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Abstract Let K = Q(v/—D) be an imaginary quadratic field with discriminant —D,
and let x be the Dirichlet character corresponding to the extension K/Q. Let m = 2n or
2n + 1 with n a positive integer. Let f be a primitive form of weight 2k + 1 and character
x for I'n (D) or a primitive form of weight 2k for SL2(Z) according to whether m = 2n
or m = 2n + 1. For such an f let I,,(f) be the lift of f to the space of Hermitian modu-
lar forms constructed by Ikeda. We then give an explicit formula of the Koecher-Maass
series L(s, Im/(f)) of I, (f). This is a generalization of Mizuno.

1. Introduction

Mizuno [M] gave explicit formulas of the Koecher-Maass series of the Hermitian
Eisenstein series of degree 2 and of the Hermitian Maass lift. In this paper, we
give an explicit formula of the Koecher—-Maass series of the Hermitian ITkeda lift.
Let K = Q(v/—D) be an imaginary quadratic field with discriminant —D. Let O
be the ring of integers in K, and let x be the Kronecker character corresponding
to the extension K/Q. For a nondegenerate Hermitian matrix or alternating
matrix T with entries in K, let Uy be the unitary group defined over Q whose
group Ur(R) of R-valued points is given by

Ur(R)={g€GL,(R® K) |'gTg =T}

for any Q-algebra R, where g denotes the automorphism of M, (R ® K) induced
by the nontrivial automorphism of K over Q. We also define the special unitary

group SUt over Q, by SUT =Ur N Rk /q(SLm), where Rg /q is the Weil restric-

tion. In particular, we write Uy as U™ or U(m,m) if T = (12 7(1)’”). For a more

precise description of U("™) see Section 2. Put F[((m) =U(m,m)(Q) N GLg2,, (O).

For a modular form F' of weight 2! and character ¢ for I’ I((m) we define the
Koecher-Maass series L(s, F') of F by
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cr(T)
He =2 ety

where T runs over all SL,, (O)-equivalence classes of positive definite semi-integral
Hermitian matrices of degree m, c¢p(T') denotes the T'th Fourier coefficient of F',
and e*(T) = #(SU7r(Q) N SL,,(0)).

Let k be a nonnegative integer. Then for a primitive form f € Gap11(Io(D), x)
Tkeda [I2] constructed a lift I, (f) of f to the space of modular forms of weight
2k + 2n and a character det ™" for FI(?"). This is a generalization of the Maass
lift considered by Kojima [Ko], Gritsenko [G], Krieg [Kr], and Sugano [Su]. Sim-
ilarly for a primitive form f € Go;(SL2(Z)) he constructed a lift In,+1(f) of f
to the space of modular forms of weight 2k + 2n and a character det™ =" for
F](fnﬂ). For the rest of this section, let m = 2n or m = 2n+1. We then call I,,,(f)
the Tkeda lift of f for U(m,m) or the Hermitian Ikeda lift of degree m. Ikeda
also showed that the automorphic form Lift'™ (f) on the adele group U™ (A)
associated with I,,,(f) is a cuspidal Hecke eigenform whose standard L-function
coincides with

[[ZGs+k+n—i+1/2, f)L(s+k+n—i+1/2,f,x),

i=1
where L(s+k+n—1i+1/2,f) is the Hecke L-function of f and L(s+k+n —
i+1/2,f,x) is its “modified twist” by . For the precise definition of L(s+ k +
n—i+1/2, f,x) see Section 2. We also call Lift"™ (f) the adelic Tkeda lift of f
for U(m,m). Then we express the Koecher—Maass series of I,,,(f) in terms of the
L-functions related to f. This result was already obtained in the case m =2 by
Mizuno [M].

The method we use is similar to that in the proof of the main result of [IK1]
or [TK2]. We explain it more precisely. In Section 3, we reduce our computation
to a computation of a certain formal power series Pmp(d; X,t) in ¢t associated
with local Siegel series similarly to [IK1] (see Theorem 3.4 and Section 5).

Section 4 is devoted to the computation of them. This computation is similar
to that in [[K1], but we should be careful in dealing with the case where p is
ramified in K. After such an elaborate computation, we can get explicit formulas
of Pmm(d; X,t) for all prime numbers p (see Theorems 4.3.1, 4.3.2, and 4.3.6).
In Section 5, by using explicit formulas for Pm,p(d; X,t), we immediately get an
explicit formula for L(s, I, (f)).

Using the same argument as in the proof of our main result, we can give an
explicit formula of the Koecher-Maass series of the Hermitian Eisenstein series of
any degree, which can be regarded as a zeta function of a certain prehomogeneous
vector space. We also note that the method used in this paper is useful for giving
an explicit formula for the Rankin—Selberg series of the Hermitian Ikeda lift, and
as a result we can prove the period relation of the Hermitian Ikeda lift, which
was conjectured by Ikeda [I2]. We will discuss these topics in subsequent papers
[Kal] and [Ka2].
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NOTATION

Let R be a commutative ring. We denote by R* and R* the semigroup of nonzero
elements of R and the unit group of R, respectively. For a subset S of R we
denote by M,,,(S) the set of (m,n)-matrices with entries in S. In particular,
put M, (S) = M,,(S). Put GL,,(R) ={A € M,,(R) | det A € R*}, where det A
denotes the determinant of a square matrix A. Let Ky be a field, and let K be
a quadratic extension of Ky or K = Ky @ K. In the latter case, we regard K\
as a subring of K via the diagonal embedding. We also identify M,,, (K) with
M (Ko) @ My (Kp) in this case. If K is a quadratic extension of Ky, then let p
be the nontrivial automorphism of K over Ky, and if K = Ky ® K, then let p be
the automorphism of K defined by p(a,b) = (b,a) for (a,b) € K. We sometimes
write T instead of p(z) for z € K in both cases. Let R be a subring of K. For an
(m,n)-matrix X = (;j)mxn Write X* = (T;7)nxm, and for an (m,m)-matrix A,
we write A[X] = X*AX. Let Her,(R) denote the set of Hermitian matrices of
degree n with entries in R, that is, the subset of M,,(R) consisting of matrices X
such that X* = X. Then a Hermitian matrix A of degree n with entries in K is
said to be semi-integral over R if tr(AB) € Ko N R for any B € Her, (R), where
tr denotes the trace of a matrix. We denote by }/Ie\rn(R) the set of semi-integral
matrices of degree n over R.

For a subset S of M, (R) we denote by S* the subset of S consisting of
nondegenerate matrices. If S is a subset of Her,,(C) with C the field of complex
numbers, then we denote by ST the subset of S consisting of positive definite
matrices. The group GL,(R) acts on the set Her, (R) in the following way:

GL,(R) x Her,,(R) 3 (9,A) — ¢g* Ag € Her,,(R).

Let G be a subgroup of GL,(R). For a G-stable subset B of Her, (R) we denote
by B/G the set of equivalence classes of B under the action of G. We some-
times identify B/G with a complete set of representatives of B/G. We abbreviate
B/GL,(R) as B/ ~ if there is no fear of confusion. Two Hermitian matrices A
and A’ with entries in R are said to be G-equivalent and we write A ~g A’ if
there is an element X of G such that A’ = A[X]. For square matrices X and YV
we write X LY = (5 ).

We put e(x) = exp(27/—1x) for x € C, and for a prime number p we denote
by e,(x) the continuous additive character of Q, such that e,(x) = e(z) for
x € Zpt].

For a prime number p we denote by ord,(x) the additive valuation of Q,
normalized so that ord,(p) =1, and put |z|, =p~ ordp(z) Moreover, we denote
by |%|s the absolute value of x € C. Let K be an imaginary quadratic field, and
let O be the ring of integers in K. For a prime number p put K, = K ® Q,, and
put O, =0 ®Z,. Then K, is a quadratic extension of Q, or K, 2 Q, ® Q,. In
the former case, for x € K, we denote by T the conjugate of x over Q,. In the
latter case, we identify K, with Q, & Q,, and for z = (z1,x2) with z; € Q,,, we
put T = (z2,71). For z € K, we define the norm Nk ,q,(7) by Nk, /q,(7) = 27,
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put vk, (r) = ord,(Nk,/q, (7)), and put |z|k, =[Nk, q,(*)|p- Moreover, put
|z k., = |27T|oo for x € C.

2. Main results

For a positive integer N let

To(N) = { (‘C‘ Z) € SLy(Z)

and for a Dirichlet character ¥ mod N, we denote by 9t (IH(N), ) the space of
modular forms of weight [ for I'H(N) and nebentype ¥, and by &;(IH(N),)
its subspace consisting of cusp forms. We simply write 9% (I5(N), ) (resp.,
Gi(IH(N),v)) as M (LH(N)) (resp., as &;(IH(N))) if ¢ is the trivial character.

Throughout the paper, we fix an imaginary quadratic extension K of Q with
discriminant —D, and denote by O the ring of integers in K. For such a K let
U™ =U(m,m) be the unitary group defined in Section 1. Put .J,,, = ((1):: —017:: )7
where 1,, denotes the unit matrix of degree m. Then

U™ (Q) = {M € GLop (K) | Jn[M] = Jpn }.

c=0 mod N},

Put
rom = p™ —y™(Q) N GLym (0).
Let $,,, be the Hermitian upper half-space defined by
1
2v/—1
The group U™ (R) acts on $),, by

= {Z € M,,(C) (Z — Z*) is positive deﬁnite}.

C D

We also put j(g,Z) =det(CZ + D) for such Z and g. Let [ be an integer. For
a subgroup I' of U™ (Q) commensurable with "™ and a character 1 of I,
we denote by 9% (I, 1) the space of holomorphic modular forms of weight { with
character ¢ for I'. We denote by &;(I',1)) the subspace of 0;(I",1) consisting of
cusp forms. In particular, if 1 is the character of I" defined by () = (dety)~!
for v € I, then we write My (1,1 as My (I, det™"), and so on. Let F(z) be an
element of My (1™ det™"). We then define the Koecher-Maass series L(s, F)
for F' by

g(Z)=(AZ+B)(CZ+D)™! for g= (A B) cU™(R),Z € Him.

cr(T)
L(s, F)= i Sl A
()= 2 (det T)se*(T)
TeHerm ()1 /SL,.(0)
where cp(T) denotes the T'th Fourier coefficient of F, and e*(T) = #(SUr(Q) N

SLim(0)).

