i

(λj − i)

for all i= 0, . . . ,N−1. This can be rewritten as μ′ ≥ λ′; thus, λ≥ μ. The theorem

is proved. �

In particular, we can determine the open orbit of GLm(AN ) in X
(N)
k,m ; it corre-

sponds to the partition (N, . . . ,N︸ ︷︷ ︸
s

, r,0, . . . ,0), where k = sN + r for 0≤ r <N .

3.6. Desingularization
For N,k,m as before and a sequence (k1, . . . , kN ) as in the proof of Theorem 3.12

(in particular, k1 = k), we consider the variety Y (k∗) of tuples

(U1, . . . ,UN ) ∈
N−1∏
i=0

Grki+1(W ⊗ tiAN )

such that

(i) U1 ⊃ U2 ⊃ · · · ⊃ UN ,

(ii) t(Ui)⊂ Ui+1 for i= 1, . . . ,N − 1.

(As before, we abbreviate the map idW ⊗t simply by t.) This is a closed subvariety

of the product
∏N−1

i=0 Grki+1(W ⊗ tiAN ) and thus projective.

REMARK 3.13

We can view the variety Y (k∗) as a quiver Grassmannian as follows. Consider

the quiver ΓN with N vertices v1, . . . , vN and 2(N − 1) arrows αi : vi → vi+1 for

i= 1, . . . ,N −1 and βi : vi+1 → vi for i= 1, . . . ,N −1. We consider the admissible

ideal I in CΓN generated by the elements

αiβi − βi+1αi+1, i= 1, . . . ,N − 1,
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where, for i=N − 1, the relation has to be read as αN−1βN−1 = 0; that is, we

formally define αN and βN as zero. The algebra CΓN/I is then isomorphic to

the Auslander algebra of AN .

We construct a specific representation W of CΓN/I : we define Wvi =W ⊗
tiAN , Wαi = t (multiplication by t in the second component), and Wβi = ι, the

inclusion map. We see that this representation of ΓN indeed satisfies the relations

in I . Thus, we can interpret Y (k∗) as Gr
CΓN/I
k∗

(W).

PROPOSITION 3.14

For every partition λ as above, projection to Grk(W ⊗AN ) induces a desingu-

larization map

πλ : Y
(
k∗(λ)

)
→Oλ.

Proof

We first verify that the image of Y (k∗) under the projection

π :
∏
i

Grki+1(W ⊗ tiAN )→Grk(W ⊗AN )

given by (U1, . . . ,UN ) → U1 is contained in X
(N)
k,m and even in C(k∗). Indeed, the

defining relations of Y (k∗) imply that

t(U1)⊂ U2 ⊂ U1,

which shows that π projects to X
(N)
k,m . More generally, for all i = 0, . . . ,N − 1,

iterating the defining relations shows that

ti(U1)⊂ Ui+1,

which is thus a subspace of dimension at most ki+1. But these are precisely

the defining conditions of C(k∗). Applying this argument to the special case

k∗ = k∗(λ) for a partition λ as before, we see that the image π(Y (k∗(λ))) is

contained in C(k∗(λ)), which by the proof of Theorem 3.12 equals the closure of

the orbit Oλ.

Again by the proof of Theorem 3.12, we already know that, for a point U ∈
Oλ, we have dim ti(U) = ki+1(λ) for i= 0, . . . ,N−1. Thus, the fiber of π over such

a point U consists of the single point (U, tU, . . . , tN−1U) for dimension reasons.

First, this proves that Oλ is contained in the image of the map π : Y (k∗(λ))→Oλ.

But since π is proper and thus has closed image, even Oλ is contained in the

image. Thus, by what has already been proven, π maps onto Oλ. Second, the

above argument proves that π is generically one-to-one.

Finally, we prove that Y (k∗) is always smooth by realizing it as a tower

of Grassmann bundles. To do this, we consider truncated versions of the variety

Y (k∗), namely, for i = 1, . . . ,N , we consider the subvariety Yi(k∗) of∏N−1
j=i−1Grkj+1(W ⊗ tjAN ) given by the same conditions as before, that is, the

subvariety consisting of tuples (Ui, . . . ,UN ) such that tUj ⊂ Uj+1 for all relevant
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j’s and Ui ⊃ · · · ⊃ UN . We have a sequence of projections

Y (k∗) = Y1(k∗)→ Y2(k∗)→ · · · → YN (k∗).

