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Abstract Studied are the composition series of the standard Whittaker (g,K)-mod-

ules. For a generic infinitesimal character, the structures of thesemodules are completely

understood, but if the infinitesimal character is integral, then there are not somany cases

in which the structures of them are known. In this paper, as an example of the integral

case, we determine the socle filtrations of the standardWhittaker (g,K)-modules when

G is the group Spin(r,1) and the infinitesimal character is regular integral.

1. Introduction

This paper is a continuation of the paper [6] in which the author defined and

examined the standard Whittaker (g,K)-modules for real reductive linear Lie

groups.

Let us review the definition of these modules. Let G be a real reductive linear

Lie group in the sense of [7], and let G =KAN be an Iwasawa decomposition

of it. Let η :N −→ C
× be a unitary character of N , and denote the differential

representation n0 →
√
−1R of it by the same letter η. We assume that η is

nondegenerate, that is, it is nontrivial on every root space corresponding to a

simple root of Δ+(g0,a0). Define

(1.1) C∞(G/N ;η) :=
{
f :G

C∞
−→C

∣∣ f(gn) = η(n)−1f(g), g ∈G,n ∈N
}
,

and call it the space of Whittaker functions on G. This is a representation space

of G by the left translation, which is denoted by L. Let C∞(G/N ;η)K be the

subspace of C∞(G/N ;η) consisting of K-finite vectors. Let, as usual, M be the

centralizer of A in K, and let Mη be the stabilizer of η in M . This subgroup

acts naturally on C∞(G/N ;η)K by the right translation. Consider the subspace

of C∞(G/N ;η)K consisting of those functions f which satisfy the following con-

ditions:

(1) f is a joint eigenfunction of Z(g) (the center of the universal enveloping

algebra U(g)) with eigenvalue χΛ: L(z)f = χΛ(z)f , z ∈ Z(g);

(2) for an irreducible representation (σ,V Mη

σ ) of Mη , f is in the σ∗-isotypic

subspace (σ∗ is the dual of σ) with respect to the right action of Mη ;
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(3) f grows moderately at infinity (see [8]).

The space of functions which satisfy the above conditions (1)–(3) is isomorphic

to

Iη,Λ,σ :=
{
f :G

C∞
−→ V Mη

σ

∣∣ f(gmn) = η(n)−1σ(m)−1f(g), g ∈G,m ∈Mη, n ∈N ;

L(z)f = χΛ(z)f, z ∈ Z(g); left K-finite;

f grows moderately at infinity
}
.

We call this space the standard Whittaker (g,K)-module.

For generic infinitesimal character Λ, the structure of Iη,Λ,σ is completely

determined in [6]. On the other hand, if the infinitesimal character Λ is integral,

its structure is not known except for the case G= SL(2,R) or U(n,1), n≥ 2. In

this paper, we examine the case G = Spin(r,1), r ≥ 3, so that it will become a

good example for the study of the case of other general groups.

The main results of this paper are as follows. For the notation of irreducible

modules and the diagrammatic expression of the composition series, see Sec-

tion 2.2.

THEOREM 1.1

Suppose thatG = Spin(2n,1) and that the infinitesimal character Λ = (Λ1, . . . ,Λn)

(Λ1 >Λ2 > · · ·> Λn > 0) is regular integral. Let σ be an irreducible representation

of Mη � Spin(2n− 2).

(1) Iη,Λ,σ is not zero if and only if the highest weight γ = (γ1, . . . , γn−1) of

σ satisfies one of the following conditions:

Λp − n+ p+ 1/2≥ γp ≥Λp+1 − n+ p+ 3/2, p= 1, . . . , n− 1,(1.2) {
Λp − n+ p+ 1/2≥ γp ≥ Λp+1 − n+ p+ 3/2, p= 1, . . . , n− 2,

−Λn − 1/2≥ γn−1 ≥−Λn−1 + 1/2,
(1.3)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i ∈ {2, . . . , n},
Λp − n+ p+ 1/2≥ γp ≥ Λp+1 − n+ p+ 3/2, p= 1, . . . , i− 2,

Λp+1 − n+ p+ 1/2≥ γp ≥ Λp+2 − n+ p+ 3/2, p= i− 1, . . . , n− 2,

Λn − 1/2≥ |γn−1|.

