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Abstract We discuss the concept of Cremona contractible plane curves, with a histor-

ical account on the development of this subject. Then we classify Cremona contractible

unions of d≥ 12 lines in the plane.

1. Introduction

The Cremona geometry of the complex projective space P
r consists in study-

ing properties of subvarieties of Pr which are invariant under the action of the

Cremona group Crr, that is, the group of all birational maps P
r ��� Pr. Since

Cr1 ∼= PGL(2,C), the case r = 1 reduces to the (nontrivial, but well-known and

widely studied) theory of invariants of finite sets of points of P1 under the action

of the projective linear group. The case r ≥ 3 has been very little explored, due

to the fact that, among other things, very little is known about the structure

of Crr. Indeed, in this case we do not even know a reasonable set of generators

of Crr. The intermediate case r = 2 is more accessible, and in fact, it has been

an object of study over the course of the last 150 years. The reason is that, in

this case, we have a good amount of information about Cr2. The first one is a

famous result by Noether and Castelnuovo to the effect that Cr2 is generated by

PGL(3,C) and the standard quadratic map

σ : [x, y, z] ∈ P
2 ��� [yz, zx,xy] ∈ P

2.

A classical object of study, from this viewpoint, has been the classification

of curves (or, more generally, of linear systems of curves) in P
2 up to the action

of Cr2. If L is a linear system of curves, its dimension is a Cremona invariant,

that is, it is the same for all linear systems in the Cremona orbit of L, that is,

the orbit of L under the Cr2-action.

The degree d of the curves in L instead (called the degree of L and denoted

by deg(L)) is not a Cremona invariant: for instance, if one applies to L a general

quadratic transformation (i.e., the composition of σ with a general element of

PGL(3,C)), the degree of the transformed linear system is 2d. However, one

can define an important Cremona invariant related to the degree, that is, the
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Cremona degree of L: this is the minimal degree of a linear system in the Cremona

orbit of L. A (not necessarily unique, up to projective transformations) linear

system with minimal Cremona degree is called a Cremona minimal model.

If L has dimension 0, that is, it consists of a unique curve C, then the

Cremona degree could be 0: this is the case if C can be contracted to a set of

points by a Cremona transformation. In this case, one says that C is Cremona

contractible or simply Cr-contractible. If C is Cr-contractible and reducible, it

could be contracted to a set of distinct points. However, it is easy to see that

any finite set of points in P
2 can be mapped to a single point via a Cremona

transformation. Thus, C is Cr-contractible if and only if there is a Cremona

transformation which contracts C to a point of the plane. If dim(L) ≥ 1, then

the Cremona degree of L is positive.

The Cremona classification of Cremona minimal models of linear systems is

a very classical subject. For example, it is a result which goes back to Noether

(though with an incomplete proof) that a pencil of irreducible, rational plane

curves is Cremona equivalent to the pencil of lines through a fixed point; that is,

pencils of rational plane curves have Cremona degree 1. Similar results for linear

systems of positive dimension of curves with positive genus have been classically

proved, as we will see in Section 2, which is devoted to a historical account on

the subject.

The general problem of classifying Cremona minimal models of irreducible

plane curves or linear systems (a linear system is said to be irreducible if its

general curve is as well) has been open for more than one century, with several

interesting contributions by various authors, among them it is worth mentioning

Marletta [21], [22], who pointed out important properties of adjoint linear systems

to such models (see Theorem 2.1; for the definition of adjoint linear systems, see

Section 3). This problem, however, has been solved only recently in our paper [4].

The first step in this classification can be considered the characterization of

Cr-contractible irreducible plane curves. According to Enriques and Chisini [12,

Volume III, Section 21, pp. 191–192], the first result on this subject came in 1900

from Castelnuovo and Enriques [8].

THEOREM 1.1 (CASTELNUOVO AND ENRIQUES)

An irreducible curve C is Cr-contractible if and only if all adjoint linear systems

to C vanish.

Actually, Castelnuovo and Enriques [8] claimed that the irreducibility assumption

on C can be relaxed to C being reduced, but [5, Example 2], namely, a general

union of d≥ 9 distinct lines with a point of multiplicity d− 3, shows that this is

not true.

Theorem 1.1 is today known as Coolidge’s theorem, because it appeared

also in Coolidge’s book [11, p. 398], but the proof therein is not complete (see

Section 2). Theorem 1.1 was improved in 1982 by Kumar and Murthy [23].
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THEOREM 1.2 (KUMAR–MURTHY)

An irreducible plane curve C is Cr-contractible if and only if the first two adjoint

linear systems to C vanish.

Using the modern language of pairs of a curve on a smooth surface, one con-

siders the pair (S, C̃) where S → P
2 is a birational morphism which resolves the

singularities of C and C̃ is the strict transform of C on S.

Theorem 1.2 implies that the pair (S, C̃) has log-Kodaira dimension

kod(S, C̃) = −∞ if and only if its second log plurigenus P2(S, C̃) vanishes (for

the definitions, see again Section 3). This can be seen as a log-analogue of Castel-

nuovo’s rationality criterion for regular surfaces. Thus, for an irreducible plane

curve C, the following four conditions are equivalent:

(a) C is Cr-contractible,

(b) kod(S, C̃) =−∞,

(c) all adjoint linear systems to C vanish,

(d) the first two adjoint linear systems to C vanish.

Condition (d) can be replaced by

(d′) P2(S, C̃) = 0.

The implications (a) ⇒ (b) ⇒ (c) ⇒ (d) are either trivial or easy, and are

true even for reducible and reduced plane curves (see Section 3), while (d)⇒ (a)

follows from Theorem 1.2.

As for extensions of Kumar and Murthy’s theorem to reducible curves, the

only known result so far is due to Iitaka [16], [17].

THEOREM 1.3 (IITAKA)

Let C be a reduced plane curve with two irreducible components. Then, C is

Cr-contractible if and only if the first two adjoint linear systems to C vanish.

By contrast, in [5] we noted that (a), (b), (c), and (d) above are not equivalent for

reducible, reduced plane curves. As we said, [5, Example 2] shows that (b) and

(c) are not equivalent for reducible curves. Furthermore, an example of Pompilj

[27, p. 68] shows that (c) and (d) are not equivalent for curves with three irre-

ducible components (see [5, Example 1]). The same example shows that (a) and

(d) are not equivalent for curves with three irreducible components. Note, more-

over, that Pompilj’s example is the union of three Cr-contractible irreducible

curves that turns out to be non-Cr-contractible, and it shows the difficulty of

proving the Cr-contractibility of reducible curves by proceeding by induction on

the number of irreducible components of the curve, as one may be tempted to

do. See the historical account in Section 2 for other difficulties encountered by

several mathematicians in tackling this problem.

Concerning reducible curves, the following theorem should also be recalled.
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THEOREM 1.4 (KOJIMA–TAKAHASHI [20])

Let (S,D) be a pair where S is a smooth rational surface and D is a reduced

curve on S with at most four irreducible components. Then, kod(S,D) =−∞ if

and only if P6(S,D) = 0.