Now we consider the adelic modular form. Let A be the adele ring of Q,
and let Ay be the non-archimedean factor of A. Let h = hx be a class number
of K. Let G™ =Resg,q(GLy,), and let GI™)(A) be the adelization of G™).
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Moreover, put C(™) = [1, GLn(Op). Let U™ (A) be the adelization of (™). We

define the compact subgroup IC((Jm) of U™ (Ay) by U™ (A) N [, GL21n(Op),
where p runs over all rational primes. Then we have that

h
U™ (A) = U™ (Qrukg™u™ (R)
=1

with some subset {71,...,7,} of U™ (A). We can take v; as

t; 0
Vi = 0 t;‘kfl )

where {t;}" ;= {(t; )}/, is a certain subset of G'™ (A ) such that ¢t; = 1 and
h
G™(A) = |_| G Q)G (R)C™.
i=1
Put I; = U™ (Q) N 7Ky, ‘U™ (R). Then for an element (F,...,[F,) €
@?:1 Moy (I, det ™), we define (Fy,...,Fp)! by

(F17th)ﬁ<g):Fl(x<i>)](xai)_2l(detx>l
for g = uy;zr with u € U"™(Q), z € U™ (R), and & € Kg. We denote by

Moy (U™ (Q)\UT™ (A),det ™) the space of automorphic forms obtained in this
way. We also put

Sor (U™ (Q\U™ (A),det™") = {(F1,...,Fp)* | F; € Gy(I,det ™) }.

We can define the Hecke operators which act on the space Mo (U™ (Q)\U™) (A),
det™"). For the precise definition of them, see [I2].

Let Her,, (O) be the set of semi-integral Hermitian matrices over O of degree
m as in the Notation. We note that A belongs to }/Ie\rm((’)) if and only if its
diagonal components are rational integers and /—DA € Her,,(O). For a non-
degenerate Hermitian matrix B with entries in K, of degree m, put v(B) =
(—D)Im/2 det B.

Let }/I&m((’)p) be the set of semi-integral matrices over O, of degree m as in
the Notation. We put &, =1, —1, or 0 according to whether K, =Q, ® Q,, K, is
an unramified quadratic extension of Q,, or K, is a ramified quadratic extension
of Q,. For T € ﬁam((?p)x we define the local Siegel series b, (T, s) by

by(T,s) = Z e, (tr(TR))p~ ordp (p (R))s
ReHer, (Kp)/ Herp (Op)

where p,(R) = [RO}' + Oy : O)']. We remark that there exists a unique polyno-
mial F,(T,X) in X such that (see [Shl])

((m=-1)/2) ) |
bp(T,S):Fp(T’pfs) H (17})2178) H (17€pp217173)'
=0 i=1

We then define a Laurent polynomial ﬁp(T,X ) as
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Fy(T,X) =X %0M) p (1, p~m X?).
We remark that we have (see [12])
(T X YH=(-D T))pﬁp(T,X) if m is even,
ﬁp(T,fp H=F »(T,X) if miseven and p{D,
and
Fy(T, XY = F,(T,X) if m is odd.

Here (a,b), is the Hilbert symbol of a,b € Q. Hence we have that

(T, X) = (=D.y(B)); ' X0 (T, p=m X 2.
Now we put

I-/Iarm((’))i+ = {T € Her,,,(K)™" | tipTtip € ﬁ&m(op) for any p}.

First let k£ be a nonnegative integer, and let m = 2n be a positive even integer.
Let

(o]
=2 aN
=1
be a primitive form in Go41(I5(D),x). For a prime number p not dividing D

let ay, € C such that a;, + x(p)a, ~1 =p~*a(p), and for p| D put o, = p~*a(p).

We note that oy, # 0 even if p | D Then for the Kronecker character y we define
Hecke’s L-function L(s, f,x?) twisted by x* as

_ H{(l _ app—s-i-kx(p)i) (1 _ ap—lp—s+kx(p)i+l)}*1
ptD

le p(1— app_s+k)_1 if 7 is even,
X
[, p(1—aptp==tF)=1 if i is odd.

In particular, if i is even, then we sometimes write L(s, f,x?) as L(s, f) as usual.

Moreover, for i =1,..., h we define a Fourier series
In(f)i(Z) = Z ar,, (), (T)e(tx(TZ)),
TeHer,, (0)F
where

a1, (11, (T) = |2 (T)[* TTIdet(ts ) det @) | Folt5, Tt gy ).

Next let k be a positive integer, and let m = 2n + 1 be a positive odd integer.
Let

= ia(]\f e(Nz
N=1

be a primitive form in Gy (SLa(Z)). For a prime number p let o, € C such that
ap + ot = p~F+1/2q(p). Then we define Hecke’s L-function L(s, f,x") twisted
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by x* as
L(S, 1, Xi) _ H{ (1 _ appferkfl/QX(p)i) (1 . a;1p75+k71/2x(p)i) }—1.

In particular, if i is even, then we write L(s, f,x%) as L(s, f) as usual. Moreover,
for i =1,...,h we define a Fourier series

L (£ Z) = Y. ap,.. . (De(tx(T2)),
TeHera,+1(0)F

i

where
k—1/2 —nt+1/2 5 _
ary () (1) = (D)) [Tl det(ti,) det (i) |0 F(t] Tty ).
p
REMARK

Tkeda [I2] defined ﬁp(T,X ) as
(T, X) = X0 p (7, p=m X —2),

and we define it by replacing X with X! in this paper. This change does not
affect the results.

Then Ikeda [I2] showed the following.

THEOREM 2.1

Let m =2n or 2n+ 1. Let f be a primitive form in Gary1(Io(D),x) or in
G2k (SLa(Z)) according to whether m = 2n or m = 2n + 1. Moreover, let I;
be the subgroup of U™ defined as above. Then I,,(f)i(Z) is an element of
Gagan (I}, det ™™™ for any i. In particular, Iy (f) := In(f)1 is an element of
62k+2n(lﬁ(m),detikin).

This is a Hermitian analogue of the lifting constructed in [I1]. We call ,,(f) the
Tkeda lift of f for (™).

It follows from Theorem 2.1 that we can define an element (I,,(f)1,...
L (F)n)F of Sapepon U™ (Q)\UM™ (A),det ™™™, which we call Lift™(f).

)

THEOREM 2.2

Let m =2n or 2n + 1. Suppose that Lift"™ (f) is not identically zero. Then
Lift"™ (f) is a Hecke eigenform in Sopion (U™ (Q)\U™ (A),det™*"™) and its
standard L-function L(s, Lift(m)(f), st) coincides with

[[ZG+E+n—i+1/2, H)L(s+k+n—i+1/2f)
=1

up to bad Fuler factors.

We call Lift ™ (f) the adelic Ikeda lift of f for ¢4(™).



328 Hidenori Katsurada

Let @p be the set of prime divisors of D. For each prime ¢ € @Qp, put
D, = ¢°"44(P) We define a Dirichlet character Xq by

x(a') if (a,9) =1,
XQ(a):{O if ¢ a,
where o’ is an integer such that
a'=a mod D, and  a'=1mod DD, ".

For a subset @ of @p put x@ =[I,e0 Xq and X =I1,e0, 420 Xa- Here we make
the convention that xyo =1 and xb =x if @ is the empty set. Let

f(z2)=) cs(N)e(N=z)
N=1

be a primitive form in Sax41(L0(D), x). Then there exists a primitive form

o

fa(2) =) ¢io(N)e(Nz)
N=1

such that

¢1o(P) =x@(P)es(p) forp¢ @
and
¢q(P) =Xg(p)es(p) for peQ.
Let L(s,x') = ((s) or L(s,x) according to whether i is even or odd, where
¢(s) and L(s,x) are Riemann’s zeta function and the Dirichlet L-function for
X, respectively. Moreover, we define A(s,x?) by
As,x') =2(2m) T (s)L(5,x")

with I'(s) the Gamma function.
Then our main results in this paper are as follows.

THEOREM 2.3
Let k be a nonnegative integer, and let n be a positive integer. Let f be a primitive
form in Gapy1(Io(D),x). Then, we have

L(s,Ion(f)) = prstni-n/2—1/29—2n+1

2n n
« [TAGx) Y xa((=1)") [T E(s =20+, fa ™).
=2 QCQp j=1

THEOREM 2.4
Let k be a positive integer, and let n be a nonnegative integer. Let f be a primitive
form in Sax(SLa(Z)). Then, we have that

) 2n+1~ . 2n+1 )
L(s, Tonsa(f)) = Dot #3n20720 TTAGL X' [ Lls—2n =144, f,x7 7).

i=2 j=1
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REMARK
We note that L(s, Ion+1(f)) has an Euler product.

3. Reduction to local computations

To prove our main result, we reduce the problem to local computations. Let
K,=K®Q, and O, =0 ® Z, as in the Notation. Then K, is a quadratic
extension of Q, or K, =Q, ® Q,. In the former case let f, be the exponent
of the conductor of K,,/Q,. If K, is ramified over Q,, then put e, = f, — d2p,
where 03 ;, is Kronecker’s delta. If K, is unramified over Q,, then put e, = f, =0.
In the latter case, put e, = f, = 0. Let K, be a quadratic extension of Q,,
and let w =w, and ™ =7, be prime elements of K, and Q,, respectively.
If K, is unramified over Q,, then we take w =m =p. If K, is ramified over
Q,, then we take 7 so that ™ = Nk /q,(®@). Let K, = Q, ® Q,. Then put
w=m=p. Let Xk, be the quadratic character of Q, corresponding to the qua-
dratic extension K,/Q,. We note that we have xr, (a) = (—=Do,a), for a € Q;
if K, =Q,(v/—Dy) with Dy € Z,. Moreover, put Her,,(0,) = p¢»Her,,(0,). We
note that Her,, (0,) = Her,,, (O,) if K, is not ramified over Q. Let K be an imag-
inary quadratic extension of Q with discriminant —D. We then put D= Hp D per
and Her,,(0) = D Her,,,(O). An element X € M (O,) with m >1 is said to be
primitive if there is an element Y of M, 1,,—1(O,) such that (XY') € GL,,,(O,).
If K, is a field, then this is equivalent to saying that ranke, o0, X =1. If
K,=Q,®Q, and X = (X1,X2) € My, (Z,,) D My (Zy,), then this is equivalent to
saying that rankg ,,z X1 =rankz ,,z X2 =1[. Now let m and [ be positive inte-
gers such that m > [. Then for an integer ¢ and A € ITI\eer(Op), Be ITI\é}l(Op) put

Aa(A, B) = {X € My (O,)/p* Myu(0y) | A[X] — B € p*Hery(O,)},
and
B.(A,B) ={X € Au(A,B) | X is primitive}.
Suppose that A and B are nondegenerate. Then the number p“(_zmle)#Aa (A, B)

is independent of a if a is sufficiently large. Hence we define the local density
ap(A, B) representing B by A as

ap(A, B) = lim p®—2m+1) 4 4, (A, B).

a— o0

Similarly we can define the primitive local density 8,(A, B) as
Bp(A, B) = lim p*2mH%B. (A, B)
a— o0

if A is nondegenerate. We remark that the primitive local density 5,(A4, B) can be
defined even if B is not nondegenerate. In particular, we write a;,(A4) = (A4, A).
We also define v,(A) for A € Her,,,(Op)* as
: —am?
up(A) = lim p=*™ #(Tu(A4)),

a— o0



330 Hidenori Katsurada

where
To(A) ={X € My (0)/p* M (0p) | AIX] — A€ p®Her,, (0y) }.