(1.4)

(2) If (1.2) (resp., (1.3)) is satisfied, then Iη,Λ,σ �
π1

π0,n

π0

(resp.,

π0

π0,n

π1

).

(3) If i ∈ {2, . . . , n− 1} and (1.4) is satisfied, then Iη,Λ,σ �
π0,i−1 π0,i+1

π0,i

.

(4) If i= n and (1.4) is satisfied, then Iη,Λ,σ �
π0 π0,n−1 π1

π0,n

.
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THEOREM 1.2

Suppose that G= Spin(2n+1,1) and that the infinitesimal character Λ= (Λ1, . . . ,

Λn+1) (Λ1 > Λ2 > · · ·> Λn > |Λn+1|) is regular integral. Let σ be an irreducible

representation of Mη � Spin(2n− 1).

(1) Iη,Λ,σ is not zero if and only if the highest weight γ = (γ1, . . . , γn−1) of

σ satisfies

(1.5)

⎧⎪⎪⎨⎪⎪⎩
Λp − n+ p≥ γp ≥ Λp+1 − n+ p+ 1, p= 1, . . . , i− 2,

Λp+1 − n+ p≥ γp ≥ Λp+2 − n+ p+ 1, p= i− 1, . . . , n− 2,

Λn − 1≥ γn−1 ≥ |Λn+1| (if i≤ n)

for some i ∈ {2, . . . , n+ 1}.

(2) If i ∈ {2, . . . , n} and (1.5) is satisfied, then Iη,Λ,σ �
π0,i−1 π0,i+1

π0,i

.

(3) If i= n+ 1 and (1.5) is satisfied, then Iη,Λ,σ �
π0,n

π0,n+1

.

This paper is organized as follows. In Section 2, we recall the structure of

Spin(r,1) and the classification of irreducible Harish-Chandra modules of it. In

Section 3, we first show that Iη,Λ,σ has a unique irreducible submodule if it is

nonzero. Also determined are the possible irreducible factors appearing in the

composition series of it. In order to determine the socle filtration of Iη,Λ,σ , we

need to use the explicit formulas of K-type shift operators. Such operators are

obtained in Section 4. In Section 5, the socle filtration of Iη,Λ,σ is completely

determined. The key tools for our calculation are Lemmas 4.9 and 5.1 and The-

orem 5.2.

Before going ahead, we introduce notation used in this paper. For a real

Lie group L, the Lie algebra of it is denoted by l0 and its complexification by

l = l0 ⊗R C. This notation will be applied to any Lie groups. For a compact

Lie group L, the set of equivalence classes of irreducible representations of L

is denoted by L̂. The representation space of π ∈ L̂ is denoted by V L
π . If L is

connected and π is the irreducible representation whose highest weight is λ, we

also denote it by V L
λ . For π ∈ L̂, the contragredient representation is denoted by

π∗, and if λ is the highest weight of π, then the highest weight of π∗ is denoted

by λ∗.

Suppose that K is a maximal compact subgroup of a real reductive group G.

For a (g,K)-module π, the K-spectrum {τ ∈ K̂ | τ ⊂ π|K} is denoted by K̂(π).

2. The group Spin(r,1) and its irreducible Harish-Chandra modules

In the remainder of this paper, we put G= Spin(r,1), r ≥ 3, and the infinitesimal

character Λ is assumed to be regular integral.
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2.1. Structure of Spin(r,1)
Denote by Eij the standard generators of glr+1(C), and define Aij =Eij −Eji.

The group Spin(r,1) is the connected two-fold linear cover of SO0(r,1). A maxi-

mal compact subgroup K of G is isomorphic to Spin(r). Set

k0 :=

{(
X 0
t0 0

) ∣∣∣∣X ∈ so(r)

}
, s0 :=

{(
O

√
−1v

−
√
−1tv 0

) ∣∣∣∣ v ∈R
r

}
.