Furthermore, if (V,D′) is the almost minimal model of (S,D) in the sense of

[20, Definition 2.3] and if the support of D′ is connected, then kod(S,D) =−∞
if and only if P12(S,D) = 0.

However, Kojima and Takahashi do not relate kod(S,D) = −∞ to the con-

tractibility of D.

In [5] we posed the following problem.

PROBLEM

Is it true that a reduced plane curve C is Cr-contractible if and only if kod(S, C̃) =

−∞?

In this article we address this problem when C is a reduced union of lines, the

first meaningful case, which, we think, presents aspects of general interest. Our

main result is the following (see Theorem 4.14 for a more precise statement).

THEOREM 1.5

Let C be the union of d ≥ 12 distinct lines. Then, all adjoint linear systems

to C vanish if and only if C has a point of multiplicity m ≥ d − 3. Moreover,

kod(S, C̃) =−∞ if and only if C has a point of multiplicity m≥ d− 2. Finally,

C is Cr-contractible if and only if kod(S, C̃) =−∞.

A posteriori, one has that P3(S, C̃) = 0 implies kod(S, C̃) =−∞ for C a union of

d ≥ 12 distinct lines with vanishing adjoints. Moreover, it turns out that, for a

union of d≥ 12 distinct lines, (d) implies (c). Note that this is not true if d < 12:

for example, for the dual configurations of the flexes of a smooth cubic plane

curve, which has degree 9, 12 triple points, and no other singularity, the first two

adjoint linear system vanish, but the third adjoint is trivial and, hence, nonempty.

The case of a reduced union of d≤ 11 lines is also interesting but the clas-

sification of all cases with vanishing adjoints or with Kodaira dimension −∞ is

much more complicated, since it requires the analysis of many dozens of config-

urations. We performed it for d ≤ 8 and d = 11; the remaining cases are works

in progress. So far all cases we have found with Kodaira dimension −∞ are also

Cr-contractible. We will not present here this long and tedious classification, but

we intend to do it in a forthcoming article.

This article is organized as follows. After the historical Section 2, we fix

notation and definitions in Section 3. In Section 4, we classify the union of d≥ 12

distinct lines with vanishing adjoints. Among them, we determine those with

Kodaira dimension −∞ (the latter set is strictly contained in the former) and

we show that these are exactly the Cr-contractible ones.
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2. A historical account

The history of Theorem 1.1 is surprisingly intricate, and it is intertwined with

that of the Noether–Castelnuovo theorem and with the problem of finding Cre-

mona minimal models of plane curves and linear systems. A short account of some

proofs of the Noether–Castelnuovo theorem can be found in [1, pp. 227–228] (see

also the historical remarks in [1, Chapter 8]). For more details on the classical

literature, see [15, pp. 390–391] and [12, Volume III, Section 20, pp. 175–177].

The study of Cremona transformations γ of P2 is equivalent to the one of

homaloidal nets: such a net is the image of the linear system of lines via γ. The

degree of the homaloidal net L associated to γ ∈ Cr2 is called the degree of γ.

Cremona transformations of degree 1 are projective transformations, those of

degree 2, the quadratic transformations, correspond to homaloidal nets of conics,

and so on.

If L is an irreducible linear system of plane curves of degree d, with base

points P0, . . . , Pr of multiplicity at least m0, . . . ,mr, then we may assume that

m0 ≥ · · · ≥mr. We will use the notation (d;m0, . . . ,mr) to denote L. We may use

exponential notation to denote repeated multiplicities. For instance the homa-

loidal nets of conics are of the form (2; 13), and the related quadratic transfor-

mation is said to be based at the three simple base points of this net.

The so-called “Noether–Castelnuovo theorem” was apparently first stated

in 1869 by Clifford [9]. However, Clifford gave no real proof of it; rather, he

presented a plausibility argument based on the analysis of Cremona transfor-

mations of degree d ≤ 8. Immediately after, in 1870, Noether [24] and Rosanes

[28] independently came up with a more promising approach. They correctly

observed that for a homaloidal net L = (d;m0, . . . ,mr) of degree d > 1 one has

m0+m1+m2 > d. (This is now called Noether’s inequality.) Then, they observed

that if one performs a quadratic transformation based at P0, P1, P2, the homa-

loidal net L is transformed in another of degree d′ = 2d− (m0 +m1 +m2)< d.

By repeating this argument, the degree of L can be dropped to 1, proving the

theorem.

The problem with this argument is the existence of an irreducible net of con-

ics through P0, P1, P2. This is certainly the case if P0, P1, P2 are distinct, since

then they cannot be collinear by Noether’s inequality. The same argument applies

also if P1 is infinitely near to P0 and P2 is distinct, but problems may arise if

both P1, P2 are infinitely near to P0. The first difficulty appears if P1, P2 are

infinitely near to P0 in different directions. This was noted by Noether himself,

who filled up this gap in [25]. After this, the proof was considered to be cor-

rect and the theorem well established. Afterward, a considerable series of papers

appeared, by several authors, such as Bertini, Castelnuovo, Guccia, Jung, Mar-

tinetti, del Pezzo, de Franchis, Segre (in chronological order), and others. Based

on Noether’s argument, they pursued the classification of Cremona minimal mod-

els of irreducible linear systems of positive dimension of curves of low genus.

It was only in 1901 that Segre [29] pointed out a more subtle gap in Noether’s

argument when
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• P2 is infinitely near to P1, which in turn is infinitely near to P0, and

• P2 is satellite to P0, that is, P2 is proximate also to P0.

In other words, P2 is infinitely near to P0 along a cuspidal branch. Segre’s crit-

icism seemed to be a very serious one, since he presented a series of homaloidal

nets of increasing degrees whose degree cannot be lowered by using quadratic

transformations.

According to Coolidge [11, p. 447], “it is said that Noether shed tears when

he heard of this,” but, as Coolidge goes on, “there was no need to do so.” Indeed,

promptly after Segre’s criticism, in the same year 1901, Castelnuovo [7] showed

how to decompose a nonlinear Cremona transformations as a composition of de

Jonquières maps (related to homaloidal nets of the type (d;d− 1,12(d−1)), and

the de Jonquières map will be said to be centered at the base points of the net),

which, in turn, decompose in products of quadratic ones, as shown by Segre in a

footnote to [7]. Just one year later, Ferretti [14], a student of Castelnuovo’s, also

filled up the gap in the aforementioned papers about the classification of linear

systems of low genus. It turned out that, even if the proofs were incomplete, all

the statements were correct.

