A Bertini-type theorem for free arithmetic linear series

Hideaki Ikoma

Abstract In this paper, we prove a version of the arithmetic Bertini theorem asserting that there exists a strictly small and generically smooth section of a given arithmetically free graded arithmetic linear series.

0. Introduction

When we generalize results on arithmetic surfaces to those on higher-dimensional arithmetic varieties, it is sometimes very useful to cut the base scheme by a "good" global section s of a given Hermitian line bundle and proceed to induction on dimension. To do this, we have in the context of Arakelov geometry the following result.

FACT ([5, THEOREMS 4.2 AND 5.3])

Let \overline{A} be a C^{∞} -Hermitian line bundle on a generically smooth projective arithmetic variety X, and let x_1, \ldots, x_q be points (not necessarily closed) on X. Suppose that (i) A is ample, (ii) $c_1(\overline{A})$ is positive definite, and (iii) $\mathrm{H}^0(X, mA)$ has a \mathbb{Z} -basis consisting of sections with supremum norms less than 1 for every $m \gg 1$. Then there exist a sufficiently large integer $m \ge 1$ and a nonzero section $s \in \mathrm{H}^0(X, mA)$ such that

- (1) $\operatorname{div}(s)_{\mathbb{Q}}$ is smooth over \mathbb{Q} ,
- (2) $s(x_i) \neq 0$ for every *i*, and
- (3) $||s||_{\sup} < 1.$

For example, this technique plays essential roles in the proofs of the arithmetic Bogomolov–Gieseker inequality on high-dimensional arithmetic varieties (see [5]), of the arithmetic Hodge index theorem in codimension 1 (see [6], [10]), of the arithmetic Siu inequality of Yuan [9], and so on. A purpose of this paper is to give a simple elementary proof of the above fact and to strengthen it to the case of arithmetically free graded arithmetic linear series.

Received January 21, 2013. Accepted May 22, 2014.

Kyoto Journal of Mathematics, Vol. 55, No. 3 (2015), 531-541

DOI 10.1215/21562261-3089037, © 2015 by Kyoto University

²⁰¹⁰ Mathematics Subject Classification: Primary 14G40; Secondary 11G50, 37P30.

Author's work supported by a research fellowship from the Japan Society for the Promotion of Science.

Hideaki Ikoma

Let K be a number field. Let X be a projective arithmetic variety that is geometrically irreducible over $\operatorname{Spec}(O_K)$, and let L be an effective line bundle on X. A graded linear series belonging to L is a subgraded O_K -algebra

$$R_{\bullet} := \bigoplus_{m \ge 0} R_m \subseteq \bigoplus_{m \ge 0} \mathrm{H}^0(X, mL).$$

We consider norms $\|\cdot\|_m$ on $R_m \otimes_{\mathbb{Z}} \mathbb{R}$, and assume that the family of norms $\|\cdot\|_{\bullet} := (\|\cdot\|_m)_{m>0}$ is multiplicative, that is,

$$\|s \otimes t\|_{m+n} \le \|s\|_m \|t\|_n$$

holds for every $s \in R_m$ and $t \in R_n$.

THEOREM A

Let X be a generically smooth projective arithmetic variety, and let A be an effective line bundle on X. We consider a graded linear series

$$R_{\bullet} := \bigoplus_{m \ge 0} R_m$$

belonging to A and a multiplicative norm $\|\cdot\|_{\bullet}$ on $R_{\bullet} \otimes_{\mathbb{Z}} \mathbb{R}$. Suppose the following conditions:

- R_1 is base point free,
- $R_{\bullet} \otimes_{\mathbb{Z}} \mathbb{Q}$ is generated by R_1 over \mathbb{Q} , and $\bigcap_{m \ge 1} \{ x \in X_{\mathbb{Q}} \mid t(x) = 0 \text{ for every } t \in R_m \text{ with } \|t\|_m < 1 \} = \emptyset.$

Let Y^1, \ldots, Y^p be smooth closed subvarieties of the complex manifold $X(\mathbb{C})$, and let x_1, \ldots, x_q be points (not necessarily closed) on X. Then, for every sufficiently large integer $m \gg 1$, there exists a nonzero section $s \in R_m$ such that

- (a) $\operatorname{div}(s|_{Y^1}), \ldots, \operatorname{div}(s|_{Y^p})$ are all smooth,
- (b) $s(x_i) \neq 0$ for every *i*, and
- (c) $||s||_m < 1$.

Let \overline{L} be a continuous Hermitian line bundle on X, and let $\|\cdot\|_{\sup}^{(m)}$ be the supremum norm on $\mathrm{H}^0(X, mL) \otimes_{\mathbb{Z}} \mathbb{R}$. We define a \mathbb{Z} -submodule of $\mathrm{H}^0(X, mL)$ by

$$\mathbf{F}^{0+}(X, m\overline{L}) := \left\langle s \in \mathbf{H}^0(X, mL) \mid \|s\|_{\sup}^{(m)} < 1 \right\rangle_{\mathbb{Z}}.$$

Then $\bigoplus_{m>0} F^{0+}(X, m\overline{L})$ is a graded linear series belonging to L. We denote the stable base locus of $\bigoplus_{m>0} F^{0+}(X, m\overline{L})$ by SBs⁰⁺(\overline{L}).