Obviously, we have

YN (k∗)�GrkN
(W ⊗ tN−1AN︸ ︷︷ ︸

	W

).

Now we consider the projection YN−1(k∗)→ YN (k∗), which is equivariant for the

action of GL(W ⊗ tN−1AN ), the latter being transitive on the target. Its fiber

over a point UN consists of all UN−1’s such that

UN ⊂ UN−1 ⊂ t−1UN .

Note that UN ⊂ t−1UN since tUN = 0⊂ UN . Thus, the fiber over UN is isomor-

phic to

GrkN−1−kN
(t−1UN/UN︸ ︷︷ ︸

	W

).

We continue inductively. The fiber of a projection Yi−1(k∗)→ Yi(k∗) over a point

Ui consists of all Ui−1’s such that Ui ⊂ Ui−1 ⊂ t−1U1; we note that tUi ⊂ Ui+1 ⊂
Ui and thus Ui ⊂ t−1Ui. Thus, the fiber over Ui is isomorphic to

Grki−1−ki(t
−1Ui/Ui︸ ︷︷ ︸

	W

).

Thus, we see that Y (k∗) is a tower of Grassmann bundles with fibers isomor-

phic to that Grki−ki+1(W ) for i= 1, . . . ,N (formally defining kN+1 = 0), and in

particular, Y (k∗) is irreducible, smooth, and of dimension

mk1 −
∑
i

(ki − ki+1)
2.

In the special case k∗ = k∗(λ), this dimension can be written as mk −
∑

i(λ
′
i)

2

as expected. �

3.7. All X(N)
k,m ’s are affine Schubert varieties

Let Pi, i= 0, . . . ,m, be the maximal parahoric subgroup of ŜLm corresponding to

the simple root αi of the affine algebra ŝlm. We prove the following proposition.

PROPOSITION 3.15

The variety X
(N)
k,m is isomorphic to a Schubert variety in ŜLm/Pk modm.

Proof

Recall the Iwahori group I ⊂ ŜLm. Consider the T -fixed point x
(N)
k,m ∈X

(N)
k,m such

that Ix
(N)
k,m is the open part of X

(N)
k,m .

Namely, fixing the standard basis e1, . . . , em of Cm let us write k =Nr+ s,

0≤ j < N . Then x
(N)
k,m is the subspace of Cm ⊗ C[t]/tN spanned by the vectors

ei ⊗ tj , i= 1, . . . , r− 1, j = 0, . . . ,N − 1, and er ⊗ tj , j =N − s, . . . ,N − 1.
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Our goal is to prove the existence of a T -fixed point y
(N)
k,m ∈ ŜLm/Pk modm

such that the closure of Iy
(N)
k,m (the corresponding Schubert variety) is isomorphic

to the closure of Ix
(N)
k,m. To this end we construct an embedding of the I-module

Λk(Cm ⊗ C[t]/tN ) into the semi-infinite wedge space with the image contained

in the level one representation Lk modm corresponding to the slm fundamental

weight ωk modm.

Let us write k =ma+ b, where b= k modm. Then X
(N)
k,m contains the span

of

C
m ⊗ tj , j = tN−1, . . . , tN−a, e1 ⊗ tN−a−1, . . . , eb ⊗ tN−a−1.

This point is obviously I-fixed. We want to identify it with the highest weight line

in Lb. This line inside F (b) is spanned by C
m ⊗ tj , j ≥ 0, and w1 ⊗ t−1, . . . ,wb ⊗

t−1. Hence, the map ei⊗tj →wi⊗tj−N+a induces the injective map of I-modules

from Λk(Cm ⊗ C[t]/tN ) to Lb, sending X
(N)
k,m to the Schubert variety Iy

(N)
k,m ⊂

ŜLm/Pb. �

COROLLARY 3.16

We have that GraN (gln) is an affine Schubert variety for ŜL2n.