Castelnuovo’s proof really contains a new idea: it is based on the remark

that, if L is a positive-dimensional linear system of rational plane curves, then

all adjoint linear systems to L vanish. It is this property that ultimately implies

that L has base points of large enough multiplicity so that the degree of L can

be decreased by means of de Jonquières transformations. This idea, according to

Castelnuovo himself, came from the joint work [8] with Enriques of the prior year

concerning rational and ruled double planes, that is, rational and ruled double

coverings of P2. Indeed, Castelnuovo and Enriques stated in [8] that a double

plane is rational or ruled if and only if all the adjoint linear systems of index

i≥ 2 to the branch curve of (the canonical desingularization of) a double plane

vanish (see [2], [3] for a more precise statement).

In the last page of [8], Castelnuovo and Enriques stated Theorem 1.1 (with

the wrong assumption that C can be reducible): they do not really give a proof;

they simply claim that it consists in computations similar to others done in that

paper. In addition, they remarked that the same technique could be useful in the

classification of linear systems of plane curves with low genus, as Castelnuovo

and Ferretti effectively did.

Note, however, that Segre’s criticism applied also to the classification in [8],

as Castelnuovo admitted in the first page of [7]. Even if Castelnuovo suggested in

[7] that the gap could be fixed by arguments similar to those in [7], it seems that

nobody did that, until Conforto [10] in 1938 (cf. [13, p. 458]). It turned out only

recently that the Castelnuovo–Enriques–Conforto proof of the characterization

of rational double planes still had a gap, which was fixed in [3].

To come back to Theorem 1.1, its first correct proof is due to Ferretti [14].

This is essentially exposed by Enriques and Chisini [12, Volume III, Section 21,

pp. 187–190]. However, in [12, Volume III, Section 21, p. 190], at the end of the

proof of Theorem 1.1 (with the correct statement), Enriques and Chisini insisted
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on the wrong statement that the irreducibility assumption on C can be weakened

to reducedness. A possible explanation for this mistake may reside in the fact that

the numerical properties of the multiplicities of the curve C (essentially Noether’s

inequality) stay the same even if it is reducible. However, the condition that three

points P0, P1, P2 of the highest multiplicities are not aligned if m0 +m1 +m2 >

d, where d = deg(C), may fail for reducible curves. Moreover, even if one can

apply a Cremona transformation decreasing d, one or more components of C

could be contracted to points: in that case, if one then applies another Cremona

transformation based at those points, such components reappear, causing the

argument to become circular. The same considerations suggest that one cannot

simply proceed by induction on the number of components of C.

A few years after Ferretti’s work, in 1907, Marletta [21] gave a similar proof

of Theorem 1.1, by showing the following.

THEOREM 2.1 (MARLETTA)

A curve of Cremona minimal degree d > 1, with the point of maximal multi-

plicity m0 > d/3, has nonvanishing adjoint linear system of index i, with i =

[(d−m0)/2], where [x] denotes the largest integer smaller than or equal to x.

Also Ferretti [14] had given similar interesting results regarding the adjoint linear

systems to Cremona minimal models.

Though Theorem 1.1 is today called Coolidge’s theorem, its proof in

Coolidge’s book [11, pp. 396–398] contains the same gap pointed out by Segre

for Noether’s argument. It is strange how careless Coolidge was in his references:

the only one he gives is to a paper of Franciosi of 1918. It is also very strange

that Coolidge’s wrong proof was repeated verbatim by Kumar and Murthy [23],

who, however, gave a correct proof of Theorem 1.2 with different methods.

Regarding the minimal degree problem, it seems that Jung in 1889 (see [18])

was the first one who proved the following.

THEOREM 2.2 (G. JUNG)

If an irreducible curve C has degree d and maximal multiplicities m0 ≥m1 ≥m2

with d≥m0 +m1 +m2, then C has minimal degree.

The same statement holds mutatis mutandis for irreducible linear systems of

plane curves (see [4, Theorem 2.3] for a short proof which uses adjoint linear

systems). Theorem 2.2 has been stated by Coolidge [11, p. 403] with the weaker

hypothesis d > m0 +m1 +m2, but the proof therein works also in the case in

which d=m0 +m1 +m2.

If an irreducible curve C has Cremona minimal degree d and maximal multi-

plicities m0 ≥m1 ≥m2 with m0 +m1 +m2 > d, one sees that the corresponding

points P0, P1, P2 are infinitely near, namely, P0 ∈ P
2, P1 is infinitely near to P0,

and either

• P2 is infinitely near to P0 (in a different direction with respect to P1), or
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• P2 is infinitely near to P1 and P2 is satellite to P0.

In both cases, it follows that m0 > d/2.

Marletta [21] gave sufficient conditions on the multiplicities of the singular

points of a curve C to ensure that C has Cremona minimal degree with d <

m0 +m1 +m2.

A key ingredient in the study of (linear systems of) plane curves has been

the concept of adjoint linear systems. According to Enriques and Chisini [12,

p. 191], they were originally introduced by Brill and Noether in 1873 for the study

of linear series on curves (see [26]). Their invariance with respect to Cremona

transformations was first used by Kantor in 1883 (but published only in 1891;

see [19]) and then by Castelnuovo [6] in 1891.

3. Preliminaries and notation

3.1. Adjoint linear systems
Let C be a reduced plane curve. Let f : S → P

2 be a birational morphism which

resolves the singularities of C, and denote by C̃ the strict transform of C on S.

For any pair of integers n≥ 1 and m≥ n, we set

adn,m(C) = f∗
(
|nC̃ +mKS |

)
and

adm(C) := ad1,m(C), so that adn,m(C) = adm(nC).

We call adn,m(C) the (n,m)-adjoint linear system to C, and adm(C) is simply

the m-adjoint linear system to C or the adjoint linear system of index m to C.

REMARK 3.1

The reason why we assume m≥ n is that the definition of (n,m)-adjoint systems

is independent of the morphism f only in this case. (The reader can easily check

this.) Moreover, adn,m(C) = f∗(|nC̃ ′ + mKS |), with C̃ ′ = C̃ + D, where D is

supported on the exceptional divisors of f .

A basic role in Cremona geometry is played by the n-adjoint sequence

{dim(adn,m(C))}m≥n of C (simply called the adjoint sequence if n= 1). A cru-

cial remark is that adjunction extinguishes, that is, adn,m(C) = ∅ for m 
 0;

hence, adjoint sequences stabilize to −1. Therefore, we can consider them as

finite sequences, ending with the first −1, after which it stabilizes. From the

results in [4] it follows that the adjoint sequence stabilizes to −1 as soon as it

reaches the value −1.
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Let γ ∈Cr2, and let C and C ′ be reduced curves in P2. We say that γ maps

C to C ′ if there is a commutative diagram

S̃
βα

P
2

γ
P
2

(1)

with α,β birational morphisms, and there is a smooth curve C̃ on S̃ such that

(2) α∗(C̃) =C and β∗(C̃) =C ′.

Note that γ (resp., its inverse) may contract some components of C (resp.,

of C ′) to points. In particular, C ′ could be the zero curve, in which case C is

said to be Cremona contractible or Cr-contractible.