COROLLARY B

Let X be a generically smooth projective arithmetic variety, and let \overline{A} be a continuous Hermitian line bundle on X. Suppose that $SBs(A) = \emptyset$ and $SBs^{0+}(\overline{A}) \cap$ $X_{\mathbb{Q}} = \emptyset$. Let Y^1, \ldots, Y^p be smooth closed subvarieties of the complex manifold $X(\mathbb{C})$, and let x_1, \ldots, x_q be points (not necessarily closed) on X. Then there exist a sufficiently large integer $m \ge 1$ and a nonzero section $s \in \mathrm{H}^0(X, mA)$ such that

- (a) $\operatorname{div}(s|_{Y^1}), \ldots, \operatorname{div}(s|_{Y^p})$ are all smooth,
- (b) $s(x_i) \neq 0$ for every *i*, and
- (c) $||s||_{\sup}^{(m)} < 1.$

COROLLARY C

Let X be a generically smooth normal projective arithmetic variety, let $\overline{L} := (L, |\cdot|_{\overline{L}})$ be a continuous Hermitian line bundle on X, and let x_1, \ldots, x_q be points (not necessarily closed) on $X \setminus \text{SBs}^{0+}(\overline{L})$. If $\text{SBs}^{0+}(\overline{L}) \subsetneq X$, then there exist a sufficiently large integer $m \ge 1$ and a nonzero section $s \in \text{H}^0(X, mL)$ such that

- (a) div $(s)_{\mathbb{Q}}$ is smooth off SBs⁰⁺(\overline{L}),
- (b) $s(x_i) \neq 0$ for every *i*, and
- (c) $||s||_{\sup}^{(m)} < 1.$

Notation and conventions. Let k denote a field, and let $\mathbb{P}^n := \mathbb{P}(k^{n+1})$ denote the projective space of one-dimensional quotients of k^{n+1} . Let $\operatorname{pr}_2 : \mathbb{P}^n \times_k \mathbb{P}^m \to \mathbb{P}^m$ denote the second projection. We denote the natural coordinate variables of \mathbb{P}^n (resp., of \mathbb{P}^m) by X_0, \ldots, X_n (resp., by Y_0, \ldots, Y_m) or simply by X_{\bullet} (resp., by Y_{\bullet}).

Let Y be a smooth variety over k. The singular locus of a morphism $\varphi: X \to Y$ over k is a Zariski-closed subset of X defined as

 $\operatorname{Sing}(\varphi) := \{ x \in X \mid \varphi \text{ is not smooth at } x \}.$

A projective arithmetic variety X is a reduced irreducible scheme that is projective and flat over $\operatorname{Spec}(\mathbb{Z})$. We say that X is generically smooth if $X_{\mathbb{Q}} := X \times_{\operatorname{Spec}(\mathbb{Z})} \operatorname{Spec}(\mathbb{Q}) \to \operatorname{Spec}(\mathbb{Q})$ is smooth.

1. Bertini's theorem with degree estimate

In this section, we consider a geometric case. Let $X \subseteq \mathbb{P}^n$ be a projective variety over an algebraically closed field k that is defined by a homogeneous prime ideal $I_X \subseteq k[X_0, \ldots, X_n]$, let $\mathcal{O}_X(1)$ be the hyperplane line bundle on X, and let

$$\deg X := \deg \left(c_1 \left(\mathcal{O}_X(1) \right)^{\cdot \dim X} \right)$$

be the degree of X in \mathbb{P}^n . Let $k[X] := k[X_0, \ldots, X_n]/I_X$ be the homogeneous coordinate ring of X, and let $k[X]_l$ be the homogeneous part of k[X] of degree l. There exists a polynomial function $\varphi_X(l)$ such that deg $\varphi_X = \dim X$, all coefficients are nonnegative, and

(1.1)
$$\dim_k k[X]_l \le \varphi_X(l)$$

for all $l \ge 0$. Let $Z \subseteq X \times_k \mathbb{P}^m$ be a Zariski-closed subset defined by a system of polynomial equations:

$$u_1(X_{\bullet};Y_{\bullet}) = 0 \pmod{I_X}, \qquad \dots, \qquad u_h(X_{\bullet};Y_{\bullet}) = 0 \pmod{I_X},$$

where $u_i \in k[X_0, \ldots, X_n; Y_0, \ldots, Y_m]$ has homogeneous degree $\deg_{X_{\bullet}} u_i$ (resp., $\deg_{Y_{\bullet}} u_i$) in the set of variables X_{\bullet} (resp., Y_{\bullet}). We recall the following fact from the elimination theory.