The relation between «,(A) and v,(A) is as follows.

LEMMA 3.1
Let T € Her,,(0,)*. Suppose that K,, is ramified over Q,. Then we have that

Oép(T) — p—m(m+1)fp/2+m262,pvp(T).
Otherwise, a,(T) = vy(T).
Proof
The proof is similar to that for [Ki3, Lemma 5.6.5], and we here give an outline
of the proof. The last assertion is trivial. Suppose that K, is ramified over Q,.

Let {T;}._, be a complete set of representatives of Her,,(O,)/p" ¢ Her,,(O,)
such that T; =T mod p" Her,,(O)). Then it is easily seen that

l= [pr }fl\e/rm((’)p) :pT-‘rep Herm((’)p)] :pm(m—nfp/g_
Define a mapping

l
&1 | | Trpe, (T}) — AT, T)

i=1

by ¢(X) =X mod p". For X € A,.(T,T) and Y € M,,(O,) we have that
T[X +p"Y]=T[X] mod p" Her,,(0,).

Namely, X +p"Y belongs to Y, ., (T;) for some i and therefore ¢ is surjective.
Moreover, for X € A,.(T,T) we have that #(¢~1(X)) = p*™ . For a sufficiently
large integer r we have that #Y, ., (T;) = #Y e, (T) for any i. Hence

l
p DI 2 L (T) = Z #Y e, (T7)
i=1

2 2
:p2m PHA, <T7 T) =p™ #-ATJrep (T7 T)
Recall that e, = f, — 02, ,. Hence
#TT+€p (T) — pm(m+1)fp/2—m252p #'ATJFGP (T, T).
This proves the assertion. O
For T € Her,,,(K)*, let G(T) denote the set of SL,,(O)-equivalence classes of

positive definite Hermitian matrices 7" such that 7" is SL,,, (Op)-equivalent to T'
for any prime number p. Moreover, put

W= Y

e
T'€G(T)

for a positive definite Hermitian matrix 7" of degree m with entries in O.
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Let Uy be the unitary group defined in Section 1. Namely, let
Uy ={ue€ Rg)q(GLy) |uu=1}.
For an element T € Her,,(0,), let
Upr = {det X | X € Up(K,) NGL,(0,)},

and put Uy , =U; (Kp) N Oy Then U,.r is a subgroup of Uy ,, of finite index. We

then put I, 7 = (U1, : Up r]. We also put
(1+pH)~! if K,/Q, is unramified,
up=4(1-p V" ifK,=Q,®Q,,
2-1 if K,/Q, is ramified.

To state the mass formula for SUr, put I'c(s) =2(27)°T'(s).

PROPOSITION 3.2
Let T € Her,,, (O)*. Then

det 7)™ [, DT (i)
2m-1 Hp Ly, rupvp(T)

Proof

The assertion is more or less well known (see [R]). But for the sake of completeness
we here give an outline of the proof. Let SU7(A) be the adelization of SUr, and
let {z;}/L, be a subset of SUT(A) such that

H
Sur(A) =| | QuiSUr(Q),
i=1
where Q@ = SUT(R) [ [, oo (SUT(Kp)NSLy, (Op)). Wenote that the strong approx-
imation theorem holds for SL,,. Hence, by using the standard method we can
prove that

. B 1
M*(T) = ; (2, " Qr N SUN(Q))’

We recall that the Tamagawa number of SUr is 1 (see [W]). Hence, by [R, (1.1)
and (4.5)], we have that

(det T)™ [, D/2T'c(i) v,(1)
2m-1 Hp lp,T vp(T)

We can easily show that v,(1) = U, L. This completes the assertion. (I

M*(T) =

COROLLARY
Let T € Her,, (O)*. Then
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AT — 2P (et T [T, De(i)
( ) - mele(m+1)/4+1/2 Hp uplp,Tap(T) ’

where cp =1 or 0 according to whether 2 divides D or not.

For a subset 7 of O, put
Her,,,(T) = Her,,, (Op) N M, (T),
and for a subset S of O, put
Her,,(S,T) = {A € Her,,(T) | det A€ S}
and Her,, (S, T) = Her,,(S,7)N I/-I\e/rm((’)p). In particular, if S consists of a single
element d, then we write Her,, (S, T) as Her,,(d,T), and so on. For d € Z( we
also define the set Her,,(d, O)" in a similar way. For each T € Her,,(O,)* put
FO(T, X) = (T, X)
and
F"T, X) = F,(p T, X).
We remark that
(0 _ —ord,(detT epm—fpm/2 0 —m v 2
FOT,X)=X (det ™) xepm=Iolm/A pO) (T, p=m Xx?).
For d € Z; put
E"(A,X)
Uplp, a0p(A)

Am.p(d, X) = >

AeHery, (d,0,)/ SLm (Op)

An explicit formula for Ay, , (p'dy, X) will be given in the next section for dy € Z,
and 7 > 0.

Now let Her,, = Hp(ITI\é}m(Op)/SLm(Op)). Then the diagonal embedding
induces a mapping

¢ : Hery (0)F/ [[ SLin(0p) — Hery,.
P

PROPOSITION 3.3
In addition to the above notation and the assumption, for a positive integer d let

Her,, (d) = [ [ (Her (d, ©p)/ SLin(0,)).
P
Then the mapping ¢ induces a bijection from ﬁ"m(d,O)*/Hp SL,,(Op) to
ﬁ\é;m(d), which will be denoted also by ¢.

Proof
The proof is similar to that of [IS, Proposition 2.1], but it is a little bit more
complex because the class number of K is not necessarily 1. It is easily seen that
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¢ is injective. Let (z,) € I/-|\e/rm(d). Then by [Sc, Theorem 6.9], there exists an
element y in Her,, (K)* such that dety € dN /(K *). Then we have that dety €
detz, Nk, q, (K, ) for any p. Thus by [J, Theorem 3.1] we have z;, = g;yg, with
some g, € GL,,,(K,,) for any prime number p. For p not dividing Dd we may
suppose that g, € GL;,(O,). Hence, (g,) defines an element of R /q(GLy,)(Ay).
Since we have d~1 dety € Q* NI, Nk,/q, (Kp), we see that d~tdety = Nk ,q(u)
1m—1 o 1m—1 o]

o a! )y( o w7t
suppose that dety =d. Then we have Nk, /q, (det g,) = 1. It is easily seen that
there exists an element &, € GL,, (K,) such that det 6, = det g, ' and 6,6, = ;.
Thus we have g,0, € SL,,(K,) and

with some u € K*. Thus, by replacing y with ( ), we may

Tp = (9p0p) “YgpOp-
By the strong approximation theorem for SL,, there exists an element v €
SLin(K), Voo € SLin(C), and (vy) € [ ], SLin(Op) such that

(gp5p) =7V (’Yp)-

Put 2 = 7*y7y. Then « belongs to Her,, (d, 0)*, and ¢(z) = (xp). This proves the
surjectivity of ¢. O

THEOREM 3.4
Let f be a primitive form in Saopr1(Io(D),x) or in Sox(SLa(Z)) according to
whether m=2n or 2n+ 1. For such an f and a positive integer dy put

b (f3do) = [ [ Am.p(do, 031,
P

where o, is the Satake p-parameter of f. Moreover, put
Y oD = D=0/ + (k=10 /2)[m /2 —m(m~+1)/4-1/2

% 2—cDm(s—k—2n—l0/2)—m+1 HFC(i)a
i=2
where lg =0 or 1 according to whether m is even or odd. Then for Re(s) >0,
we have that

L(8,In(f)) = fimip S b (f3do)dg *THH2H072,

do=1
Proof
We note that L(s, I,,,(f)) can be rewritten as
yms aIm(f)(ﬁ_lT)
L(s.I,.(f)) =D UmHZ =)
(5. Im () - Z e (T)(det T)*
TeHer,, (0O)*/SL,,(0)

For T € Her,,(0)* the Fourier coefficient ar,,(;)(D7'T) of I,(f) is uniquely
determined by the genus to which T belongs, and can be expressed as
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o1y (BT) = (DI det 70l [[ FO (7,057,
p

Thus the assertion follows from the Corollary to Proposition 3.2 and Proposi-
tion 3.3 similarly as in [IS]. O
4. Formal power series associated with local Siegel series

For dy € sz put

m,p do,X t Z)‘ p d07 3
where for d € Z)\ we define Ay, (d,X) as

. FV(A,X)
)\mw(d, X) = Z IJ(}T .
A€Herm (dNk, jq, (03),0)/ GLm(0p)
We note that
Z FO(A, XY
. aP<A)
A€Her,, (dNk, /q, (0}).0p)/ GLin (Oy)

is XKp((—l)m/zd))\;‘nyp(d,X) or A}, ,(d,X) according to whether m is even and
K, is a field, or not. In Proposition 4.3.7 we will show that we have

Ap(dy X) = upAp p(d, X)

for d e Z; and therefore

Prp(do, X,t) =1y > A p(p'do, X)t'

=0
We also define P, ,(do, X,t) as
Prp(do, X, ) =Y A5, (whdo, X )t
=0

We note that P, ,(do, X,t) = IADT,M,(dO,X7 t) if K, is unramified over Q, or K, =
Q, ® Qy, but it is not necessarily the case if K, is ramified over Q. In this
section, we give explicit formulas of P, ,(do, X,t) for all prime numbers p (see
Theorems 4.3.1 and 4.3.2) and therefore explicit formulas for P, ,(do, X,t) (see
Theorem 4.3.6).

From now on we fix a prime number p. Throughout this section we simply
write ord, as ord and so on if the prime number p is clear from the context. We
also write vk, as v. We also simply write Ijl\c/rmm instead of }T&m((’)p), and so
on.
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4.1. Preliminaries
Let m be a positive integer. For a nonnegative integer i < m let

DmJ::GLm(Op)<1mi 0

and for W € D, ;, put IT,(W) = (—1)'pi—1/2 where a =2 or 1 according to
whether K, is unramified over Q, or not. Let K, = Q, @ Q,. Then for a pair
i = (i1,42) of nonnegative integers such that i1,io < m, let

17TL77;1 O 1m7i2 O

and for W € D, ; put IT,(W) = (—1)iHizpir(=1/2+i2(i2=1)/2 T either the case
where K, is a quadratic extension of Q, or K, =Q, & Q,,, we put I[,(W)=0
for W e M, (O; ) \U;~o Din,i-

First we give the following lemma, which can easily be proved by the usual
Newton approximation method in O,.