Then g0 = k0+s0 realizes the Lie algebra of G, and this is a Cartan decomposition

of g0. Let

h :=
√
−1Ar+1,r, a0 :=Rh,

and define f ∈ a∗0 by f(h) = 1. Then a0 is a maximal abelian subspace of s0. The

restricted root system Δ(g0,a0) is {±f}. Choose a positive system Δ+(g0,a0) =

{f}, and denote the corresponding nilpotent subalgebra (g0)f by n0. One obtains

an Iwasawa decomposition

g0 = k0 + a0 + n0, G=KAN,

where A= expa0 and N = expn0. Let

(2.1) Xi :=Ar,i +
√
−1Ar+1,i (1≤ i≤ r− 1).

Then {Xi | 1≤ i≤ r− 1} is a basis of n0.

In our Spin(r,1)-case, M is isomorphic to Spin(r − 1). It acts on the space

of nondegenerate unitary characters of N by η 
→ ηm(n) := η(m−1nm), m ∈M .

Therefore, we may choose a manageable unitary character when we calculate

Whittaker modules. We use the nondegenerate character η defined by

η(Xi) = 0, i= 1, . . . , r− 2, η(Xr−1) =
√
−1ξ, ξ > 0.(2.2)

It is easy to see that Mη is isomorphic to Spin(r− 2).

2.2. Classification of irreducible Harish-Chandra modules
We review the classification of irreducible Harish-Chandra modules of G =

Spin(r,1) with regular integral infinitesimal character (for details, see, e.g., [1]).

We use the notation π0,i, π0,i, and so forth, in [1].

For an irreducible representation δ of M and an element ν ∈ a∗, let XP (δ, ν)

be the Harish-Chandra module of the principal series representation IndGP (δ ⊗
eν+ρA). Here, P = MAN is a minimal parabolic subgroup of G and ρA :=
1
2 tr(ada|n) ∈ a∗.

Firstly, consider the case r = 2n, n≥ 2. There are two conjugacy classes of

Cartan subgroups in G. One is compact and the other is maximally split. Let hc
be the complexified Cartan subalgebra spanned by

√
−1A2i,2i−1, i= 1, . . . , n, and

let Hc be the corresponding compact Cartan subgroup. Define a basis {εi | i =
1, . . . , n} of h∗c by εi(

√
−1A2j,2j−1) = δij (Kronecker’s delta). Choose a maximally

split Cartan subgroup Hs := (Hc ∩M)A. The complexified Lie algebra hs of it

is the linear span of
√
−1A2i,2i−1 (i= 1, . . . , n− 1) and h=

√
−1A2n+1,2n, so εi,

i= 1, . . . , n− 1 and f form a basis of h∗s .
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Consider the irreducible Harish-Chandra modules with the regular integral

infinitesimal character Λ, which is conjugate to

n∑
p=1

Λpεp ∈ h∗c , Λp ∈
1

2
Z,

(2.3)
Λp −Λp+1 ∈ Z>0 for p= 1, . . . , n− 1, and Λn > 0.

There are two inequivalent discrete series representations πi, i = 0,1, whose

Harish-Chandra parameters are

n∑
p=1

Λpεp,
n−1∑
p=1

Λpεp −Λnεn,

respectively.

Since Wg � Sn �Z
n
2 and W (G,Hs)� Sn−1 �Z

n
2 , and since Hs is connected,

there are n equivalence classes of nontempered irreducible representations of

Spin(2n,1). For i= 1, . . . , n, define μ0,i ∈ (hs ∩m)∗ and ν0,i ∈ a∗ by

μ0,i :=

i−1∑
p=1

Λpεp +

n−1∑
p=i

Λp+1εp − ρm, ν0,i := Λif,(2.4)

where ρm := 1
2

∑n−1
p=1 (2n− 1− 2p)εp. Let δ0,i be the irreducible representation of

M with the highest weight μ0,i, and let π0,i :=XP (δ0,i, ν0,i). Then π0,i has the

unique irreducible quotient, which we denote by π0,i.

Vogan classified irreducible (g,K)-modules in terms of regular characters.