LEMMA 1.1

Let $p := \max_i \{ \deg_{X_{\bullet}} u_i \}$, and let $q := \max_i \{ \deg_{Y_{\bullet}} u_i \}$. If the set-theoretic image $\operatorname{pr}_2(Z)$ does not coincide with \mathbb{P}^m , then $\operatorname{pr}_2(Z)$ is contained in a hypersurface of \mathbb{P}^m defined by a single homogeneous polynomial of degree less than or equal to

$$\varphi_X(\deg X \cdot p^{\dim X+1}) \cdot q$$

Proof

First, we can take a geometric point $y_{0,\bullet} = (y_{0,0} : \cdots : y_{0,m}) \in \mathbb{P}^m \setminus \operatorname{pr}_2(Z)$. By an effective Nullstellensatz (see [3, Corollary 1.4]), there exists a positive integer $\ell \leq \deg X \cdot p^{\dim X+1}$ such that

$$(X_0,\ldots,X_n)^{\ell} \subseteq \left(u_1(X_{\bullet};y_{0,\bullet}),\ldots,u_h(X_{\bullet};y_{0,\bullet})\right) \pmod{I_X}.$$

Next, we consider the k-linear maps

$$T(y_{\bullet}): k[X]_{\ell-\deg_{X_{\bullet}} u_{1}} \oplus \dots \oplus k[X]_{\ell-\deg_{X_{\bullet}} u_{h}} \to k[X]_{\ell},$$
$$(f_{1}(X_{\bullet}), \dots, f_{h}(X_{\bullet})) \mapsto \sum_{i} u_{i}(X_{\bullet}; y_{\bullet}) f_{i}(X_{\bullet})$$

defined for $y_{\bullet} = (y_0 : \dots : y_m) \in \mathbb{P}^m$. By fixing a basis for the above k-vector spaces, we can represent $T(y_{\bullet})$ by a matrix whose entries are homogeneous polynomials of y_{\bullet} of degree less than or equal to q. By the choice of ℓ , we can see that there exists a certain $\dim_k k[X]_{\ell} \times \dim_k k[X]_{\ell}$ -minor of the representation matrix of $T(y_{\bullet})$ whose determinant is nonzero (see [8, Theorem 2.23]). Then the image $\operatorname{pr}_2(Z)$ is contained in the hypersurface defined by the nonzero determinant, which is homogeneous of degree less than or equal to $(\dim_k k[X]_{\ell}) \cdot q$. Since

$$\dim_k k[X]_{\ell} \le \varphi_X(\ell) \le \varphi_X(\deg X \cdot p^{\dim X+1}),$$

we have the result.

REMARK 1.2

For example, we consider the case where $X = \mathbb{P}^n$. Then $\dim_k k[X]_l = \binom{l+n}{n} \leq (l+n)^n/n!$. Thus, the bound in the above lemma becomes less than or equal to $(p^{n+1}+n)^n q/n!$. Moreover, by applying the theory of resultants (see [8, page 35]) to $\operatorname{pr}_2 : \mathbb{P}^n \times_k \mathbb{A}^m \to \mathbb{A}^m$, one can obtain a weaker bound less than or equal to $(2p)^{2^n-1}q+1$ in the above lemma (where the added 1 is for the hyperplane at infinity).

Let A be an effective line bundle on X, and let R_{\bullet} be a subgraded ring of $\bigoplus_{m\geq 0} \mathrm{H}^{0}(X, mA)$ with Kodaira–Iitaka dimension $\kappa(R_{\bullet}) := \mathrm{tr.deg}_{k} R_{\bullet} - 1$. Suppose that R_{1} is base point free. Let $\phi_{m} : X \to \mathbb{P}(R_{m})$ be a k-morphism associated to R_{m} , and set

$$(1.2) N_m := \dim_k R_m - 1$$

for $m \ge 1$. We recall that the rational function field k(X) of X is given by

$$k(X) = \left\{ \frac{u \pmod{I_X}}{v \pmod{I_X}} \middle| \begin{array}{l} u, v \in k[X_0, \dots, X_n] \text{ are homogeneous} \\ \text{of the same degree and } v \notin I_X \end{array} \right\}$$

Given a nonzero section $e \in R_1$, we define the *degree* of a nonzero section $s \in H^0(X, mA)$ for $m \ge 1$ with respect to e by

$$\deg_{X_{\bullet},e} s := \min \left\{ \deg_{X_{\bullet}} u = \deg_{X_{\bullet}} v \mid \operatorname{div} s = (u/v \pmod{I_X}) + m \operatorname{div} e, \\ u/v \pmod{I_X} \in k(X)^{\times} \right\}.$$

(Compare the definition with Jelonek's in [3, Section 2].) Then, for any other nonzero section $s' \in \mathrm{H}^0(X, m'A)$, we have that

$$\deg_{X_{\bullet},e}(s\otimes s') \leq \deg_{X_{\bullet},e}s + \deg_{X_{\bullet},e}s'.$$

THEOREM 1.3

Let $X \subseteq \mathbb{P}^n$ be a smooth projective variety over k, and let A be a line bundle on X. Let R_{\bullet} be a graded linear series belonging to A with Kodaira–Iitaka dimension $\kappa(R_{\bullet})$. Suppose that the following three conditions are satisfied.

- R_1 is base point free.
- R_{\bullet} is generated by R_1 .

• (i) char(k) = 0 or (ii) char(k) $\neq 0$ and $\phi_m : X \to \mathbb{P}(R_m)$ is unramified for every $m \geq 1$.

Then one can find a polynomial function P(m) and hypersurfaces $Z_m \subseteq \mathbb{P}(R_m^{\vee})$ for m = 1, 2, ... having the following two properties.