LEMMA 4.1.1

Let A,B € Ijlgrm(Op)X . Let e be an integer such that p°A~! € }igrm(Op). Suppose
that A= B mod p°*! ITI;}m(Op), Then there exists a matriz U € GLy,(Op) such
that B = A[U].

LEMMA 4.1.2
Let S € Herp,, (0p)* and T € Her,,(O,)* with m >n. Then
Oép(S, T) _ Z p(nfm)u(det W)ﬁp (57 T[Wfl})
WEGLA (Op)\Mn(Op)*
Proof

The assertion can be proved by using the same argument as in the proof of [Ki3,
Theorem 5.6.1]. We here give an outline of the proof. For each W € M,,(O,), put

Be(S,T;W)={X € A(S,T) | XW~" is primitive}.
Then we have that

A(8,T) = L BT W).
WeGL, (Op)\Mn (Op)*

Take a sufficiently large integer e, and for an element W of M, (O0,), let {R;};_;
be a complete set of representatives of p®Her,,(O,)[W ~!]/p° Her,,(O,). Then
we have 7 = p¥(detW)n pyg

B(S,T;W) = { X € My (Op)/p° My (O) W |
S[X] =T mod p® Her,,(O,) and XW ! is primitive}.
Then
H#(B.(S,T; W) = p @t WIm (B, (S, T; W)).
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It is easily seen that
S[XW~1=T[W~'] + R; mod p®Her,,(O,)

for some 4. Hence the mapping X — XW ~! induces a bijection from EE(S,T; W)
to | |i_, Be(S,T[W =] + R;). Recall that v(W) < ord(detT'). Hence

Ri = 0 mod p*/2 Her,n(0,),
and therefore by Lemma 4.1.1,
TW ™'+ R, =TW[G]
for some G € GL,,(Op). Hence
#(Be(S.Ts W) = p" W3 (B (S, TIW 1))

Hence
ap(8.T) = p~2 e e (A (S, T))
—zmne ’I’L2€ v € —m-+n -
=p 2 + Z p (det W)( + )#(BS(S,T[W 1]))
WeEGLy (Op)\Mn (Op)*
This proves the assertion. O
Now by using the same argument as in the proof of [Kil, Theorem 1], we obtain

the following result.

COROLLARY
Under the same notation as above, we have that
ﬁp(s7 T) = Z p(n—m)u(det W)HP(W)Oép (S, T[W—l]) )

WEGLy, (Op)\Mn (Op)*

For two elements A, A" € Her,,,(O,) we simply write A ~qr,,(0,) A" as A~ A" if
there is no fear of confusion. For variables U and g put
U m=[[0-¢7'0),  6m(@) = (@0)m-
i—1

We note that ¢,,(q) =[]~ (1 — ¢"). Moreover, for a prime number p put

ém(q?) if K,,/Q, is unramified,
2

¢m,p(Q) =9 Pm (q) if Kp = Qp D Qpa
oOm(q) if K,/Q, is ramified.
LEMMA 4.1.3
(a) Let QU(S,T)={w € M,,(0p) | S[w] ~T}. Then we have that
ap(S,T)

:# Q(S, T)/GLm(O ) p—m(ord(detT)—ord(detS)).
ap(T) ( ! )
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(b) Let Q(S,T) = {w e My, (Z) | S ~T[w']}. Then we have that

Qp (Sa T) O
——— = = H#(GL (O,)\Q(S,T)).
ap(S) #( m( p)\ ( 9 ))
Proof
(a) The proof is similar to that of [BS, Lemma 2.2]. First we prove that

da| = ¢y (p~ ! ap(S,T)
[ 81 =072 )

where |dz| is the Haar measure on M, (K),) normalized so that

/ |dx| = 1.
m (Op)

To prove this, for a positive integer e let T7,...,7; be a complete set of represen-
tatives of {T[y] mod p¢ |7y € GL,,,(O,)}. Then it is easy to see that

l
d = —2m’e Ae Ssz 5
/m,n'x' P A T)

and by Lemma 4.1.1, T; is GL,,(Op)-equivalent to T if e is sufficiently large.
Hence, we have that

for any i. Moreover, we have that

L= #(GLn (0, /0°0p)) J# (AT, T)) = p™ Gy (0™ 4) [y (T).
Hence
ozp(S7 T)

d :l —2m’e Ae S,T — QOm -1 N R
g 1 =17 A8 D) =67

which proves the above equality. Now we have that

/ \dz| = > |det W (R = > |det W det W |,
AUST) WEQ(S,T)/ GLy (O,) WEQ(S,T)/ GLm (0,)
We remark that |det W det W |, = p~m(erd(det T)—ord(det 5)) for any W € Q(S,T)/
GL,,(Op). Thus the assertion has been proved.
(b) By Lemma 4.1.2 we have that

ap(S,T) = > Bp (S, TW1]).
WEGLp (Op)\ M (Op)*
Then we have that 8,(S,T[W~]) = a,(S) or 0 according to whether S ~ T[W ]
or not. Thus the assertion (b) holds. O

For a subset 7 of O, we put
Her,,, (T ) = {A = (a;j) € Her,,, (T) | a;; € szp}.
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From now on put

Her,, (Op)1 if p=2and f, =3,
Hery, «(Op) = { Hery,,(wO,); if p=2and f, =2,
Her,, (0,) otherwise,

where @ is a prime element of K. Moreover, put i, = 0 or 1 according to whether
p=2 and fo =2, or not. Suppose that K,/Q, is unramified or K, = Q, & Q,.
Then an element B of ITe/rm(Op) can be expressed as B ~qL,,(0,) 1»LpB2 with
some integer r and B € Her,,_, .(O,). Suppose that K,/Q, is ramified. For an
even positive integer r, define ©,. by

r/2

0 w'r 0 wole
p— i 1. i
Or <w’p 0 ) (w’p 0 ) ’

where @ is the conjugate of w over Q,. Then an element B of ﬁg}m(op)
is expressed as B ~qL,,(0,) O, L7» By with some even integer r and By €
Her,,—r «(Op). For these results, see [J].

A nondegenerate square matrix W = (d;;)mxm with entries in O, is called
reduced if W satisfies the following conditions: d;; = p with e; a nonnegative
integer, and d;; is a nonnegative integer less than or equal to p® — 1 for ¢ < j,
and dj; =0 for > j. It is well known that we can take the set of all reduced
matrices as a complete set of representatives of GL,,(Op)\M(Op)*. Let m be
an integer. For B € I/fe{rm((?p) put

QU(B) = {W € GL,(K,) N My, (O,) | BIW™] € Her,,(0,) }.

Let r <m, and let ¢, be the mapping from GL,(K,) into GL,,(K,) defined
by Yrm (W) =1p_r LW.

LEMMA 4.1.4

(a) Assume that K, is unramified over Q, or K, =Q, ® Q,. Let By €
Her, 1y (Op). Then o —ng.m induces a bijection from GLp,_n,(O,)\Q(B1) to
GLm(Op)\ﬁ(lnoLBl), which will also be denoted by Ym—_ng m-

(b) Assume that K, is ramified over Q, and that ng is even. Let By €
Hern_p, (O,). Then P —pyam induces a bijection from GLy,_pn, (O,)\Q(By1) to
GLm(Op)\ﬁ(GnOJ_Bl), which will also be denoted by Vm—ny,m. Here i, is the
integer defined above.

Proof

(a) Clearly %m—no,m is injective. To prove the surjectivity, take a representa-
tive W of an element of GL,,(O,)\(1,,, LB;). Without loss of generality we
may assume that W is a reduced matrix. Since we have that (1,, 1 B;)[W~1] €
Her,,, (O,), we have that W = (1’50 V[O/l) with Wy € Q(B;). This proves the asser-
tion.

(b) The assertion can be proved in the same manner as (a). O



Koecher-Maass series of the lkeda lift for U(m, m) 339

LEMMA 4.1.5
Let B € Her,,(O,)*. Then we have that

. o 2
ap(n"dB) =p"™™ ay(B)

for any nonnegative integer r and d € Z,.

Proof
The assertion can be proved by using the same argument as in the proof of [Ki3,
Theorem 5.6.4(a)]. O

Now we prove induction formulas for local densities different from Lemma 4.1.2
(see Lemmas 4.1.6, 4.1.7, and 4.1.8). For technical reasons, we formulate and
prove them in terms of Hermitian modules. Let M be O, free module, and let b
be a mapping from M x M to K, such that

b()\lu + Ao, ’U) = )\1b(ul,1}) + /\Qb(UQ, 1})
for u,v € M and Ai, A2 € O, and
b(u,v) =b(v,u) for u,v € M.

We call such an M a Hermitian module with a Hermitian inner product b.
We set g(u) = b(u,u) for u € M. Take an O,-basis {u;}[*,; of M, and put
T = (b(ui, uj))1<i,j<m- Then Ty is a Hermitian matrix, and its determinant is
uniquely determined, up to Nk, /q,(O;), by M. We say M is nondegenerate if
det Thy # 0. Conversely for a Hermitian matrix T of degree m, we can define a
Hermitian module My so that

Mr =Opui + Opug + - - + Opupy,

with (b(ui, u;))1<ij<m =T Let My and M, be submodules of M. We then write
M =My LM, if M =M; + Ms, and b(u,v) =0 for any u € My,v € Ms. Let M
and N be Hermitian modules. Then a homomorphism ¢ : N — M is said to
be an isometry if ¢ is injective and b(o(u),o(v)) = b(u,v) for any u,v € N. In
particular, M is said to be isometric to N if ¢ is an isomorphism. We denote
by U}, the group of isometries of M to M itself. From now on we assume that
Ty € ﬁe_}m(op) for a Hermitian module M of rank m. For Hermitian modules
M and N over O, of rank m and n, respectively, put

AN, M) ={0:N— M/p"M | q(c(u)) = q(u) mod p**},
and
B,(N,M):={c € A, (N,M) | o is primitive}.
Here a homomorphism o : N — M is said to be primitive if ¢ induces an injective

mapping from N/@wN to M /@M. Then we can define the local density aj,(N, M)
as

b (N, M) = lim p=@®mn=m)y (A (N, M))

a— 00
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if M and N are nondegenerate, and we can define the primitive local density
B, (N, M) as

! — i —a(2mn—n2) /
By(N, M) = lim p # (B (N, M))
if M is nondegenerate as in the matrix case. It is easily seen that
Oép(S,T) = Oé;(MT, Ms)
and
Bp(S,T) = B, (Mr, Ms).
Let N7 be a submodule of N. For each ¢ € B, (N1, M), put
B,(N,M;$1) = {¢ € B,(N,M) | ¢|n, = ¢1}.
We note that we have
B(NM)= ||  By(NM;dy).
¢1€BL(N1,M)

Suppose that K, is unramified over Q,. Then put =,, = 1,,. Suppose that
K, is ramified over Q, and that m is even. Then put Z,, = Op,.