As recalled in Section 2, the following lemma is basically due to Kantor.

LEMMA 3.2 (KANTOR)

If C is a reduced plane curve, then for all integers n≥ 1 the n-adjoint sequence

of C is a Cremona invariant.

Proof

It follows from diagram (1), from (2), and from

adn,m(C) = α∗
(
|nC̃ +mKS |

)
, adn,m(C ′) = β∗

(
|nC̃ +mKS |

)
. �

REMARK 3.3

In [4, Section 4] there is a proof of Kantor’s lemma under a useless restrictive

hypothesis. Though irrelevant for us, it should be noted that, strictly speaking,

the adjoint systems themselves, are not Cremona invariant, due to the possible

existence for them of (exceptional) fixed components which can be contracted by

a Cremona transformation.

3.2. Pairs
Let (S,D) be a pair, namely, D is a reduced curve on a smooth projective sur-

face S. For any nonnegative integer m, the m-log plurigenus of (S,D) is

Pm(S,D) := h0
(
S,OS

(
m(D+KS)

)
.

If Pm(S,D) = 0 for all m≥ 1, then one says that the log-Kodaira dimension of

the pair (S,D) is kod(S,D) =−∞. Otherwise

kod(S,D) =max
{
dim

(
Im(φ|m(D+KS)|)

)}
,

where φ|m(D+KS)| is the rational map determined by the linear system |m(D +

KS)| whenever this is not empty.
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A pair (S,D) is said to be contractible if there exists a birational map

ψ : S ��� S′ such that D is contracted by ψ to a union of points, namely, ψ

is constant on any irreducible component of D.

REMARK 3.4

Assume S rational. If ψ : S → S′ is a birational morphism which contractsD, then

D is contained in the exceptional locus of ψ; therefore, all connected components

ofD have arithmetic genus 0, in particular, they have normal crossings. Moreover,

kod(S,D) =−∞.

If (S,D) is contractible, then there is a resolution of the indeterminacies of ψ,

that is, a commutative diagram

S̃
βα

S
ψ

S′

where α and β are birational morphisms. If D̃ is the strict transform of D

via α, then D̃ is contracted to a union of points by the morphism β; hence,

kod(S̃, D̃) =−∞.

Let (S,D) and (S′,D′) be pairs. We will say that (S,D) and (S′,D′) are bira-

tionally equivalent if there is a birational map φ : S ��� S′ such that φ (resp.,

φ−1) does not contract any irreducible component of D (resp., of D′) and the

image of D via φ is D′. (Hence, the image of D′ via φ−1 is D.)

With this definition we immediately have the following result.

LEMMA 3.5

If (S,D) is birationally equivalent to (S′,D′) and (S′,D′) is contractible, then

(S,D) is contractible too.

REMARK 3.6

If a reduced plane curve C is Cr-contractible, which is condition (a) in the

Introduction, then, setting (S, C̃) as at the beginning of the section, one has

kod(S, C̃) =−∞, which is condition (b) in the Introduction.

Since C̃ is effective, condition (b) is actually equivalent to

adn,m(C) = ∅, for each m≥ n≥ 1.

In particular, (b) implies

(3) adm(C) = ∅, for each m≥ 1,

which is condition (c) in the Introduction.
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Condition (c) trivially implies (d). We see that (d) is equivalent to (d′).

Indeed, P1(S, C̃) = 0 is equivalent to |C̃ +KS |= ∅. Then, by adjunction, all irre-

ducible components of C̃ are smooth rational curves. Thus, 2C̃ +2KS intersects

all components of C̃ negatively, so that C̃ is in the fixed part of |2C̃ + 2KS | if
this is not empty. In conclusion, one has P2(S, C̃) = dim(|2C̃ + 2KS |) + 1 = 0 if

and only if |C̃ + 2KS |= ∅, that is, ad2(C) = ∅.

3.3. Generalities on unions of lines
In this article we will study curves C which are unions of distinct lines and have

vanishing adjoints, that is, such that (3) holds. Then we will see which of them

have kod(S, C̃) = −∞ and which are Cr-contractible. We will now prepare the

territory for this.

Let C be a reduced plane curve with d= deg(C). If C is singular, let m0 ≥
m1 ≥ · · · ≥ mr ≥ 2 be the multiplicities of the singular points P0, . . . , Pr of C,

which can be proper or infinitely near. We set mi = 1 if i > r. If C is smooth, we

assume m0 = 1, P0 is a general point of C, and mi = 1 for i > 0. By the proximity

inequality (see [4] as a general reference for these matters and for notation), we

may and will assume that Pi > Pj (i.e., Pi is infinitely near to Pj) implies i > j.

Therefore, P0 is proper and either P1 is also proper or P1 >1 P0 (i.e., P1 is

infinitely near of order 1 to P0).

As announced in the Introduction, we will use the notation (d;m0,m1,

. . . ,mr) to denote a linear system of plane curves of degree d with assigned base

points P0, . . . , Pr with respective multiplicities at least m0, . . . ,mr. Hence, we

may write C ∈ (d;m0,m1, . . . ,mr). We will write C ∼= (d;m0,m1, . . . ,mr) when-

ever C has multiplicity exactly mi at Pi, i= 1, . . . , r. If C ∼= (d;m0,m1, . . . ,mr),

then adn,m(C) = (nd − 3m;nm0 −m, . . . , nmq −m), where q is the maximum

such that nmq >m.

LEMMA 3.7

In the above setting, one has d−m0 ≥ 0 with equality if and only if C consists

of d lines in the pencil of center P0, in which case C is Cr-contractible.

Proof

Only the last assertion needs to be justified. Let d = 2� + ε, with ε ∈ {0,1}.
Let γ by the de Jonquières transformation of degree � + 1 + ε centered at P0,

with multiplicity �+ ε, at d simple basepoints, each one general on a component

of C, and, in addition if ε = 1, at further general simple base point. This γ

transformation contracts C to d distinct points of the plane. �

Set

(4) d−m0 = 2h+ ε, with ε ∈ {0,1}.

LEMMA 3.8

In the above setting, if d=m0 +1, then C consists of �≥ 0 lines in the pencil of
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center P0 plus an irreducible curve C ′ of degree d′ = d− � with P0 of multiplicity

d′ − 1, and all points of C off P0 are nonsingular. Then C is Cr-contractible.

Proof

Only the last assertion needs to be justified. Assume d′ > 1. Then the curve C ′

is mapped to a line L by a de Jonquières transformation of degree d′ centered

at P0, with multiplicity d′ − 1 and 2d′ − 2 general simple base points of C ′. The

curve C is then transformed to a curve C̄ consisting of � lines L1, . . . ,L� in a

pencil of center P̄0, plus the line L not passing through P̄0. So we are reduced to

the case d′ = 1.