REMARK 3.17

We note that Proposition 3.15 implies that X
(N)
k,m is irreducible, normal, and

Cohen–Macaulay with rational singularities (see [20, Théorèmes 2.Σ, 3], [17, The-

orems 2.16, 2.23]). In particular, this re-proves the first part of Corollary 3.7.

4. Affine Lie algebras ŝl2 and ŝp2n

4.1. Type A1

In this section we restrict to the case g = sl2. We prove Conjecture 2.13 and

give an explicit realization of the degenerate affine Grassmannian inside the Sato

Grassmannian SGr0.

Recall the identification V �W ⊗C[t, t−1], dimW = 2. Let pr be the projec-

tion operator along W ⊗ 1 to the span of the basis vectors wi⊗ tj , j 
= 1. We will

also need a skew-symmetric form on V defined by

(w1 ⊗ ti,w2 ⊗ tj) = δi+j,−1, (w1 ⊗ ti,w1 ⊗ tj) = (w2 ⊗ ti,w2 ⊗ tj) = 0.

THEOREM 4.1

The degenerate affine Grassmannian Gra(sl2) sits inside SGr0 as the subvariety

of subspaces U satisfying the following conditions:

(i) pr(tU)⊂ U ,

(ii) U is isotropic with respect to the above symplectic form.

We first show the existence of the embedding Gra(sl2)⊂ SGr0 by proving Con-

jecture 2.13. To do this we prove that there exists a basis of L0(sl2) such that
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its vectors are linearly independent when considered in L̃0(sl2) (see Section 2.3).

Let e,h, f be the standard basis of sl2. For an element x ∈ sl2 we set xi = x⊗ ti.

Recall the construction of the ehf -basis of L0 from [4, Theorem 4]. A monomial

of the form

(4.1) · · ·fan
−nh

bn
−ne

cn
−n · · ·fa1

−1h
b1
−1e

c1
−1

is called an ehf -monomial if it satisfies the following conditions:

(a) ai + ai+1 + bi+1 ≤ 1 for i > 0,

(b) ai + bi+1 + ci+1 ≤ 1 for i > 0,

(c) ai + bi + ci+1 ≤ 1 for i > 0,

(d) bi + ci + ci+1 ≤ 1 for i > 0.

Then applying the ehf -monomials to a highest weight vector of L0 one gets a

basis. The following picture from [4] illustrates the set of ehf -monomials:
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� � � � � � �

� � � � � � �

� � � � � � �

a1 a2 . . .

c1 c2 . . .

Namely, one considers the set of monomials (4.1) such that the sum of exponents

over the ends of any segment is less than or equal to 1.

LEMMA 4.2

The monomials (4.1) subject to the conditions (a)–(d) form a basis of L̃0.

Proof

Recall the identification V �W ⊗ C[t, t−1] given by v2i+1 → w1 ⊗ t−i−1, v2i →
w2 ⊗ t−i (not to be confused with xk = x⊗ tk for x ∈ sl2). We note that

hkv2i+1 = v2i+1+2k, hkv2i =−v2i+2k,

ekv2i+1 = 0, ekv2i = v2i+2k−1,

fkv2i+1 = v2i+2k+1, fkv2i = 0.

Now assume that we are given a monomial m of the form (4.1) subject to the

conditions (a)–(d). Then m|0〉 is decomposed as a sum of several semi-infinite

wedge products of vectors vi. We attach to m one wedge product w(m) from this

decomposition. We then show that, given a linear combination of ehf -monomials,

we can find a monomial m in it such that w(m) does not show up in any other

ehf -monomial.

We note that f−1 shifts an index by 1, h−1 by 2, e−1 by 3, f−2 by 3, h−2

by 4, e−2 by 5, and so on. Now we can see that if m is an ehf -monomial, then

all powers ai, bi, and ci are zeros or ones, and moreover, if xi and yj show up

in m, then the difference of their shifts is at least 2. Hence, m|0〉 contains a
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semi-infinite wedge product of the form

Ei1,j1 · · ·Eik,jk(v0 ∧ v1 ∧ v2 ∧ · · · ), jk > jk−1 > · · ·> j1 > i1 > · · ·> ik,

where the Ei,j ’s are matrix units. Now it is easy to see that given a linear com-

bination of ehf -monomials we can find a wedge product as above, contained in

a single ehf -monomial. �

Now let us consider the degenerate affine Grassmannian Gra(sl2); since affine

Grassmannians are special cases of affine flag varieties, the general Definition 1.7

applies (with k = 1 and λ= 0).