LEMMA 4.1.6

Let my, ma, ny, and ny be nonnegative integers such that my > ny and my+msg >
ny + na. Moreover, suppose that my and ny are even if K, is ramified over Q.
Let Ay € Heryy,, (O,), and let By € Her,,, (Op). Then we have that

5p(Em1 J—‘427 Enl LBQ) = ﬁp(Eml J—AQa Enl )ﬁp(Eml —ny J—A2; Bg),
and in particular, we have that

BP(E'TH J-A27 EﬂlJ-B2) = /BP(ETM LA?? E‘nl )ﬂp(A% B2)

Proof
Let M = MEmllAw N1 :MEnI’ N2 = ]\4527 and N = NlJ_NQ. Let a be a suffi-
ciently large positive integer. Let N1y = Opv1 @ -+ ® Opvy, and No = Opvp, 41 @
-+ @ OpVn, 4n,- For each ¢1 € Bl (N1, M), put u; = ¢1(v;) for i=1,...,ny. Then
we can take elements w41, .., Um,+m, € M such that

(U“U]):O (i:]‘v"'anhj:nl+17"'am1+m2)a
and

((ui’ uj)>n1+1§ivj§m1+m2 = Emi—ny LAz

Put N{ = Opu1 & -+ @ Opuy, . Then we have N = Mz, . For ¢ € B, (N1, M;¢1)
and i=1,...,n2 we have that

mi+ma

G(Uny4i) = Y anypitiy
j=1

with a,, i ; € Op. Put Z,,, = (bij)1<i,j<n,. Then we have that
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(¢(Uj)a ¢('Un1+i)) = Z Uny+iAbjy =0
y=1

fori=1,...,n0 and j =1,...,n;. Hence we have a,,y;y =0fori=1,...,np and
v =1,...,n1. This implies that ¢|n, € B, (N2, Ma, 1=, _, ). Then the mapping

B, (N1, M;¢1) > ¢+ @|n, € By(N2y Ma,i=,,_,.)
is bijective. Thus we have that

#B;(NvM):#B;(N17M)#B(/1(N27M: LAQ)'

=m—nq

This implies that

/Bp(Eml J—A27 Enl J—BZ) = ﬁp(Eml J—AZa Enl )6;0(Eml —ny J_A, B2)- O

LEMMA 4.1.7

In addition to the notation and the assumption in Lemma /.1.0, suppose that Aq
and As are nondegenerate. Then

ap(Eml L As, Enl ) = ﬁp(Eml 1A, Enl )7
and we have that
ap(Eml LAQ, Enl LBQ) = ap(Eml LAQ, Enl )ap(Eml —n1 LAQ, BQ)7
and in particular, we have that
ap(Enl LAQ, En1 LBQ) == ap(Enl LAQ, Enl )Oép(Ag, BQ)
Proof
The first assertion can easily be proved. By Lemmas 4.1.2 and 4.1.4, we have
ap(Eml J.Ag, E’nl J_BQ)
_ Z p(n1+n27(m1+m2))u(det W)
WEGLnp, ny (Op)\Q(En, LB2)
X By (Emy LAs, (Ep, LBo)[W 1)
— > plrz=tm=mtm)wetX)g (= ) Ay 5, 1 By[X1).
XEGLy, (0p)\(B2)
By Lemma 4.1.6 and the first assertion, we have that
Bp(Bmy L A2, Ep, LBo[X]) = ap(Em, LA2, 20, ) By (Eny—ny LA, Bo[ X 1]).

Hence again by Lemma 4.1.2, we prove the second assertion. (I

LEMMA 4.1.8

(a) Supposethat K, is unramified over Q,. Let A € Her;(O,), By € Her,,, (O,),
and B € Her,,,(O,) with m > 2ny. Then we have that

By(Lm LA, By LBy) = B,(1m LA, B1)Bp((—=B1) L1y 20, LA, By).
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(b) Suppose that K, is ramified over Q. Let A € IfI\e/rl(C’)p), B € Her,, (O,),
and B € Her,,,(O,) with m >ny. Then we have that

Bp(O2m LA, Bi L Bo) = B,(O2m LA, B1)By((—B1) LO2pn 20, LA, By).

Proof

First suppose that K, is ramified over Q,,. Let M = Mg, 14, N1 =Mp,, No =
Mp,, and N = N1 LNs. Let a be a sufficiently large positive integer. Let N; =
Opv1®---®O0pvy, and No = Opvp, 41 B+ S OpUp, 1n,. For each ¢1 € B, (N1, M),

put u; = ¢1(v;) for i = 1,...,nq. Then we can take elements t,, 11, ..., Uzm+; € M
such that
(ui’uerj) = 5ijwipv (un1+ivun1+j) =0 ('Lv] =1,.. "nl)a
(usuj)=0 (E=1,...,2n1,7=2n1+1,...,2m+10),

and

((us, “j))2n1+1gi,j§2m+l = O2m-2n, LA,

where ¢;; is Kronecker’s delta. Let By = (b;j)1<i,j<n,, Put

ny

I = ho

Uj=uj —w pE bojtng 4y
7=1

for j=1,...,n1, and put M’ = Opu} @ --- @ Opu;, . Then we have (uz,u]) —bi;
and hence we have M’ = M_p,). For ¢ € B,(N1,M;¢1) and i =1,...,ny we
have that

2m-+1

”TLH% E Any+i,jUj

with ay, 14,5 € Op. Then we have that

ni
Z i
(¢(Uj)7 QS(UYLFH)) = a7b1+i,’)’bj’Y tan +in ;@7 = 0
y=1
fori=1,...,ny and j=1,...,n;. Hence we have that
2m—+1
B (vny 1) § an1+wu + § Any+i,5Uj -
Jj=2n1+1

This implies that ¢|n, € Ba(Nz, M p,)LMaye,,, ,,, ). Then the mapping
B,(N1,M;¢1) 5 ¢ = ¢|n, € By (N2, M(—p,) LMaLes,, s, )
is bijective. Thus we have that
#B, (N, M) = #B, (N1, M)#B,, (N2, M(_p,y L Me,,, _,, 14)
This implies that
By(Oam LA, By LBy) = B,(Oam LA, By)By((—=B1) LOspy 20, LA, By).



Koecher-Maass series of the lkeda lift for U(m, m) 343

This proves (b). Next suppose that K, is unramified over Q,,. For an even positive
integer r define O, by

r/2

0 1 0 1
9’"_<1 0>l"¢<1 0)'

Then we have ©, ~ 1,.. By using the same argument as above we can prove that

Bp(Om LA, BiLBs) = B,(0m LA, B1)By((—B1) 1Oy 20, LA, Bs)

or
Bp(Om-1L11LA, By LBs) = f3,(On—1L11LA, B1)B,((—B1) LOp—2s, L11LA, By)
according to whether m is even or not. Thus we prove the assertion (a). O
LEMMA 4.1.9

Let k be a positive integer.

(a) Suppose that K, is unramified over Q.
(1) Let be Z,. Then we have that

Bp(Lak,pb) = (1 — p~ ) (1 +p~25+1).
(2) Let b€ Zy. Then we have that
ap(lak,b) = By(lak,b) =1 —p~2*
and
ap(lag—1,b) = Byp(lag—1,b) = 1 + p~ 2 FL.

(b) Suppose that K, is ramified over Q.
(1) Let B € Hery,, »(Op) with m <2. Then we have that

Bp(®2k77ripB H —2k+21
(2) Let B=(2%). Then we have that
ap(O2k, B) = B,(Oar, B) =1 —p~2~.
Proof

(a) Put B = (b). Let p# 2. Then we have that K, = Q,(y/¢) with € € Zj such
that (¢,p), = —1. Then we have that

#B, (121, B) = #{(Ii)€M4k,1(zp)/paM4k,1(Zp)

2k

Z(wgz 1 5352z) pb mod p* }

i=1

(x;) £ 0 mod p,
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Let p =2. Then we have that Ky = Q2(+v/—3) and

#B,(1ay, B) = #{(xi) € Mujor(Zo) /29 M1 (Z2) \ (2;) 20 mod 2,

2%
Z(Igi—l + X9;_1T9; + 3;) = 2b mod 2"}.

i=1
In any case, by [Ki2, Lemma 9], we have that
#Ba(12k7B> :p(4k—1)a(1 _p—Qk)(l +p—2k+1).
This proves the assertion (a.1). Similarly the assertion (a.2) holds.

(b) First let m =1, and put B = (b) with b € 2Z,. Then 2710 € Z,. Let
p#2, orlet p=2 and fo =3. Then we have K, = Q,(w) with w a prime
element of K, such that @ = —w. Then an element x = (x2;_1 + WT2;)1<i<2k
of Mok 1(Op)/p*Mak,1(O,) is primitive if and only if (x2;_1)1<i<2r # 0 mod p.
Moreover, we have that

@2k[X] =2 Z ($21$2¢+1 - 121—1$2i+2)7T-
1<i<2k

Hence we have that

#B4 (1o, B) = #{ (1) € Mar1(Z)) /0" Mara(Zy) | (w2i-1) 1520 # 0 mod p

2%
Z(I2i$2i+1 — T2i_1T2i42) =27 'b mod pa}-

i=1
Let p=2, and let f = 2. Then we have that Ky = Qz(w) with w a prime element
of Ky such that n:=2"!(w + @) € Z3. Then we have that

#Bo (121, B)
= #{(Iz) € Mk 1(Z2) /2 Myg1(Z2) | (x2i—1)1<i<2k Z 0 mod 2,
2k
Z{n(x2ix2i+l + Toi—1%2i42) + Tai—1T2i41 + Wx2¢$2i+2} =2""'b mod 2‘1}-
i=1

Thus, in any case, by a simple computation we have that
#Ba(12k,B) :p(2k—1)a(p2ka _p2k(a—1)).

Thus the assertion (b.1) has been proved for m = 1. Next let 77 B = (b;;)1<i,j<2 €
Hery . (Op). Let M = Me,,, Ny = M_,,,,, and N = Mp. Let a be a sufficiently
large positive integer. For each ¢y € B, (N1, M), put

B;(N7M3¢l) = {¢€B;(N7M) | ¢|N1 = ¢1}

Let N = Opv1 & Opve, and put ug = ¢1(v1). Then we can take elements us, ...,
usr € M such that

M = Opus & Opus & - - - & Opugy,
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and

(u1,u2) =, (ug,u2) =0, (us,uj)=0 fori=1,2,7=3,...,2k,
and

(Ui, uj)3<i,j<2k = O2—2.
Then by the same argument as in the proof of Lemma 4.1.8, we can prove that
B('I(N,M; 1)
= {(#:)1<i<2k—1 € Mar—1,1(0p) /0" Ma—-1,1(Op) | (zi)2<i<26—2 # 0 mod w,
—21Z1b11 — 21012 — T1b12 + Op—2[ (%) 2<i<2k—2] = ba2 mod p*}.
Hence by the assertion for m =1, we have that

Bp(emm B)

= Bp(O2k, b11)p™ " Z Bp(O2k—2,bag + 112171 +I1512+511_712)
1€0, /w0y

=(1—-p )1 —p? ).