If �= 0, we finish by contracting L to a point with a quadratic transformation

based at three points, two of which lie on L. We proceed similarly if �= 1. So we

may assume �≥ 2. Then set μ= (�+2)/2 if � is even or μ= (�+3)/2 if � is odd,

and note that �≥ μ≥ 2. The de Jonquières transformation of degree μ centered

at P̄0, with multiplicity μ− 1, plus μ simple base points at L ∩L1, L ∩L2, . . . ,

L ∩ Lμ, plus � − μ simple base points, each general on one of the lines Lμ+1,

Lμ+2, . . . , L�, and further 2μ− 2− � simple general base points, contracts C̄ to

�+ 1 distinct points of the plane. �

From now on, we may and will assume h≥ 1.

LEMMA 3.9

In the above setting, if (3) holds, one has:

(i) m0 > h or, equivalently, m0 > d/3;

(ii) mi > h for 1≤ i≤ 2;

(iii) m0 +m1 +m2 ≥ d+ 1.

Proof

(i) The equivalence between m0 > h and m0 > d/3 is clear. Let us prove that

m0 > d/3. The assertion is trivial if d < 3, so we assume d≥ 3. Suppose m0 ≤ d/3.

Then ad[d/3](C) is the complete linear system of curves of degree d− 3[d3 ] ≥ 0,

which is not empty, contradicting (3).

(ii) If m2 ≤ h, then adh(C) = (m0 − h+ ε;m0 − h,m1 − h), where m1 − h=

max{m1 − h,0} is not empty, contradicting (3).

(iii) This follows from (i) and (ii). �

In the rest of this section, we consider the case in which C is a reduced union of

d lines. Since mi is the number of lines passing through Pi, for i= 0, . . . , r, one

has

(5) m0 +m1 +m2 ≤ d+ 3.

See Lemma 4.1 below for the description of the case where equality occurs.
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If C ∼= (d;m0, . . . ,mr) is a reduced union of lines, then we say that (d;m0, . . . ,

mr) is the type of C. Moreover, we say that two reduced unions of lines

C = L1 ∪L2 ∪ · · · ∪Ld and D =R1 ∪R2 ∪ · · · ∪Rd

have the same configuration if there exists a permutation σ of {1, . . . , d} such

that

Li1 ∩Li2 ∩ · · ·∩Lik = ∅⇐⇒Rσ(i1)∩Rσ(i2)∩ · · ·∩Rσ(ik) = ∅, for each i1, . . . , ik.

REMARK 3.10

Clearly, two reduced unions of lines with the same configuration are also of the

same type, but, in general, the type does not uniquely determine the configura-

tion. For example, if C is the reduced union of six lines with two triple points,

that is, the type of C is (6; 32,29), then there are exactly two configurations of

this type, according to the following possibilities: either the line passing through

the triple points is a component of C or it is not.

We will denote a configuration of a reduced union of lines C = L1 ∪ · · · ∪ Ld as

follows:

(6)
(
d;{a0,1, a0,2, . . . , a0,m0},{a1,1, a1,2, . . . , a1,m1}, . . . ,{as,1, as,2, . . . , as,ms}

)
,

where ms ≥ 3 and where P0 = La0,1 ∩La0,2 ∩ · · ·∩La0,m0
is a point of multiplicity

m0, P1 = La1,1 ∩ La1,2 ∩ · · · ∩ La1,m1
is a point of multiplicity m1, and so on,

for all points of multiplicity greater than or equal to 3. In other words, (6) lists

the singular points of C of multiplicity m ≥ 3 and the lines containing each of

them. In particular, we list the singular points according to their multiplicities

in nonincreasing order, and among the points of the same multiplicity, we will

usually list them in lexicographical order with respect to the given ordering of

the lines.

REMARK 3.11

In (6) one does not need to list the nodes, that is, the double points of C. Indeed,

Pi,j = Li ∩Lj is a node of C if and only if there exist no k,h, l ∈ {1, . . . , r} such

that ak,h = i and ak,l = j. The number of nodes of C is(
d

2

)
−

s∑
i=0

mi(mi − 1)

2
.

EXAMPLE 3.12

If C is a reduced union of six lines of type (6; 32,29) such as in Remark 3.10, then

the two possible configurations are (6,{1,2,3},{1,4,5}) and (6,{1,2,3},{4,5,6}).
The former means that the triple points of C are P0 = L1 ∩ L2 ∩ L3 and P1 =

L1 ∩ L4 ∩ L5, so that the nodes are P1,6 = L1 ∩ L6, P2,4, P2,5, P2,6, P3,4, P3,5,

P3,6, P4,6, P5,6 (see Remark 3.11). The latter configuration means that the triple

points of C are P0 = L1 ∩L2 ∩L3 and P1 = L4 ∩L5 ∩L6, so that the nodes are

P1,4 = L1 ∩L4, P1,5, P1,6, P2,4, P2,5, P2,6, P3,4, P3,5, P3,6 (see Remark 3.11).
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REMARK 3.13

We will see later in Remark 4.15 that different configurations of the same type

may behave quite differently with respect to the adjoint linear systems and Cre-

mona contractibility. Furthermore, two reduced unions of lines with the same

configuration are not necessarily projectively equivalent. For example, if the type

of C is (4; 4), then there is only one possible configuration, but the isomorphism

classes of four lines passing through a point depend on one parameter.

4. Configurations of lines with vanishing adjoints

In this section we classify reduced plane curves C which are unions of d ≥ 12

distinct lines and such that (3) holds, that is, with vanishing adjoint linear sys-

tems.

4.1. Basics
We keep the notation introduced above, including (4). The degree d of C is the

number of its components, and the singular points of C are all proper. We will

assume that (3) holds.

Set d = 3δ + η, with 0 ≤ η ≤ 2. By Lemma 3.9 we have m0 > δ, and we

set m0 = δ + μ, with μ ≥ 1. Set μ = 2ν + τ , with 0 ≤ τ ≤ 1, so that d −m0 =

2(δ− ν) + (η− τ). Thus:

(i) h= δ − ν and ε= η− τ , unless either,

(ii) η = 0, τ = 1, in which case h= δ − ν − 1 and ε= 1, or

(iii) η = 2, τ = 0, in which case h= δ − ν + 1 and ε= 0.

We set

m :=m0 +m1 +m2.

By (5) one has m≤ d+ 3 = 3δ + η + 3. Since m1,m2 ≥ h+ 1 by Lemma 3.9(ii),

we have:

• 3δ+ τ + ε+ 3≥m≥ 3δ + τ + 2 in case (i);

• 3δ+ 3≥m≥ 3δ + 1 in case (ii);

• 3δ+ 5≥m≥ 3δ + 4 in case (iii).