COROLLARY 4.3

The ŝl2 degenerate Grassmannian is contained in the Sato Grassmannian SGr0.

LEMMA 4.4

Let U ∈Gra(sl2). Then U satisfies all the conditions of Theorem 4.1.

Proof

We use the standard basis w1,w2 of the 2-dimensional vector representation of

sl2. In particular, fw1 = w2, ew2 = w1, hw1 = w1, and hw2 =−w2. Consider an

element g = exp(
∑

i<0 xie−i + yih−i + zif−i), g ∈ Ĝ−,a. Then g|0〉 is spanned by

vectors of the form

w1 ⊗ 1 + y1w1 ⊗ t−1 + z1w2 ⊗ t−1 + y2w1 ⊗ t−2 + z2w2 ⊗ t−2 + · · · ,

w2 ⊗ 1 + x1w1 ⊗ t−1 − y1w2 ⊗ t−1 + x2w1 ⊗ t−2 − y2w2 ⊗ t−2 + · · · ,

w1 ⊗ t+ y2w1 ⊗ t−1 + z2w2 ⊗ t−1 + y3w1 ⊗ t−2 + z3w2 ⊗ t−2 + · · · ,

w2 ⊗ t+ x2w1 ⊗ t−1 − y2w2 ⊗ t−1 + x3w1 ⊗ t−2 − y3w2 ⊗ t−2 + · · · .

Now it is easy to check that the linear span of these vectors satisfies all the

conditions of Theorem 4.1. Since Gr(sl2) is the closure of the Ĝ−,a-orbit, the

lemma follows. �

COROLLARY 4.5

Theorem 4.1 holds.

Proof

One sees from the proof of Lemma 4.4 that the Ĝ−,a-orbit of the line C|0〉 consists
of the subspaces U satisfying the conditions of Theorem 4.1 and such that U has

a nontrivial Plücker coordinate corresponding to the subspace W ⊗ C[t]. Since

this is an open condition, Theorem 4.1 follows. �

Finally, let us compute the torus acting on the degenerate affine Grassmannian.

Assume that we have a torus scaling the basis vectors as w1 ⊗ ti → qiw1 ⊗ ti,

w2 ⊗ tj → pjw2 ⊗ tj for some numbers pi, qj . We want this torus to act on
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the open cell. In particular, each vector in the list of vectors from the proof of

Lemma 4.4 has to be invariant (up to scaling) with respect to the torus action.

This gives the following set of relations, labeled by positive numbers k:

p0
q−k

=
p1

q−k+1
= · · ·= pk−1

q−1
,

q0
q−k

=
q1

q−k+1
= · · ·= qk−1

q−1
=

p0
p−k

=
p1

p−k+1
= · · ·= pk−1

p−1
,

q0
p−k

=
q1

p−k+1
= · · ·= qk−1

p−1
.

REMARK 4.6

The values pk = p1r
k−1, qk = q1r

k−1 for arbitrary p1, q1, r solve the equations

above. This is a torus (effectively 2-dimensional, since it contains the 1-dimen-

sional torus r = 1, p1 = q1, scaling all the vectors by the same number), generated

by the loop rotation and the Cartan torus of SL2.

The system above is equivalent to the statement that for any a ≥ 0, b < 0 the

quantities pa

qb
, qa

pb
, pa

pb
, qa

qb
depend only on the difference a− b and pa

pb
= qa

qb
. This

means that there exists a complex number r such that

qa = q0r
a, pa = p0r

a, a≥ 0, qb = q−1r
b+1, pb = p−1r

b+1, b < 0,

with the additional condition q0
q−1

= p0

p−1
.

COROLLARY 4.7

The torus acting on the degenerate Grassmannian is 3-dimensional. It is gener-

ated by the loop rotation, the 1-dimensional Cartan torus of SL2, and an addi-

tional 1-dimensional torus with p≥0 = q≥0 = 1, p<0 = q<0 = const.