- (a) deg $P \leq \dim X(\dim X + 1)(\kappa(R_{\bullet}) + 1)$.
- (b) For every $m \ge 1$, the hypersurface $Z_m \subseteq \mathbb{P}(R_m^{\vee})$ contains the set

$$\left\{H \in \mathbb{P}(R_m^{\vee}) \mid \phi_m(X) \subseteq H \text{ or } \phi_m^{-1}(H) \text{ is not smooth}\right\}$$

and the homogeneous degree of Z_m in $\mathbb{P}(R_m^{\vee})$ is less than or equal to P(m).

REMARK 1.4

Throughout this paper, we assume that the empty set \emptyset is smooth, so that if $H \notin Z_m$, then $\phi_m^{-1}(H)$ is empty or smooth of pure dimension dim X - 1.

Proof

Let $I_X \subseteq k[X_0, \ldots, X_n]$ denote the homogeneous prime ideal defining X. We consider the universal hyperplane section

(1.3)
$$W_m := \left\{ (x, H) \in X \times_k \mathbb{P}(R_m^{\vee}) \mid \phi_m(x) \in H \right\}$$

endowed with the reduced induced scheme structure, and consider the restriction of the second projection $\operatorname{pr}_2: X \times_k \mathbb{P}(R_m^{\vee}) \to \mathbb{P}(R_m^{\vee})$ to W_m , which we denote by

(1.4)
$$\pi_m: W_m \to \mathbb{P}(R_m^{\vee})$$

Note that W_m is the inverse image of the canonical bilinear hypersurface in $\mathbb{P}(R_m) \times_k \mathbb{P}(R_m^{\vee})$ via $\phi_m \times \text{id} : X \times_k \mathbb{P}(R_m^{\vee}) \to \mathbb{P}(R_m) \times_k \mathbb{P}(R_m^{\vee})$. Since the restriction of the first projection to $W_m, W_m \to X$, is surjective with fiber a projective space of dimension $N_m - 1$, W_m is irreducible. The set-theoretic image of the singular locus of π_m is given by

$$\pi_m \left(\operatorname{Sing}(\pi_m) \right) = \left\{ H \in \mathbb{P}(R_m^{\vee}) \mid \phi_m(X) \subseteq H \text{ or } \phi_m^{-1}(H) \text{ is not smooth} \right\}.$$

We fix a basis e_0, \ldots, e_{N_1} for R_1 . From now on, we explain a method to construct an equation w_0 that vanishes along W_m from the section e_0 . First, we set

(1.5)
$$D_{1,e_0} := \max_{1 \le i \le N_1} \{ \deg_{X_{\bullet,e_0}} e_i \}$$

and take rational functions $u_1^{(1)}/v_1^{(1)}, \ldots, u_{N_1}^{(1)}/v_{N_1}^{(1)} \in k(X_0, \ldots, X_n)^{\times}$ such that

div
$$e_i = \left(\frac{u_i^{(1)}}{v_i^{(1)}} \pmod{I_X}\right) + \text{div } e_0$$
 and $\deg_{X_{\bullet}} u_i^{(1)} = \deg_{X_{\bullet}} v_i^{(1)} \le D_{1,e_0}$

for $i = 1, ..., N_1$. Next, for $m \ge 2$, we can choose sections $e_1^{(m)}, ..., e_{N_m}^{(m)} \in R_m$ such that

$$e_i^{(m)} \in \{e_0^{\otimes \alpha_0} \otimes \cdots \otimes e_{N_1}^{\otimes \alpha_{N_1}} \mid \alpha_0 + \cdots + \alpha_{N_1} = m\}$$

and $e_0^{\otimes m}, e_1^{(m)}, \ldots, e_{N_m}^{(m)}$ form a basis for R_m . By identifying $\mathbb{P}(R_m^{\vee})$ with \mathbb{P}^{N_m} via the dual basis of $e_0^{\otimes m}, e_1^{(m)}, \ldots, e_{N_m}^{(m)}$, we can write $\phi_m : X \to \mathbb{P}(R_m^{\vee})$ as

$$\phi_m : X_{e_0} \to \mathbb{P}^{N_m}, \qquad x \mapsto \left(1 : \frac{u_1^{(m)}(x)}{v_1^{(m)}(x)} : \dots : \frac{u_{N_m}^{(m)}(x)}{v_{N_m}^{(m)}(x)}\right)$$

over $X_{e_0} := \{x \in X \mid e_0(x) \neq 0\}$, where $u_i^{(m)} / v_i^{(m)} \in k(X_0, \dots, X_n)^{\times}$ satisfies $\operatorname{div} e_i^{(m)} = \left(u_i^{(m)} / v_i^{(m)} (\operatorname{mod} I_X)\right) + m \operatorname{div} e_0$

and

$$\deg_{X_{\bullet}} u_i^{(m)} = \deg_{X_{\bullet}} v_i^{(m)} \le D_{1,e_0} m.$$

We set

(1.6)
$$w_0 := v_1^{(m)} \cdots v_{N_m}^{(m)} Y_0 + u_1^{(m)} v_2^{(m)} \cdots v_{N_m}^{(m)} Y_1 + \cdots + v_1^{(m)} \cdots v_{N_m-1}^{(m)} u_{N_m}^{(m)} Y_{N_m},$$

which is homogeneous in X_{\bullet} (resp., in Y_{\bullet}) of degree less than or equal to $D_{1,e_0} m N_m$