Thus the assertion (b.1) has been proved for m = 2. The assertion (b.2) can be
proved by using the same argument as above. O

LEMMA 4.1.10
Let k and m be integers with k > m.

(a) Suppose that K, is unramified over Q. Let A € Her;(O,) and B €
Her,, (0,). Then we have that
2m—1 ) )
Bp(pAJ—:le;pB) = /Bp(]-2k7pB) = H (1 - (71)7/p72k+71)'
i=0
(b) Let K, =Q,®Q,. Letl be an integer. Let B € Her,,,(O,). Then we have
that
2m—1 .
Bp(Lar,pB) = [] (1—p~ ).
i=0
(c) Suppose that K, is ramified over Q,. Let A € Her; .(O,), and let B €
Her,, «(O,). Then we have that
m—1
Bp (17 ALOgk, m'» B) = B, (O, w'» B) = [ (1 — p~2"%).
i=0

Proof
(a) Suppose that K, is unramified over Q,. We prove the assertion by induc-
tion on m. Let deg B =1, and let a be a sufficiently large integer. Then, by
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Lemma 4.1.9, we have that

By(pALly,pB) =p~* > By (125, pB — pA[x])
x€M;1(Op)/p* M11(Op)

— (1 _p—2k)(1 +p—2k+1).

This proves the assertion for m = 1. Let m > 1, and suppose that the assertion
holds for m — 1. Then B can be expressed as B ~qr,, (0,) B1LB2 with By €
Her;(0,) and By € Her,,—1(O,). Then by Lemma 4.1.8, we have that

Bp(pALlsk, pB1LpBs) = By(pALlak, pB1) By (pAL(—pB1) Llgk—2,pBs).

Thus the assertion holds by the induction assumption.
(b) Suppose that K, =Q, & Q,. Then we casily see that

Bp(Low, pB) = pl =™ 4By (1o, O ).
We have that
Bi(1ak,0m)
={(X,Y) € Mara(Zy) /pMak,(Zp) ® Mara(Zy) /pMak,(Zy) |
'Y X = 0,, mod pM,,(Z,) and ranky /,z X =rankg ,,z Y =m}.
For each X € Moy, 1(Zy)/pMay,1(Zy) such that rankg ,,z X =m, put
#B1(1ak, O3 X)
={Y € Maki(Zy) /pMor(Zy) |
'Y X = Oy, mod pM,,,(Z,) and rankg, /7, Y =m}.

By a simple computation we have that

m—1
#{X € Moy 1(Zp)/pMay1(Zy) | rankz /7, X =m} = [ 0** - p"),
=0
and
m—1 )
#B1 (12, Om; X) = [ @™ = p").
=0

This proves the assertion.

(c) Suppose that K, is ramified over Q,. We prove the assertion by induc-
tion on m. Let degB =1, and let a be a sufficiently large integer. Then, by
Lemma 4.1.9, we have that

Bp('? ALOgy, 7'» B) = p~ Z Bp (O, m'* B — m'r A[x])
x€EM11(Op)/p*Mi1(Oyp)

=1 —p_2k.
Let deg B =2. Then by Lemma 4.1.9, we have that
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Bp(ﬂiPAJ_@%, 7rB) = p 2 Z By (®2k7 7P B — ﬂiPA[x])
x€Mi2(0p)/p* Mi2(Op)

_ (1 _p—2k)(1 _ p—2k+2)'

Let m > 3. Then B can be expressed as B ~qL,, (0,) B11 B2 with deg By < 2.
Then the assertion for m holds by Lemma 4.1.8, the induction hypothesis, and
Lemma 4.1.9. (]

LEMMA 4.1.11

(a) Suppose that K, is unramified over Qp. Let | and m be integers with
{>m. Then we have that

m—1

ap(1, 1) =Bp(1;, 1) = H (1- (_p)—lﬂ').

i=0
(b) Let K, =Q,® Q. Let | and m be integers with | > m. Then we have

m—1

ap(llv 1m) = Bp(llv lm) = H (1 _pilJri)'

i=0
(c) Suppose that K, is ramified over Q. Let k and m be even integers with
k>m. Then we have that

m—1

O[p(@2k; @2m) = 5}7(@2]@, 62m) = H (]_ _p72k+2i).

=0

Proof

In any case, we easily see that the local density coincides with the primitive
local density. Suppose that K, is unramified over Q,. Then, by Lemma 4.1.7,
we have

ap(llv ]-m) = ap(]-l7 ]-)ap(]-lflv 1m71)~
We easily see that
ap(1,1)=1—(=1)!p.

This proves the assertion (a). Suppose that K, is ramified over Q,. Then by
Lemma 4.1.7, we have that

0p(O2k, Om) = p(O2k, O2)ty (O2k—2, O2y—2).
Moreover, by Lemma 4.1.9, we have that
Oép(@2k, @2) =1 7p72k.

This proves the assertion (c). Suppose that K, = Q, @ Q,. Then the assertion
can be proved similarly to Lemma 4.1.10(b). O
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4.2. Primitive densiti/ei
For an element T' € Her,, (0,), we define a polynomial G,(T,X) in X by
GIX)=Y S Xy L, (W) EO (T, X).
i=0 WEGLy, (Op)\Dim,i

LEMMA 4.2.1

(a) Suppose that K, is unramified over Q. Let By € Herp,—p,(Op). Then
we have that

no

ap(lnoJ—pBl) = H(l - (_p)ii)ap(pBl)-
i=1
(b) Let K, =Q, ® Q,. Let By € Hery,—p,(Op). Then we have that
no
op(lneLpB1) = H(l —p )ap(pBy).
i=1

(c) Suppose that K, is ramified over Q. Let ng be an even integer. Let By €
Hery,—ng,«(Op). Then we have that

n0/2
p(On, L7 By) = H (1—=p~*")ay(n' By).

i=1

Proof
Suppose that K, is unramified over Q,,. By Lemma 4.1.7, we have that

ap(1pyLpB1) = a1y LpBi, 1, )y (pBy).
By using the same argument as in the proof of Lemma 4.1.10, we can prove that

O‘P(lnoJ-pBlv 1”0) = ap(lno)v

and hence by Lemma 4.1.11, we have that

o

ap(lnoJ—pBl) = H(l - (_p)ii)ap(pBl)'

i=1
This proves the assertion (a). The assertions (b) and (c¢) can be proved similarly.
|

LEMMA 4.2.2
Let m be a positive integer, and let r be a nonnegative integer such that r <m.

(a) Suppose that K, is unramified over Q,. Let T =1,,_, 1pBy with By €
Her,(0p). Then

m+r—1

Bp(lar, T)= [ (1-p2(-1)").

=0
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(b) Suppose that K, =Q, ® Q,. Let T =1,,_, LpBy with By € Her,.(O)).
Then
m—+r—1

Bp(lar, T) = J] (1—p ).

i=0
(c) Suppose that K, is ramified over Q,, and suppose that m —r is even.
Let T = ©,,_, Ln'» By with By € Her, .(O,). Then

(m+r—2)/2

Bp(O2, )= [[ (1—p ).

=0

Proof
Suppose that K, is unramified over Q,. By Lemma 4.1.8, we have that

6})(121@7 T) = ﬂp(12kapB1)/6p((_pBl>L12k72r> 1m77')-

By using the same argument as in the proof of Lemma 4.1.11, we can prove that
Bp((—pB1)Llak—2r, Li—r) = Bp(log—2s, 1;m—r). Hence the assertion follows from
Lemmas 4.1.10 and 4.1.11. The assertions (b) and (c) can be proved similarly. [

COROLLARY
(a) Suppose that K, is unramified over Q, or K, =Q, ® Q,. Let T =
1y—rLpB1 with By € Her,.(O,). Then we have that

r—1

Gp(T,Y) =] (1 = (&p)™"'Y).

i=0
(b) Suppose that K, is ramified over Q,, and suppose that m —r is even.
Let T =O,,_, Ln'» By with By € Her,.(O,). Then

[(r~2)/2] 4
G, Y)= [[ @-p*2msiily),
=0

Proof
Let k be a positive integer such that k > m. Put 2o, = O9; or 1o according to
whether K, is ramified over Q,, or not. Then it follows from [Shl, Lemma 14.8]
that for B € Her,,(O,)* we have

by(p~* B, 2k) = o (Eak, B).

Hence, by the definition of G, (7', X) and the Corollary to Lemma 4.1.2, we have

[(m=1)/2 /2 |
Bp(Eae, T)=G,p(T,p*) [ (1=p*2) [T A —&p* 7).
=0 i=1

Suppose that K, is unramified over Q,, or K, = Q, ® Q,,. Then by Lemma 4.2.2,
we have that
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r—1

Gp(Tp~F) = [T (1 = (&p)™+'p~2").

i=0
This equality holds for infinitely many positive integers k, and both sides of it

are polynomials in p~2¥. Thus the assertion (a) holds. Similarly the assertion (b)
holds. g

LEMMA 4.2.3
Let B € Her,,,(Op). Then we have that

F;SO)(B’X) = Z Gp(B[W_l],X) (me)u(detW).
WEGLy (0p)\Q(B)
Proof
Let k be a positive integer such that k > m. By Lemma 4.1.2, we have that
ap(Zak, B) = > By (g, BIW ~1])p(-2htmv(det W)
W E€GL,, (0p)\Q(B)

Then the assertion can be proved by using the same argument as in the proof of

the Corollary to Lemma 4.2.2. O
COROLLARY
Let B € Her,,(Op). Then we have that
~ / B’ B)
FO(B. X)) = xerm—folm/2] x —ord(det B )ap( )
( Y ) Z O{p(B/)

B’€Her, (0p)/ GLy (Op)
> Gp(Bl7p—mX2)X0rd(det B)—ord(det B’).
Proof
We have that
FO(B,X)
_ Xe,,m—f,, [m/2]X—ord(det B)F(O)(B,p_sz)
— Xepm—fp[m/Q] Z X—ord(det B)
W E€GL,, (0p)\(B)
% Gp (B[Wileisz) (X2)V(det W)
— xerm—fp[m/2]
« Z Z Xford(det B)
B'€Hery, (0p)/ GLy (Op) W EGLy, (Op)\Q(B’,B)

~ Gp(Bl’pme2)(X2)u(dct W)
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:Xepm—fp[m/Q] Z X_Ord(detB/)#(GLm(OP)\ﬁ(BI,B))
B’'€Her, (Op)/ GLip (Op)

~ Gp(Bl7p7mX2)Xord(det B)—ord(det B") )

Thus the assertion follows from Lemma 4.1.3(b). O
Let

Fnpldo) = | J Hery ('doNi, q, (05). Oy
=0

and let

Fm,p(do) = Finp(do) N Herpy 1 (Op).
First suppose that K, is unramified over Q, or K, =Q, © Q,. Let H,, be
a function on Her,,(0,)* satisfying the following condition: H,,(1,,—,LpB) =
H,(pB) for any B € Her,(O)).
Let do € Z;,. Then we put

Hy(Lin—r LpB
Q(do, H,7,t) = > %tordmet(w»
1 E ap(lym—rLpB)
Bep~1F, p(do)NHer,(Oy)

Next suppose that K, is ramified over Q,. Let H,, be a function on Her,,(O,)*
satisfying the following condition:

Hm(@m,riwiPB) = Hr(wiPB) for any B € Her, .(O,) if m —r is even.