4.2. Symplectic degenerate affine Grassmannian
It turns out that the construction of Gra(sl2) has a natural (though conjectural)

generalization to the case of symplectic algebras.

LetW be a 2n-dimensional vector space endowed with a nondegenerate skew-

symmetric form (·, ·). We fix a basis w1, . . . ,w2m of W such that (wi,w2n+1−i) = 1

for i = 1, . . . , n. Consider the space W ⊗ C[t, t−1] and the corresponding sector

F (0) of the semi-infinite wedge power.

Now consider the Lie algebra spa2n, which is an abelian Lie algebra with

the underlying vector space sp2n. Define the action of spa2n ⊗ t−1
C[t−1] on W ⊗

C[t, t−1] as follows. For x ∈ spa2n, w ∈W we define

(x⊗ ti)(w⊗ tj) =

{
xw⊗ ti+j if j ≥ 0, i+ j < 0,

0 otherwise.

Now let L0(sp2n) be the basic level one module of the affine Lie algebra ŝp2n,

and let La
0 be its degenerate analogue. Let l0 ∈ L0 be the highest weight vector.

In particular, L0(sp2n) = U(sp2n ⊗ t−1
C[t−1])l0.
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CONJECTURE 4.8

Let L̃0(sp2n) = U(spa2n ⊗ t−1
C[t−1])|0〉. Then we have an isomorphism of spa2n ⊗

t−1
C[t−1]-modules

L̃0(sp2n)� La
0 , |0〉 → l0.

The action of the abelian Lie algebra spa2n ⊗ t−1
C[t−1] as above induces an

action of the corresponding infinite-dimensional Lie group exp(spa2n⊗ t−1
C[t−1]).

Because of Conjecture 4.8 the natural candidate for the degenerate symplectic

affine Grassmannian Gra(ŝp2n) is the closure of the orbit of this group through

the highest weight vector inside P(L̃0(sp2n)). We denote this closure by Ga(ŝp2n).

Define a symplectic form on the infinite-dimensional space W ⊗ C[t, t−1]:

〈v⊗ ti,w⊗ tj〉= (v,w)δi+j,−1.

THEOREM 4.9

The variety Ga(ŝp2n) consists of points U of the Sato Grassmannian SGr0 such

that U is isotropic with respect to the form 〈·, ·〉 and such that pr(tU)⊂ U .

CONJECTURE 4.10

We have Gra(ŝp2n)�Ga(ŝp2n).

We sketch the proof of Theorem 4.9. Let O⊂ SGr0 be the subvariety of spaces

that intersect trivially with W ⊗ t−1
C[t−1] (i.e., the Plücker coordinate corre-

sponding to W ⊗C[t] does not vanish).

PROPOSITION 4.11

The exp(sp2n ⊗ t−1
C[t−1]) ·C|0〉-orbit coincides with O∩Ga(ŝp2n).

To prove Theorem 4.9 we consider the finitization of Ga(ŝp2n), thus making

explicit the ind-variety structure.

DEFINITION 4.12

For N ≥ 0, let Ga
N (ŝp2n) be the finite-dimensional subvariety of Ga(ŝp2n) con-

sisting of subspaces U such that

(i) W ⊗ tNC[t]⊂ U ⊂W ⊗ t−N
C[t],

(ii) U is isotropic,

(iii) pr(tU)⊂ U .

LEMMA 4.13

We have that Ga
N (ŝp2n) coincides with the closure of the orbit of the group

exp(spa2n ⊗ span(t−1, . . . , t−N )) through the line spanned by |0〉. In particular,

Ga
N (ŝp2n)’s are irreducible and of dimension N dim sp2n.
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LEMMA 4.14

We have Ga
N (ŝp2n)∩O = exp(spa2n ⊗ span(t−1, . . . , t−N )) ·C|0〉 ∩O.

Now it remains to prove the irreducibility of the varieties Ga
N (ŝp2n). This is

achieved by constructing explicitly the desingularization via the same procedure

as in Lemma 2.6 and Section 3.6 (see also [9, Definition 5.1]).

Acknowledgments. Thanks are due to L. Positselski for his explanations about

the notion of flatness. We are very grateful to B. Feigin for extremely fruitful

discussions of degenerate affine Grassmannians.
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