Thus, the interval in which m lies is [d+2−ε, d+3] and its length is ε+1 ∈ {1,2};
hence, d+ 1 ≤m ≤ d+ 3. The following table shows the possible values of m1

and m2:

(7)

m1 m2 ε m Possible cases

h+ 1 h+ 1 0,1 d+ 2− ε (i)–(ii)–(iii)

h+ 2 h+ 1 0,1 d+ 3− ε (i)–(ii)–(iii)

h+ 2 h+ 2 1 d+ 3 (i)–(ii)

h+ 3 h+ 1 1 d+ 3 (i)–(ii)
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We will use the notation

m2 = · · ·=mk, m2 − 1 =mk+1 = · · ·=mk+l >mk+l+1,

where k ≥ 2 and l≥ 0. It will be essential for us to consider

adh(C) =
(
m0 − h+ ε;m0 − h,m1 − h, (m2 − h)k−1, (m2 − h− 1)l, . . .

)
,

which has to be empty, and we note that 1≤m1−h≤ 3, whereas 1≤m2−h≤ 2.

The proofs of the following lemmas are elementary and are left to the reader.

LEMMA 4.1

In the above setting, if m= d+ 3, then:

• P0, P1, P2 are not collinear and the sides of the triangle with vertices

P0, P1, P2 are components of C;

• all components of C pass through one of the points P0, P1, P2;

• the remaining singular points of C have multiplicity at most 3.

LEMMA 4.2

In the above setting, if m= d+ 2, then:

(α) either P0, P1, P2 are collinear and the line joining them belongs to C, in

which case all components of C pass through one of the points P0, P1, P2 and the

remaining singular points of C have multiplicity at most 3; or

(β) P0, P1, P2 are not collinear and the sides of the triangle with vertices

P0, P1, P2 are components of C, in which case all components of C but one pass

through one of the points P0, P1, P2, the remaining singular points of C have

multiplicity at most 4, and there are at most two of them with multiplicity 4; or

(γ) P0, P1, P2 are not collinear and two of the three sides of the triangle with

vertices P0, P1, P2 are components of C, in which case all components of C pass

through one of the points P0, P1, P2 and the remaining singular points of C have

multiplicity at most 3.

LEMMA 4.3

In the above setting, if m= d+ 1, then:

(α′) either P0, P1, P2 are collinear and the line joining them belongs to C, in

which case all components of C but one pass through one of the points P0, P1, P2

and the remaining singular points of C have multiplicity at most 4; or

(β′) P0, P1, P2 are not collinear and the sides of the triangle with vertices

P0, P1, P2 are components of C, in which case all components of C but two pass

through one of the points P0, P1, P2, the remaining singular points of C have

multiplicity at most 5, and there is at most one of them with multiplicity 5; or

(γ′) P0, P1, P2 are not collinear and two of the three sides of the triangle with

vertices P0, P1, P2 are components of C, in which case all components of C but

one pass through one of the points P0, P1, P2 and the remaining singular points

of C have multiplicity at most 4; or
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(δ′) P0, P1, P2 are not collinear and only one side of the triangle with ver-

tices P0, P1, P2 is a component of C, in which case all components of C pass

through one of the points P0, P1, P2 and the remaining singular points of C have

multiplicity at most 3.

4.2. The case m maximal
Here we treat the case m= d+ 3, in which Lemma 4.1 applies.

4.2.1. The subcase ε= 0

We are in either case (i) or case (iii), and in table (7) the second row occurs.

Hence, m0 ≥m1 = h+ 2. Thus,

adh(C) = (m0 − h;m0 − h,2,1k−1).

LEMMA 4.4

Assume (3) holds, m = d + 3, d ≥ 12, h ≥ 1, and ε = 0. Then C ∼= (d;

d− 2,3,22(d−3)).

Proof

We claim that m0 − h > 2. Otherwise, m0 − h= 2; hence, d= 3h+ 2. One has

adh−1(C) = (5; 32,2k−1,1l),

which has to be empty. Then either k ≥ 3 or l ≥ 1. (Recall that k ≥ 2.) Taking

into account the last item of Lemma 4.1, we see that h≤ 3 and, hence, d≤ 11, a

contradiction.

Then m0−h≥ 3, and since adh(C) is empty, one has k ≥ 3. The last item of

Lemma 4.1 implies h≤ 2. If h= 2, then m1 = 4, m2 = 3, and Lemma 4.1 again

yields k ∈ {3,4}. The emptiness of ad2(C) = (d− 6;d− 6,2,1k−1) implies d≤ 10,

a contradiction. If h= 1, we obtain the assertion. �

PROPOSITION 4.5

If C is a union of lines and C ∼= (d;d− 2,3,22(d−3)), then C is Cr-contractible.

Proof

The assertion is clear for d = 3,4 by Lemmas 3.7 and 3.8, so we may assume

d≥ 5, and we proceed by induction on d. Consider the two lines L1,L2 through

P1 not passing through P0, and consider two more lines L3,L4 through P0 and

not through P1. Consider the intersection points P1,3 = L1 ∩L3, P2,4 = L2 ∩L4.

Make a quadratic transformation based at P0, P1,3, P2,4. This maps C to a union

of lines C ′ ∼= (d − 2;d − 4,3,22(d−4)): the lines L3,L4 have been contracted to

two points of the transforms of the lines L1,L2 which do not lie on any other

component of C ′. The assertion follows by induction. �
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4.2.2. The subcase ε= 1

We are now in either case (i) or case (ii), and in table (7) the last two rows occur.

Thus, either

m0 ≥m1 = h+ 3,
(8)

m2 = h+ 1, hence adh(C) = (m0 − h+ 1;m0 − h,3,1k−1), or

m0 ≥m1 =m2 = h+ 2, hence adh(C) = (m0 − h+ 1;m0 − h,2k,1l).(9)

LEMMA 4.6

If (3) holds, m= d+ 3, d≥ 11, h≥ 1, and ε= 1, then either:

1. C ∼= (d;d− 3,4,23(d−4)), or

2. C ∼= (d;d− 3,32,23(d−4)) or C ∼= (d;d− 3,33,23(d−5)).

Proof

Note that in case (8) one has m0 −h≥ 3 and in case (9) one has m0 −h≥ 2. So,

to make adh(C) empty we must have:

• k ≥ 5 in case (8), and

• either k ≥ 3, or k = 2 and l≥ 1, in case (9).

In case (8), the last item of Lemma 4.1 yields h ≤ 2. If h = 1, we are in

case (a). If h = 2, then m2 = 3 implies k ≤ 5. Then the emptiness of adh(C) =

(d− 6;d− 7,3,1k−1) requires d≤ 10, contrary to the assumption.

In case (9), Lemma 4.1 yields again h≤ 2. If h= 1, then m2 = 3 implies k ≤ 3

and one has the two cases in (b). If h= 2, then k = 2 and l≤ 4 and the emptiness

of adh(C) = (d− 6;d− 7,22,1l) implies d≤ 10, contrary to the assumption. �

PROPOSITION 4.7

If C is either as in Lemma 4.6(a) and d≥ 11 or as in Lemma 4.6(b) and d≥ 12,

then ad2,3(C) = ∅ and, hence, C is not Cr-contractible.