Let dy € Zy,, and let m —r be even. Then we put

H (@ _ J_’]Ti”B) d i
d Hm = m m—r . o1 (det(w*P B))
Q( (3) )T ) o Z ap(@m_rJ_ﬂ'ZPB)
Ben =P Fr p(do)NHerr . (Op)

Then by Lemma 4.2.1 we easily obtain the following.

PROPOSITION 4.2.4

(a) Suppose that K, is unramified over Q, or K, =Q, ®Q,. Then for any
do € Z;, and a nonnegative integer v we have that

Q(dOaHT7Ta t)
d Hma V) = 07« 1\
Qdo, Hory ) Gm—r(&pp1)

(b) Suppose that K, is ramified over Q. Then for any dy € Z,, and a non-
negative integer r such that m —r is even, we have that
Q(dOa H?"7 T, t)

d Hm7 yU) = .
Qldo. rt) Pm—r)/2(P72)

4.3. Explicit formulas of formal power series of Koecher-Maass type
In this section we give an explicit formula for Py, (dg, X, t).
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THEOREM 4.3.1
Let m be even, and let dy € Z,,.

(a) Suppose that K, is unramified over Q,. Then

1
G (—p D)L (L= t(=p) " X) (L +t(—p) X 1)
(b) Suppose that K, = Qp, & Q. Then

P, (do, X, t) =

1
) KR (T (T el

(c) Suppose that K, is ramified over Q,. Then

tmip/Q

1
Pm(d(), X, t) = { : .
2¢m/2(p_2) H;V;/IQ(I . tp72z+1X71)(1 _ tpme)
+ i, (1)™2dy) J
H;i/f(l —tp=2 X 1) (1 — tp—2i+1X) )
THEOREM 4.3.2

Let m be odd, and let dy € Z,,.

(a) Suppose that K, is unramified over Q. Then

1
Gm(=p DL (L +t(=p) " X) (L +t(—p) X 1)
(b) Suppose that K, =Q, ® Q. Then

P, (do, X, t) =

1
Pm(dO’X7 t) - d)?n(p_l) H:il(l - tp_ZX)(l - tp_iX_l) .

(c) Suppose that K, is ramified over Q,. Then

t(m+1)ip/2+52p

20(m—1y/2(p~2) [I7F2 (1 — tp=241X) (1 — tp=2i+1 X 1)

i=1

P, (do, X, t) =

To prove Theorems 4.3.1 and 4.3.2, put

G,(B',p~mX? Clor ,
K (do, X, t) = E %(ﬂf Lyo d(det B')
= P
B'€Frp(do)

PROPOSITION 4.3.3
Let m and dy be as above. Then we have that
Po(do, X, t) = X" er =2 K (do, X )
[T, (1 — 2 X2p2—272m) =L f K,,/Q, is unramified,

x QITE, (1 —tXxp=tmm)=2 if Kp=Qp®Qy,
[T2, (1 —txp'=tmm)=t if Kp/Q,p is ramified.
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Proof
We note that B’ belongs to Her,, ,,(do) if B belongs to Her,,_; ,(do) and oy, (B,
B) # 0. Hence by the Corollary to Lemma 4.2.3 we have that

Pm(d07X7 t)

_ xmep—[m/2]f, Z 1 Z Gp(B/ypmeQ)Xford(det B/)O‘p(B/’ B)
BI
BEF.p(do) p(B) B’ ap(B’)

% Xord(det B)—ord(det B) tord(det B)

_ G,(B',p~™X?) ,
— X™mep [m/2]fp p ) tx 1! ord(det B")
Z ap(B’) ( )
B'€Fm,p(do)
ap(B', B) d(det B)—ord(det B')
X (tX)Or € or € .
Z ap(B)
BEFm,p(do)
Hence by using the same argument as in the proof of [BS, Theorem 5] and by
Lemma 4.1.3(a), we have that

Z aP(B/aB) (tX)ord(det B)—ord(det B)

B
BEFm,»(do) ap( )
_ Z (tprm)u(detW)
WeMn,(Op)* /) GLpy (Op)

[T, (1 —2X?p?—272m) =1 if K,,/Q, is unramified,

= H:;1(17tXpiilim)72 if Kp:Qp@Qpa
[, —txpi-t-m)-t if K,,/Q, is ramified.
Thus the assertion holds. O

In order to prove Theorems 4.3.1 and 4.3.2, we introduce some notation. For a
positive integer 7 and dp € Z)’ let

1
(do, ) = E tord(dctT).
om0, ) op(T)
TEFm,p,«(do)

We make the convention that (o(do,t) =1 or 0 according to whether dy € Zj
or not. To obtain an explicit formula of (,,(do,t) let Z,,(u,d) be the integral
defined as

Zm’*(u,d):/ |det |*~ " |dx|,
Fm,p,«(do)

where u =p~® and |dz| is the measure on Her,,(K,) so that the volume of

Her,,(Op) is 1. Then by [S, Theorem 4.2] we obtain the following result.
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PROPOSITION 4.3.4
Let dy € Zs,.

(a) Suppose that K, is unramified over Q,. Then

P50 ) (ms1)/2) (—p__z?p_Q)[m/z] .
[ (1= (=)m+ip=tu)
uppose that = &) . en

(b) § hat Ky = Qp © Qp- Th

Pm(p!)
[, (1 =p~tu)
c) Suppose that s ramified over .

S hat K, fied Q,

(1) Let p#£2. Then

Zm,*(ua dO)

Zm,*(u7 do) =

Zm,*(u7 dO) =

=07 P ) (mr1)/2)

if m is odd,

1
L2 (—pi-2u)

X Xagy (D)™ 2do)p~ ™2

1 . .
(H;n:/f(l—:”%_lu) [I/2(1—p2i—2u) if m is even.
(2) Let p=2, and let fo =2. Then
va*(ua dO)
1,4
=507 i)
Sy if m is odd,

Hggfrl)ﬂ(l,pzifzu)

m/2,—m/2 1
RIS Ty

(3) Let p=2, and let fo =3. Then

XKP((_I)m/de)pﬂn/z

- if m is even.
H£/12(1—p2’_2u) f

1, 4, _
Zm,*(U,do)=§(p L0 (mr1) /2]
x H§7=nl+l)/2(ul—p2i—2u) (“n oy : p me is Odd;
m (=)™ —m . .
p (H”;/f(lip%flu) + XKHZ/f(kpz?*ZU) ) if m is even.

Proof

First suppose that K, is unramified over Q,, K, = Q, ® Q,, or K, is rami-
fied over Q,, and p # 2. Then Z,, .(u,dp) coincides with Z,,(u,dp) in [S, Theo-
rem 4.2]. Hence the assertion follows from (1) and (2) and the former half of [S,
Theorem 4.2(3)]. Next suppose that p=2 and f» =2. Then Z,, .(u,dp) is not
treated in [S, Theorem 4.2], but we can prove the assertion (c.2) using the same
argument as in the proof of the latter half of [S, Theorem 4.2(3)]. Similarly we
can prove (c.3) by using the same argument as in the proof of the former half of
[S, Theorem 4.2(3)]. O
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COROLLARY
Let dy € Z,.
(a) Suppose that K, is unramified over Q,. Then
1 1
Gm(—p~ 1) T2, (1 + (—1)'p~it)|
(b) Suppose that K, = Qp, ® Q. Then
R 1
Gm(p~ ) ILL,(1—p~it)
(c) Suppose that K, is ramified over Q,.
(1) Let m be even. Then

pm(m-l-l)fp/Q—mzég,p Hp(t)

gm(dOa t) =

Cm (d07 t)

om0, £) = 20m/2(p~2)
< ! g (" 2o
[P —p2tty TP —p2i)
where i, =0 or 1 according to whether p=2 and f, =2, or not, and
1 ifp#2,
Kip(t) = ¢ t™/2p=m(m+D)/2 0 Gif =9 and fo =2,
p~m if p=2 and fa =3.

(2) Let m be odd. Then

pm(m+1)fp/2—m262,pl€p<t) 1
G (do- 1) =55 = (m+D/2( _ 21
(m—1)/2(P™%) [LE77(1 —p=2itiy)
where
1 ifp#2,
Iﬁ:p(t) — t(m+1)/2p—m(m+1)/2 ifp=2 and fo =2,
tp~™ ifp=2 and fo=3.
Proof

First suppose that K, is unramified over Q,. Then by a simple computation we
have
Zm,«(p~™t,do)
Sm(p~2)
Next suppose that K, = Q, ® Qp. Then similarly to above
Zm,«(p~"t,do)
dm(p~1)?
Finally suppose that K, is ramified over Q,. Then by a simple computation and
Lemma 3.1

Cm (d07 t) =

Cm(d07t) =
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pm(m+1)fp/27m252,p Zm *(pimta dO)

Cm d 1) =
(do, t) o D)
Thus the assertions follow from Proposition 4.3.4. O
PROPOSITION 4.3.5
Let dy € Z,.
(a) Suppose that K, is unramified over Q. Then
K, (do, X, 1)
mo 2 —I\r 771 m i Y2
pT (XL (1= (=)™ (—p)'X _
~ m—r (=P
(b) Suppose that K, = Q, ® Q. Then
K (do, X, t)
m 2 _ r—1 i
T (tX 1\r " 1— 1X2
:Zp ( ) Hz:_Ol( p )gr(do,tXil).
= Gm—r(p™1)
(c) Suppose that K, is ramified over Q,. Then

Km(dOath)

<2r ((_1)m/2—7-do7 tX_l)

- ”f p e (1 X 1) (/2400 [T 21 (1 — pi X 2)
=~ Bim—2r)/2(P72)

if m s even, and
Km(dOaXv t)

(m—1)/2 p—(2r+1)2ip (tXfl)((mﬁLl)/QJrr)ip H;“;é(l — p?itlX?)