(resp., 1). Then $w_0 \pmod{I_X}$ vanishes along W_m and defines W_m in $X_{e_0} \times_k \mathbb{P}^{N_m}$. By the same method, starting from $e_i \in R_1$, we can construct an equation

$$w_j = \sum$$
 (homogeneous in X_{\bullet} of degree at most $D_{1,e_j}mN_m$) × (linear in Y_{\bullet})
that vanishes along W_m and defines W_m in $X_{e_j} \times_k \mathbb{P}^{N_m}$. Let $w_{N_1+1}, \ldots, w_h \in k[X_0, \ldots, X_n]$ be homogeneous polynomials that generate I_X . Notice that the
bihomogeneous ideal

(1.7)
$$(w_0, \dots, w_{N_1}, w_{N_1+1}, \dots, w_h) \subseteq k[X_0, \dots, X_n; Y_0, \dots, Y_m]$$

may not be prime but the closed subscheme defined by (w_0, \ldots, w_h) in $\mathbb{P}^n \times_k \mathbb{P}^{N_m}$ coincides with W_m .

Set

(1.8)
$$D_1 := \max_{0 \le i \le N_1} \{ D_{1,e_i} \}, \qquad D_2 := \max_{N_1 + 1 \le j \le h} \{ \deg_{X_{\bullet}} w_j \},$$

which does not depend on m. By the Euler rule together with the Jacobian criterion in the affine case, we conclude that the singular locus $\operatorname{Sing}(\pi_m) \subseteq X \times_k \mathbb{P}(R_m^{\vee})$ is defined by the determinants of certain $(n - \dim X + 1) \times (n - \dim X + 1)$ -minors of the Jacobian matrix $(\frac{\partial w_i}{\partial X_j})$, whose degrees in X_{\bullet} (resp., in Y_{\bullet}) are all bounded from above by $(N_1 + 1)(D_1mN_m - 1) + (n - \dim X)(D_2 - 1)$ (resp., by $N_1 + 1$). We choose a positive constant D' > 0 such that

$$(N_1+1)(D_1mN_m-1) + (n - \dim X)(D_2-1) \le D'm^{\kappa(R_{\bullet})+1}$$

for all $m \ge 1$. Let $\varphi_X(l)$ be as in (1.1), and set

(1.9)
$$P(m) := \varphi_X \left(\deg X (D'm^{\kappa(R_{\bullet})+1})^{\dim X+1} \right) \cdot (N_1 + 1).$$

Then deg $P = \dim X(\dim X + 1)(\kappa(R_{\bullet}) + 1)$. Since $\pi_m(\operatorname{Sing}(\pi_m))$ is properly contained in $\mathbb{P}(R_m^{\vee})$ due to Kleiman [4, Corollaries 5 and 12], we can apply Lemma 1.1 to this situation by setting

$$p = D'm^{\kappa(R_{\bullet})+1}$$
 and $q = N_1 + 1$.

Then we conclude that there exists a hypersurface $Z_m \subseteq \mathbb{P}(R_m^{\vee})$ having degree less than or equal to P(m) and containing $\pi_m(\operatorname{Sing}(\pi_m))$.

By applying Theorem 1.3 to the image of R_m via $\mathrm{H}^0(X, mA) \to \mathrm{H}^0(Y, mA|_Y)$, we have the following.

COROLLARY 1.5

Under the same assumptions as in Theorem 1.3, let Y be a smooth closed subvariety of X, and let y_1, \ldots, y_q be closed points on X. Then one can find a polynomial function P(m) and hypersurfaces $Z_m \subseteq \mathbb{P}(R_m^{\vee})$ for $m = 1, 2, \ldots$ having the following two properties.

- (a) deg $P \leq \dim Y(\dim Y + 1)(\kappa(R_{\bullet}) + 1) + q$.
- (b) For every $m \ge 1$, the hypersurface $Z_m \subseteq \mathbb{P}(R_m^{\vee})$ contains the set

$$\left\{ H \in \mathbb{P}(R_m^{\vee}) \; \middle| \; \begin{array}{c} \phi_m(Y) \subseteq H, \; \phi_m^{-1}(H) \cap Y \; \textit{is not smooth}, \\ \textit{or H contains one of y_1, \ldots, y_q} \end{array} \right\}$$

and the homogeneous degree of Z_m in $\mathbb{P}(R_m^{\vee})$ is less than or equal to P(m).

2. Proofs

In this section, we turn to the arithmetic case and give proofs of Theorem A and Corollaries B and C. To prove Theorem A, we use Lemmas 2.1, 2.2, and 2.4.