Proof

In case (a) one has that the fixed part of ad2,3(C) = (2d− 9; 2d− 9,5,13(d−4))

consists of the d− 3 components of C through P0 and the one joining P0 and

P1 with multiplicity 5, and the movable part consists of d − 10 general lines

through P0.

In cases (b), one has ad2,3(C) = (2d− 9; 2d− 9,32,13(d−4)) and ad2,3(C) =

(2d − 9; 2d − 9,33,13(d−5)), respectively. The latter is nonempty: its fixed part

consists of the d− 3 components of C through P0 and the ones joining P0 with

P1, P2, P3 with multiplicity 3, and the movable part consists of d−12 general lines

through P0. The former is also nonempty: its fixed part consists of the d−3 com-

ponents of C through P0, the ones joining P0 with P1, P2 with multiplicity 3, and

the line joining P0 with the intersection of the two distinct lines in C containing

P1, P2, and the movable part consists of d− 11 general lines through P0. �
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4.3. The case m minimal
Now we treat the different extremal case in which m = d + 2 − ε and, hence,

m1 =m2 = h+ 1 (first line of (7)).

4.3.1. The subcase ε= 0

We are in either case (i) or case (iii). We have m= d+ 2 and

adh(C) = (m0 − h;m0 − h,1k).

LEMMA 4.8

Assume (3) holds, m= d+2, d≥ 12, h≥ 1, and ε= 0. Then C ∼= (d;d−2,22d−3).

Proof

Assume first m0 − h = 1. Hence, d = 3h + 1. Recall that k ≥ 2. If k > 2, then

Lemma 4.2 implies h ≤ 3 and, hence, d ≤ 10, a contradiction. If k = 2, then

adh−1(C) = (4; 23,1l) has to be empty, so we must have l≥ 6. Lemma 4.2 implies

h≤ 4, which can happen only in case (β) of Lemma 4.2, in which case l ≤ 2, a

contradiction. If h ≤ 3, then d ≤ 10 and we have a contradiction again. Hence,

m0 − h ≥ 2 and adh(C) = ∅ yield k > m0 − h ≥ 2. We discuss separately the

various cases in Lemma 4.2.

Case (α). We have h ≤ 2. If h = 2, then k ≤ 6. Since ad2(C) = (d − 6;d−
6,1k) is empty, we have 6 ≥ k ≥ d − 5, a contradiction. If h = 1, we have the

assertion.

Case (β). We have h≤ 3. If h= 3, then ad3(C) = (d− 9;d− 9,1k). On the

other hand, one has k ≤ 4, which leads to d≤ 11, a contradiction. If h= 2, then

k ≤ 6 and d≤ 11. So we are left with the case h= 1, leading to the assertion.

Case (γ). We have h≤ 2. If h= 2, one has k ≤ 6. The emptiness of ad2(C)

implies d≤ 11, a contradiction. If h= 1, we have the assertion. �

PROPOSITION 4.9

If C is a union of lines and C ∼= (d;d− 2,22d−3), then C is Cr-contractible.

Proof

If d≤ 3, the assertion is trivial. We then argue by induction on d. Let L1,L2 be

the two lines not passing through P0, and let L3,L4 be two lines through P0.

Consider the intersection points P1,3 = L1∩L3, P2,4 = L2∩L4. Make a quadratic

transformation based at P0, P1,3, P2,4. This maps C to a union of lines C ′ ∼=
(d− 2;d− 4,22d−7): the lines L3,L4 have been contracted to two points of the

transforms of the lines L1,L2 which do not lie on any other component of C ′.

The assertion follows by induction. �

4.3.2. The subcase ε= 1

We are in either case (i) or case (ii). We have m= d+ 1 and

adh(C) = (m0 − h+ 1;m0 − h,1k).
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LEMMA 4.10

Assume (3) holds, m = d + 1, d ≥ 12, h ≥ 1, and ε = 1. Then C ∼= (d;

d− 3,23(d−2)).

Proof

Since m0 − h+ 1≥ 2 and adh(C) is empty, one has k ≥ 5. Lemma 4.3 applies.

Case (α′). One has h≤ 3. If h= 3, then k ≤ 5. Hence, k = 5 and ad2(C) =

(2; 16), but the six points do lie on a (reducible) conic, a contradiction. If h= 2,

then adh(C) = (d− 6;d− 7,1k) and to make adh(C) empty we need k > 2(d− 6).

On the other hand, one sees that k ≤ 8 and, hence, d≤ 9, a contradiction. In case

h= 1 we obtain the assertion.

Case (β′). One has h ≤ 4. If h = 4, then k ≤ 3, a contradiction. If h = 3,

then k ≤ 6 and, hence, k ∈ {5,6}. Since ad3(C) = (d − 9;d − 10,1k), we have

k > 2(d− 9) and, thus, d≤ 11, a contradiction. If h= 2, then k ≤ 10 and, hence,

d≤ 10, a contradiction again. Therefore, h= 1 and we obtain the assertion.

Case (γ′). One has h ≤ 3. If h = 3, then k ≤ 4, a contradiction. If h = 2,

then k ≤ 10, which forces d ≤ 10, a contradiction. Hence, h = 1 and we obtain

the assertion.

Case (δ′). One has h≤ 2. If h= 2, then k ≤ 6, which leads to a contradiction

as above. Hence, h= 1 and we obtain the assertion. �

PROPOSITION 4.11

If C is a union of lines and C ∼= (d;d− 3,23(d−2)) with d≥ 9, then ad2,3(C) = ∅
and, hence, C is not Cr-contractible.

Proof

Let P1, P2, P3 be the vertices of the triangle formed by the three lines of C not

passing through P0. One has ad2,3(C) = (2d − 9; 2d − 9,13(d−2)) = ∅: its fixed

part consists of the d − 3 components of C through P0 plus the three lines

joining P0 with Pi, i= 1,2,3, and the movable part consists of d−9 general lines

through P0. �

4.4. The intermediate case for m
Now we treat the intermediate case in which the length of the interval [d+ 2−
ε, d+3] in which m lies is 2, which forces ε= 1, and m= d+2 is the intermediate

value. Hence, we are in the case described in Lemma 4.2. The values of m1,m2

are given by the second row of table (7). The relevant adjoint is

adh(C) = (m0 − h+ 1;m0 − h,2,1k−1).

LEMMA 4.12

Assume (3) holds, m = d + 2, d ≥ 11, h ≥ 1, and ε = 1. Then C ∼= (d;

d− 3,3,23(d−3)).
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Proof

As in the proof of Lemma 4.10, we have k ≥ 5. Again we make a case-by-case

discussion according to the possibilities listed in Lemma 4.2.

Case (α). One has h ≤ 2. If h = 2, then k ≤ 7. Since ad2(C) = (d − 6;d −
7,2,1k−1) = ∅, it follows that d ≤ 10, a contradiction. If h = 1, we have the

assertion.