= Bim—2r—1y/2(p72)

X Corp1 (1) 72702y, X T)

if m is odd.

Proof

The assertions can be proved by using the Corollary to Lemma 4.2.2 and Propo-
sition 4.2.4 (see [IK2, Proposition 3.1]). O

It is well known that #(Z5/Nk, /q,(0;)) = 2 if K},/Q,, is ramified. Hence we can
take a complete set AV, of representatives of Z /N, ,q,(O;) so that N}, = {1,&}

with X, (§o) = —1.

Proof of Theorem 4.5.1
(a) By the Corollary to Proposition 4.3.4 and Proposition 4.3.5, we have that
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1 Ly (do, X, t)
Gm(—p~ ) [Ti2, 1+ (=1)'p~ X —1t)
where L,,(dp, X,t) is a polynomial in ¢ of degree m. Hence
1 L, (do, X, t)
Gm(—p™ ) [T L+ (1) 'p~ X 1) 2, (1 — p=2X212)

K, (do, X, t) =

P (do, X, t) =

We have that
F(B,—X ') =F(B,X)
for any B € EEO)(B,X). Hence we have that
Pp(do,—X " t) = Py (do, X, 1),

and therefore the denominator of the rational function P, (do,X,t) in ¢ is at
most

ﬁ(1+( pTr X ﬁ —-1)'p7iXt).
=1 =1
Thus

P(do, X, t) = .

Gm (—p )L (L4 (1) p " X1 [[Z, (1= (=1)°p~* Xt)

with some constant a. It is easily seen that we have a = 1. This proves the

assertion.
(b) The assertion can be proved by using the same argument as above.
(c) By the Corollary to Proposition 4.3.4 and Proposition 4.3.5, we have that

K,,(d, X,t)
SR W e ) N () 0 Aalc. )
2 H:n/f( — p2itl X 1) H:ﬂ/f( —p2X-1Y)

with some polynomials L(® (X, t) and LV (X,t) in ¢ of degree at most m. Thus
we have

P,.(d, X, t)
1 { LO(X, 1)
21— p 2 X ) [T, (1 — pi XY)
n Xk, ((—=1)™/2dg) LV (X, t) }
[P0 = p=2 X 1) [T, (1 pi XE)

For [ =0,1 put
Z xx, (=1)™2d)' P,,(d, X, ).
deN

Then

LO(X,1) 1

PY(X,1) = ’
20m2(p™2) [T (1= p=2 1 X [T, (1 — piX1)
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and
LW(X) 1
20m/2(p™2) T2 (1 - p=2 X 1) [T, (1 — piXt)

i=1

Then by the functional equation of Siegel series we have that
Po(d, X71t) = xx, ((=1)"/2d) P (d, X, t)
for any d € N,,. Hence we have that
PO(x~1 1) =PW1 (X, ¢).

Hence the reduced denominator of the rational function P )(X ,t) in ¢ is at most

m/2 m/2
H (1 o p72z+1X71t) H (1 7p72th)’
=1 1=1

and similarly to (a) we have that

1
PO(X 1) = '
: 260 2(p2) TIE (1 — p 21X 1) [/ (1 — p-2iX1)
Similarly

1
22 (p2) [I/2 (1 — p2 X 1) [[T/2 (1 — p=2+1X1)

PY(X,t) =

We have
Py (do, X, t) = P (X, 1) + X, ((=1)™/2do) P (X, ).
This proves the assertion. O

Proof of Theorem 4.5.2
The assertion can also be proved by using the same argument as above. |

THEOREM 4.3.6
Let dy € Z2.
(a) Suppose that K, is unramified over Q,, or that K, = Q, ® Q,. Then

Pm(d(%th) :P’m(dOvXat)

for any m > 0.
(b) Suppose that K, is ramified over Q,. Then

P2n+1(d07Xa t) = P2n+1(dOaXa t)

and
R 1 tnip
Ponld X.0) = 35 o [P = X 1= )
N xx, ((=1)"do)(txx, (p))""» }
[T (1= tp~=2ixk, (p) X —1) (1 — tp= 2+ x g, (p) X) ]
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Proof

The assertion (a) is clear from the definition. We note that P, (do, X,t) does not
depend on the choice of w. Suppose that K, is ramified over Q,. If m =2n+1,
then it follows from Theorem 4.3.2(c) that

Ap(m'd, X) = A7, (7", X)
for any d € Z; and, in particular, we have that
/\:”L,p(pidm X) = )‘:mp(ﬂ-ia X)
This proves the assertion. Suppose that m = 2n. Write Pzn(d(),X ,t) as
p2n(d07Xa t) = P2n(d07Xa t)even + PQn(dea t)Oddv

where

Py (do, X, ) even = %{Pgn(do, X,t) + Pay(do, X, —t)}
and

Pon(do, X, t)oqd = %{PQn(dO,X, t) — Pon(do, X, —1)}.
We have

(oo} (oo}
Po(do, X, teven = O b (%o, X, Y )12 = 3" A3,, (%o, X, V)t
=0 =0

and

e oo
Pl Xt = 5 N ¥ 01 = 305 (¥ i )
=0 =0

Hence we have
Pan(do, X, t)even = 5 { Pan(do, X,) + Praldo, X, ~1)},
and
Py (do, X, Y, t)oda = %{P%(doﬂp*l,xv t) = Pay(domp™ ', X, —t) },
and hence we have

. 1
Poy(do, X, t) = P52 (do, X, ) + 5(1 +xx, (mp™ 1)) Xk, ((—1)ndo)P2(71L) (do, X, t)

+ %(1 = xx, (7P )X, ((—1)"do) Py, (do, X, ).
Assume that x g, (mp~) =1. Then x(domp~') = x(do), and we have that
Py (do, X,t) = Pan(do, X, 1).
Suppose that xx, (mp~') = —1. Then x(domp~') = —x(do), and we have that
Pau(do, X,8) = P3,) (do, X.1) + xxc, ((=1)"do) P4, (do. X, ~).

Since 7 € Nk, q,(K)), we have that xx,(mp~') = xk,(p). This proves the
assertion. O
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COROLLARY
Let m =2n be even. Suppose that K, is ramified over Q,. For [=0,1 put

1!32(111 X, 1) = Z xr, ((—=1)"d) Pgn(d X, t).
de/\/

Then we have that
A 1
Pon(d, X 8) = 5 (Py) (X.1) + xx, ((=1)"d) 3, (X.1)),

PO (x,t) =P (X,1),
and

5(1 1
Py (X, 1) = Py (X, xx, (0)t).
The following result will be used to prove Theorems 2.3 and 2.4.

PROPOSITION 4.3.7
Let d € Z;. Then we have that

Ap(d, X)) = uph p(d, X).

Proof
Let I be the left-hand side of the above equation. Let

GL,,,(Op)1 = {U € GL,,(0,) ‘ detUdetU = 1}.
Then we note that there exists a bijection from ﬁe/rm(d, 0p)/ GL,(0p)1 to
Hery,(dNk,/q,(0}); Op)/ GLm(O,). Hence

3 FY(AX)

= ap(A)

AeHer,, (d,0p)/ GLm (Op)1

Now for T € ﬁ&m(d, O,), let | be the number of SL,, (O,)-equivalence classes in
Her,,(d,0,) which are GL,,(O,)-equivalent to T Then it can easily be shown
that [ =1, 7. Hence the assertion holds. g

5. Proof of the main theorem
Proof of Theorem 2.3

For a while put A*(d) = A}, (d, ). Then by Theorem 3.4 and Proposition 4.3.7,
we have that

L(& IQn(f)) = [b2n,k,D Z H(u;lz\;(d))d—”k“".
d p

Then by Theorems 4.3.1(a), 4.3.1(b), and 4.3.6(a), A;(d) depends only on pordp(d)
if pt D. Hence we write A;(d) as Xp(pordp(d)). On the other hand, if p | D, then
by Theorems 4.3.1(c) and 4.3.6(b), A;(d) can be expressed as
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Ap(d) = A0(d) + xx, (1) dp~ " @) A (d),

where /\g)(d) is a rational number depending only on p°™dr(49) for | =0,1. Hence
we write AV (d) as A (p°rd»(@). Then we have that

Z H ( 1)\ ord(d)HX ord(d))

QCQppld,ptD qeqQ

% H (U;IX;O)(pordp(d)) H XK, (pordp(d)))
pld,p| D,p¢Q e

% H ( —1)\ D) (pords H YK ord,,(d))) H xx, (=
p|d,peQ q4€Q,q#p q€Q

for a positive integer d. We note that for a subset @ of @p we have that
=[] xx,(m)
q€Q
for an integer m coprime to any ¢ € @), and

Xo®) =xx,0) [] xx.®

q€Q,q#p

for any p € ). Hence, by Theorems 4.3.1 and 4.3.6 and the Corollary to Theo-
rem 4.3.6, we have that

L(Syfzn(f)) = HK2n,k,D Z H Zu;lxp(pi)XQ(pi)p(*s+k+2n)i

QCQp ptD i=0

x H Zu 1)\(0 ( z) (— S+k+2n)ZXQ((71)n)

p|D,p¢Q i=0

X qu—l)\(l) ( H XK, ( ) (—s+k+2n)i
PEQ i=0 q€Q,q#p

= [2n,k,D Z XQ((*].)”) H(uglpznvp(]_va;l’xQ(p)pferkJrQn))
QCQD p»fD

< JT (P (0r " xap)p==++2m))
p|D,p¢Q

< T (up PL)y (o X o) +42m)).
PEQ

Now for [ =0,1 write P2(n)p(X,t) as
Py (X, ) =t P (X, 1),

where i, =0 or 1 according to whether 4| D and p =2, or not. Notice that
up=(1—x(p)p~!)~ ' if pt D and u, =271 if p| D. Hence we have that
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L(s,I20(f)) = p2nk.p Z xe((=D™)

QCQp

X H p(*s+k+2n)n( H Xo (p) H X/Q (p))
PEQ) PEQD,pEQ PEQ

X H ((1 - X(p)pil)PQn,p(l,agl,XQ (p)p*8+k+2n))
ptD

< I PR, (03 X))
p|D.pgQ

X H (2?2(7131)(0[;1,X/Q<p)p—s+k+2n))7
PEQ

where Q) = Qp\{2} or Qp according to whether 4 | D or not. Note that

220Dn(75+k+2n) H p(fs+k+2n)n :D(fs+k+2n)n

PEQD
and
I xew) J[ xo@ =1
PEQD . PEQ PEQ
Thus the assertion follows from Theorem 4.3.1. O
Proof of Theorem 2./
The assertion follows directly from Theorems 3.4 and 4.3.2. |
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