LEMMA 2.1 (COMBINATORIAL NULLSTELLENSATZ [5, LEMMA 5.2], [1, THEOREM 1.2]) Let V be a finite-dimensional vector space over a field k, and let

 $u:V\to k$

be a nonzero polynomial function with maximal total degree deg u. Let e_1, \ldots, e_N be generators of V over k, and let S_1, \ldots, S_N be subsets of k. If $Card(S_j) \ge$ deg u + 1 for every j, then there exist $a_1 \in S_1, \ldots, a_N \in S_N$ such that

$$u(a_1e_1 + \dots + a_Ne_N) \neq 0$$

LEMMA 2.2

Let X be a projective arithmetic variety, let A be a line bundle on X, and let R_{\bullet} be a graded linear series belonging to A. Suppose that R_1 is base point free. Let $y_1, \ldots, y_l \in X$ be distinct closed points on X such that $\operatorname{char}(k(y_i)) \neq 0$ for every i, and let $e_1^{(m)}, \ldots, e_{N_m}^{(m)} \in R_m$ be generators of the \mathbb{Z} -module R_m . Set $F := \prod_{\substack{p: \text{ prime} \\ \exists i, p \mid \operatorname{char}(k(y_i))}} p$. Then, for every sufficiently large m, there exist integers a_1, \ldots, a_{N_m} such that $0 \leq a_j < F$ for every j, and

$$(a_1 + Fb_1)e_1^{(m)}(y_i) + \dots + (a_{N_m} + Fb_{N_m})e_{N_m}^{(m)}(y_i) \neq 0$$

for every integer b_1, \ldots, b_{N_m} and for every *i*.

Proof

First, we need the following claim.

CLAIM 2.3

For every sufficiently large m, there exists an $s \in R_m$ such that $s(y_i) \neq 0$ for every *i*.

Proof

Let $\phi: X \to \mathbb{P}_{\mathbb{Z}}^{N_1}$ be the morphism associated to R_1 such that $\phi^* X_j = e_j^{(1)}$ for every j, and let $\mathcal{O}(1)$ be the hyperplane line bundle on $\mathbb{P}_{\mathbb{Z}}^{N_1}$. Then, for every sufficiently large m, the homomorphism

$$\mathrm{H}^{0}(\mathbb{P}^{N_{1}}_{\mathbb{Z}},\mathcal{O}(m)) \to \bigoplus_{i} \mathcal{O}(m)(\phi(y_{i}))$$

is surjective. Let $t \in \mathrm{H}^0(\mathbb{P}^{N_1}_{\mathbb{Z}}, \mathcal{O}(m))$ be a section such that $t(\phi(y_i)) \neq 0$ for every i. Then $s := \phi^* t$ has the desired property. \Box

Next, let $s \in R_m$ as above. Since $Fe_j^{(m)}(y_i) = 0$ for every i, j, we have that $(s + Ft)(y_i) = s(y_i) \neq 0$

for every $t \in R_m$ and for every *i*. Thus we conclude the claim.

LEMMA 2.4 (ZHANG-MORIWAKI [7, THEOREM A AND COROLLARY B])

Under the same assumptions as in Theorem A, take an $m_0 \gg 1$, and fix e_1, \ldots, e_n

 $e_N \in R_{m_0}$ such that

$$\left\{x \in X_{\mathbb{Q}} \mid e_1(x) = \dots = e_N(x) = 0\right\} = \emptyset$$

and such that $||e_j||_{m_0} < 1$ for every j. Then there exists a positive constant C > 0such that, for every sufficiently large m, one can find a \mathbb{Z} -basis $e_1^{(m)}, \ldots, e_{N_m}^{(m)}$ for R_m such that

$$\max_{i} \{ \|e_{i}^{(m)}\|_{m} \} \leq Cm^{(\dim X+2)(\dim X-1)} (\max_{j} \{ \|e_{j}\|_{m_{0}} \})^{m/m_{0}}.$$

Proof of Theorem A

Let $r := [K : \mathbb{Q}]$, and let $X(\mathbb{C}) = X_1 \cup \cdots \cup X_r$ be the decomposition into connected components. Let $R_{m,\alpha}$ be the image of $R_m \otimes_{\mathbb{Z}} \mathbb{C}$ via $\mathrm{H}^0(X, A) \otimes_{\mathbb{Z}} \mathbb{C} \to \mathrm{H}^0(X_\alpha, A_{\mathbb{C}}|_{X_\alpha})$, and let $\phi_{m,\alpha} : X_\alpha \to \mathbb{P}^{M_m}_{\mathbb{C}}$ be a morphism associated to $R_{m,\alpha}$, where we set $M_m := \mathrm{rk}_{\mathbb{Z}} R_m/r$. By Lemma 2.4, there exist constants C, Q with C > 0 and 0 < Q < 1 such that there exists a \mathbb{Z} -basis $e_1^{(m)}, \ldots, e_{rM_m}^{(m)}$ for R_m consisting of the sections with supremum norms less than or equal to