Case (β). One has h≤ 3. If h= 3, then k ≤ 4, a contradiction. If h= 2, then

k ≤ 7, which forces d≤ 10 as above, a contradiction. Hence, h= 1 and we have

the assertion.

Case (γ). One has h≤ 2. If h= 2, then k ≤ 7, which forces d≤ 10, a contra-

diction. Hence, h= 1 and we have the assertion. �

PROPOSITION 4.13

If C is a union of lines and C ∼= (d;d−3,3,23(d−3)) with d≥ 10, then ad2,3(C) = ∅
and, hence, C is not Cr-contractible.

Proof

There are two configurations of C. Either C contains the line passing through P0

and P1 or it does not. In the former case, let P2, P3 be the intersection points of

the line not passing through P0 and P1 with the two lines through P1 not passing

through P0. In both cases, one has ad2,3(C) = (2d − 9; 2d − 9,3,13(d−3)) = ∅.
Indeed, in the former case, its fixed part consists of the d− 3 components of C

through P0, the one joining P0 with P1 with multiplicity 3, plus the two lines

joining P0 with P2 and P3, and the movable part consists of d− 10 general lines

through P0. In the latter case, the fixed part consists of the d− 3 components

of C through P0 plus the line joining P0 with P1 with multiplicity 3, and the

movable part consists of d− 9 general lines through P0. �

We collect the previous results in the following theorem.

THEOREM 4.14

Let C be a reduced union of d≥ 12 lines. If condition (3) holds, then C has one

of the following types:

(d;d), (d;d− 1,2d−1), (d;d− 2,3,22(d−3)), (d;d− 2,22d−3),(10)

(d;d− 3,4,23(d−4)), (d;d− 3,33,23(d−5)), (d;d− 3,32,23(d−4)),(11)

(d;d− 3,3,23(d−3)), (d;d− 3,23(d−2)).(12)

The types in (10) are Cr-contractible, while the types in (11) and (12) are

not Cr-contractible. If S → P
2 is a birational morphism which resolves the sin-

gularities of C and we denote by C̃ the strict transform of C on S, for the types

in (10) one has kod(S, C̃) = −∞, while for the types in (11) and (12) one has

P3(S, C̃)> 0; thus, kod(S, C̃)≥ 0. In particular, C is Cr-contractible if and only

if kod(S, C̃) =−∞.
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Proof

Types (d;d) and (d;d−1,2d−1) are Cr-contractible by Lemmas 3.7 and 3.8. Types

(d;d− 2,3,22(d−3)) and (d;d− 2,22d−3) are Cr-contractible by Propositions 4.5

and 4.9. The fact that P3(S, C̃)> 0 for the types in (11) and (12) follows since

ad2,3(C) = ∅ for them by Propositions 4.7, 4.11, and 4.13. �

REMARK 4.15

It is easy to check that each of the types in (10), (11), and (12) except (d;d−
3,3,23(d−3)) has exactly one configuration, whereas the latter has exactly two

configurations, namely, (see the proof of Proposition 4.13)(
d;{4,5, . . . , d},{1,2,3}

)
and

(
d;{4,5, . . . , d},{2,3,4}

)
.

By Proposition 4.13, neither is Cr-contractible if d≥ 10.

It is interesting to note that instead, for d= 9, the two configurations above

behave quite differently with respect to Cr-contractibility. Indeed, the latter one

is not Cr-contractible, whereas we will see in a moment that the former is instead

Cr-contractible. Both configurations have vanishing adjoint linear systems, but

the former one also has adn,m(C) = ∅ for every m ≥ n ≥ 1, whereas the latter

one has, as we saw, ad2,3(C) = ∅.

LEMMA 4.16

Let C be a reduced plane curve. Suppose that there is a Cremona transformation

γ such that γ(C) =B ∪Z, where B is either a line or a conic and Z is either ∅
or a union of points. Then C is Cr-contractible.

Proof

Suppose that B is a line. Choose two general points Q1,Q2 ∈ B and a gen-

eral point Q3 ∈ P
2. Let ω be the Cremona quadratic transformation centered at

Q1,Q2,Q3. Then, ω ◦ γ contracts C to points.

Suppose that B is a conic. If B is irreducible, choose five general points

Q1,Q2, . . . ,Q5 ∈B and a general point Q6 ∈ P
2. If B is a reducible conic, say, B

is the union of two lines R1 and R2, choose two general points Q1,Q2 ∈R1, three

general points Q3,Q4,Q5 ∈R2, and a general point Q6 ∈ P
2. In both cases, the

Cremona map ω defined by the homaloidal net |4L− 2Q1 − 2Q2 − 2Q3 −Q4 −
Q5 −Q6| is such that ω ◦ γ contracts C to points. �

PROPOSITION 4.17

Let C ∼= (9; 6,3,218) be the configuration(
9;{1,2,3,4,5,6},{1,7,8}

)
.

Then C is Cr-contractible.

Proof

Let P0 be the point of multiplicity 6, and let P1 be the triple point. Denote, as

usual, Pi,j = Li ∩Lj , for i = j.
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Take the de Jonquières map γ1 defined by the homaloidal net |4L−3P0−P1−
P4,7−P5,8−P6,9−P7,9−P8,9|. Note that γ1 contracts L1,L4,L5,L6 to points and

maps the other five lines to a pentagon. Setting L̄i = γ1(Li), i= 2,3,7,8,9, and

P̄i,j = L̄i∩ L̄j , for i = j, one sees that γ1(L4) = P̄8,9, γ1(L5) = P̄7,9, γ1(L6) = P̄7,8,

and that γ1(L1) is a point lying on L̄9, different from the vertices of the pentagon.

Now the quadratic map γ2 centered at P̄2,8, P̄3,7, P̄3,9 contracts L̄3 to a

point and maps the other four lines to a quadrilateral. Setting L̃i = γ2(L̄i), for

i= 2,7,8,9, and P̃i,j = L̃i ∩ L̃j , i = j, one sees that γ2(L̄3) = P̃2,8.

Then take the quadratic map γ3 centered at P̃2,7, P̃2,9 and a general point

Q8 ∈ L̃8. One sees that γ3 contracts L̃2 and maps the other three lines to a

triangle. Setting L̂i = γ3(L̃i), i = 7,8,9, and P̂i,j = L̂i ∩ L̂j , for i = j, one sees

that γ3(L̃2) is a point lying on L̂8.

Finally, consider the quadratic map γ4 centered at P̂7,8, at the point infinitely

near to P̂7,8 in the direction of the line L̂7, and at a general point Q9 ∈ L̂9. One

sees that γ4 contracts the line L̂7 to a point and maps the other two lines to

a reducible conic. The choice of the fundamental points of the Cremona maps

γi, i = 1,2,3,4, implies that γ4 ◦ γ3 ◦ γ2 ◦ γ1 maps C to a conic; hence, C is

Cr-contractible by Lemma 4.16. �
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