(2.1)
$$Cm^{(\dim X+2)(\dim X-1)}Q^m$$

For each Y^j , there exists a unique component $X_{\alpha(j)}$ that contains Y^j . Suppose that $\operatorname{char}(x_i) = 0$ for $i = 1, \ldots, q_1$ and $\operatorname{char}(x_i) \neq 0$ for $i = q_1 + 1, \ldots, q = q_1 + q_2$, and let y_i be a closed point in $\overline{\{x_i\}}$. By applying Corollary 1.5 to $X_{\alpha(j)}$, Y^j , y_1, \ldots, y_{q_1} , and $R_{\bullet,\alpha(j)}$, one can find a polynomial function $P_j(m)$ of degree less than or equal to $\dim Y^j(\dim Y^j - 1)(\kappa(R_{\bullet,\alpha(j)}) + 1) + q_1$ and hypersurfaces $Z_{m,j} \subseteq \mathbb{P}(R_{m,\alpha(j)}^{\vee})$ defined by homogeneous polynomials $u_{m,j}$ of degree less than or equal to $P_j(m)$, respectively, such that $Z_{m,j}$ contains all the hyperplanes H in $\mathbb{P}(R_{m,\alpha(j)}^{\vee})$ such that $\phi_{m,\alpha(j)}(Y^j) \subseteq H$, $\phi_{m,\alpha(j)}^{-1}(H) \cap Y^j$ is not smooth, or $\phi_{m,\alpha(j)}^{-1}(H)$ contains one of y_1, \ldots, y_{q_1} . Set

$$u_{m,\alpha} := \prod_{\alpha(j)=\alpha} u_{m,j},$$

and consider the homogeneous polynomial function

$$u: R_m \otimes_{\mathbb{Z}} \mathbb{C} \xrightarrow{\sim} \bigoplus_{\alpha=1}^r R_{m,\alpha} \xrightarrow{\prod_{\alpha} u_{m,\alpha}} \mathbb{C}$$

of degree less than or equal to

(2.2)
$$P(m) := P_1(m) + \dots + P_p(m).$$

Set $F := \prod_{\substack{q: \text{ prime} \\ \exists i, q | \text{char}(y_i)}} q$. Since $e_1^{(m)}, \ldots, e_{rM_m}^{(m)} \in R_m$ generate $R_m \otimes_{\mathbb{Z}} \mathbb{C}$ over \mathbb{C} , one can find integers a_1, \ldots, a_{rM_m} and b_1, \ldots, b_{rM_m} such that $0 \le a_i < F$ for every $i, 0 \le b_j \le P(m)$ for every j, and

$$u((a_1 + Fb_1)e_1^{(m)} + \dots + (a_{rM_m} + Fb_{rM_m})e_{rM_m}^{(m)}) \neq 0$$

by use of Lemmas 2.2 and 2.1. Hence, for each $m \gg 1$, there exists a section $t_m \in R_m$ such that $t_m|_{X_\alpha}$ is not contained in any of $Z_{m,j}$ and

$$|t_m||_m \le CFrm^{(\dim X+2)(\dim X-1)}M_m(1+P(m))Q^m$$

Since the right-hand side tends to zero as $m \to \infty$, we conclude the proof. \Box

Corollary B is a direct consequence of Theorem A.

Proof of Corollary C

We can take $a_0 \gg 1$ such that $\operatorname{Bs} F^{0+}(X, a_0\overline{L}) = \operatorname{SBs}^{0+}(\overline{L})$. Let $\mathfrak{b}^{0+}(a_0\overline{L}) :=$ Image $(F^{0+}(X, a_0\overline{L}) \otimes_{\mathbb{Z}} (-a_0L) \to \mathcal{O}_X)$, let $\mu : X' \to X$ be a blowup such that X' is generically smooth and such that $\mu^{-1}\mathfrak{b}^{0+}(a_0\overline{L}) \cdot \mathcal{O}_{X'}$ is Cartier, and let E be an effective Cartier divisor on X' such that $\mathcal{O}_{X'}(-E) = \mu^{-1}\mathfrak{b}^{0+}(a_0\overline{L}) \cdot \mathcal{O}_{X'}$. We can assume that μ is isomorphic over $X \setminus \operatorname{SBs}^{0+}(\overline{L})$ (see [2]). Set $x'_i := \mu^{-1}(x_i) \in X' \setminus E$ for $i = 1, \ldots, q$. Let $B := \mathcal{O}_{X'}(E)$, and let 1_B be the canonical section.

LEMMA 2.5

(a) We can endow B with a continuous Hermitian metric $|\cdot|_{\overline{B}}$ such that

$$|1_B|_{\overline{B}}(x) = \max_{\substack{e \in H^0(X, a_0 L)\\0 < \|e\|_{\sup}^{(a_0)} < 1}} \left\{ \frac{|e|_{a_0 \overline{L}}(\mu(x))}{\|e\|_{\sup}^{(a_0)}} \right\} \le 1$$

for all $x \in X'(\mathbb{C})$.

(b) We set $\overline{B} := (B, |\cdot|_{\overline{B}})$ and $\overline{A} := a_0 \mu^* \overline{L} - \overline{B}$. Then \overline{A} is a continuous Hermitian line bundle on X' such that

$$\operatorname{Bs} \mathrm{F}^{0+}(X',\overline{A}) = \emptyset \qquad and \qquad c_1(\overline{A}) \ge 0$$

as a current.

Proof

Set $\{e \in \mathrm{H}^0(X, a_0L) \setminus \{0\} \mid ||e||_{\sup}^{(a_0)} < 1\} = \{e_1, \dots, e_N\}.$

(a) We choose an open covering $\{U_{\nu}\}$ of $X'(\mathbb{C})$ such that $a_0\mu^*L_{\mathbb{C}}|_{U_{\nu}}$ is trivial with local frame η_{ν} , and $E_{\mathbb{C}} \cap U_{\nu}$ is defined by a local equation g_{ν} . Then we can write $\mu^*e_j = f_{j,\nu} \cdot g_{\nu} \cdot \eta_{\nu}$ on U_{ν} , where $f_{1,\nu}, \ldots, f_{N,\nu}$ are holomorphic functions on U_{ν} satisfying $\{x \in U_{\nu} \mid f_{1,\nu}(x) = \cdots = f_{N,\nu}(x) = 0\} = \emptyset$. Since

$$\max_{j} \left\{ \frac{|e_{j}|_{a_{0}\overline{L}}(\mu(x))}{\|e_{j}\|_{\sup}^{(a_{0})}} \right\} = \max_{j} \left\{ \frac{|f_{j,\nu}(x)|}{\|e_{j}\|_{\sup}^{(a_{0})}} \right\} \cdot |\eta_{\nu}|_{a_{0}\mu^{*}\overline{L}}(x) \cdot |g_{\nu}(x)|$$

on $x \in U_{\nu}$, we have (a).

(b) For each $x_0 \in X'(\mathbb{C})$, we take indices ν and j_0 such that $x_0 \in U_{\nu}$ and $f_{j_0,\nu}(x_0) \neq 0$. Let ε_j be the section of A such that $\mu^* e_j = \varepsilon_j \otimes 1_B$, and set $h_{j,\nu} := f_{j,\nu}/f_{j_0,\nu}$. Then

$$-\log|\varepsilon_{j_0}|^2_{\overline{A}}(x) = \max_{j} \{\log|h_{j,\nu}(x)|^2 - \log(||e_j||^{(a_0)}_{\sup})^2\}$$

is plurisubharmonic near x_0 .

We claim that $\|\varepsilon_j\|_{\sup} = \|e_j\|_{\sup}^{(a_0)}$, so that $\varepsilon_j \in F^{0+}(X', \overline{A})$. The inequality $\|\varepsilon_j\|_{\sup} \ge \|e_j\|_{\sup}^{(a_0)}$ is clear. Since

$$|\varepsilon_j|_{\overline{A}}(x) = |e_j|_{a_0\overline{L}}(\mu(x)) \cdot \min_i \left\{ \frac{\|e_i\|_{\sup}^{(a_0)}}{|e_i|_{a_0\overline{L}}(\mu(x))} \right\} \le \|e_j\|_{\sup}^{(a_0)}$$

for all $x \in (X' \setminus E)(\mathbb{C})$, we have $\|\varepsilon_j\|_{\sup} = \|e_j\|_{\sup}^{(a_0)}$. This means that Bs $F^{0+}(X', \overline{A}) = \emptyset$.

We apply Corollary B to \overline{A} , and we can find an $m \gg 1$ and a $\sigma \in \mathrm{H}^{0}(X', mA)$ such that $\operatorname{div}(\sigma)_{\mathbb{Q}}$ is smooth, $\sigma(x'_{i}) \neq 0$ for every i, and $\|\sigma\|_{\sup} < 1$. Since X is normal, there exists an $s \in \mathrm{H}^{0}(X, ma_{0}L)$ such that $\mu^{*}s = \sigma \otimes 1^{\otimes m}_{B}$. Since μ is isomorphic over $X \setminus \mathrm{SBs}^{0+}(\overline{L})$, s has the desired properties. \Box

References

- N. Alon, Combinatorial Nullstellensatz, Combin. Probab. Comput. 8 (1999), 7–29. MR 1684621. DOI 10.1017/S0963548398003411.
- H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, I, Ann. of Math. (2) 79 (1964), 109–203; II, 205–326. MR 0199184.
- Z. Jelonek, On the effective Nullstellensatz, Invent. Math. 162 (2005), 1–17.
 MR 2198324. DOI 10.1007/s00222-004-0434-8.
- S. L. Kleiman, The transversality of a general translate, Compos. Math. 28 (1974), 287–297. MR 0360616.
- [5] A. Moriwaki, Arithmetic Bogomolov-Gieseker's inequality, Amer. J. Math. 117 (1995), 1325–1347. MR 1350599. DOI 10.2307/2374978.
- [6] _____, Hodge index theorem for arithmetic cycles of codimension one, Math. Res. Lett. 3 (1996), 173–183. MR 1386838. DOI 10.4310/MRL.1996.v3.n2.a4.
- [7] _____, Free basis consisting of strictly small sections, Int. Math. Res. Not. IMRN 2011, no. 6, 1245–1267. MR 2806505. DOI 10.1093/imrn/rnq116.
- D. Mumford, Algebraic Geometry, I: Complex Projective Varieties, Grundlehren Math. Wiss. 221, Springer, Berlin, 1976. MR 0453732.
- X. Yuan, Big line bundles over arithmetic varieties, Invent. Math. 173 (2008), 603–649. MR 2425137. DOI 10.1007/s00222-008-0127-9.
- [10] X. Yuan and S.-W. Zhang, The arithmetic Hodge index theorem for adelic line bundles, I, preprint, arXiv:1304.3538v1 [math.NT].

Graduate School of Mathematical Sciences, University of Tokyo, Tokyo, Japan; ikoma@ms.u-tokyo.ac.jp