For a regular character γ, he defined the (integral) length �(γ) of it (see [7,

Definition 8.1.4]). In this paper, for an irreducible module π which corresponds

to a regular character γ, we write �(π) = �(γ) and call it the length of π.

The classification of irreducible (g,K)-modules of Spin(2n,1) is as follows

(see [1], for example).

THEOREM 2.1

The irreducible Harish-Chandra modules of Spin(2n,1) with the regular integral

infinitesimal character Λ are parameterized by the set

{π0, π1} ∪ {π0,i | i= 1, . . . , n}.

The lengths of π0, π1, and π0,i, i= 1, . . . , n, are 0, 0, and n− i+1, respectively.

In order to state the composition series, we use diagrammatic expression.

DEFINITION 2.2

Suppose A1,A2 are distinct composition factors of a (g,K)-module V . If there

exist elements {vi} ⊂ A1 and {Xi} ⊂ g such that
∑

iXivi is nonzero and con-

tained in A2, then we connect A1 and A2 by an arrow A1 →A2.
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THEOREM 2.3 ([1])

The socle filtrations of π0,i are

π0,i �
π0,i

π0,i+1

if i= 1, . . . , n− 1, and π0,n �
π0,n

π0 π1

.

The Blattner formula gives the K-spectra of the discrete series representations

π0, π1. Starting from the discrete series, we obtain the K-spectrum of π0,i induc-

tively, by using Theorem 2.3. To state the theorem, let Λ0 :=∞.

THEOREM 2.4

(1) The K-spectra of π0 and π1 are

K̂(π0) =
{
(τλ, V

K
λ )

∣∣∣ Λp−1 − n+ p− 1

2
≥ λp ≥ Λp − n+ p+

1

2
(2.5)

(1≤ p≤ n)
}
,

K̂(π1) =
{
(τλ, V

K
λ )

∣∣∣ Λp−1 − n+ p− 1

2
≥ λp ≥ Λp − n+ p+

1

2

(1≤ p≤ n− 1);(2.6)

−Λn − 1

2
≥ λn ≥−Λn−1 +

1

2

}
.

(2) For i= 1, . . . , n, the K-spectrum of π0,i is

K̂(π0,i) =
{
(τλ, V

K
λ )

∣∣∣Λp−1 − n+ p− 1

2
≥ λp ≥Λp − n+ p+

1

2
(1≤ p≤ i− 1);

Λp − n+ p− 1

2
≥ λp ≥ Λp+1 − n+ p+

1

2
(i≤ p≤ n− 1);(2.7)

Λn − 1

2
≥ |λn|

}
.

In each case, every K-type occurs in π0,i with multiplicity one.

Secondly, consider the case r = 2n+ 1, n≥ 1. There is only one conjugacy class

of Cartan subgroups in G. Let hs be the complexified Cartan subalgebra spanned

by
√
−1A2i,2i−1, i= 1, . . . , n and h=

√
−1A2n+2,2n+1, and let Hs be the corre-

sponding Cartan subgroup. Define {εi | i= 1, . . . , n} as in the r = 2n case.

Consider the irreducible Harish-Chandra modules with the regular integral

infinitesimal character Λ, which is conjugate to

n∑
p=1

Λpεp +Λn+1f ∈ h∗s, Λp ∈
1

2
Z,

(2.8)
with Λp −Λp+1 ∈ Z>0 for p= 1, . . . , n, and Λn +Λn+1 ∈ Z>0.

Since Wg � Sn+1�Z
n
2 and W (G,Hs)� Sn�Z

n
2 , and since Hs is connected, there

are (n+ 1) equivalence classes of irreducible representations of Spin(2n+ 1,1).
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For i= 1, . . . , n+ 1, define μ0,i ∈ (hs ∩m)∗ and ν0,i ∈ a∗ by

μ0,i :=
i−1∑
p=1

Λpεp +
n∑

p=i

Λp+1εp − ρm, ν0,i := Λif,(2.9)

where ρm :=
∑n−1

p=1 (n− p)εp. Let δ0,i be the irreducible representation of M with

the highest weight μ0,i, and let π0,i :=XP (δ0,i, ν0,i). Then π0,i has the unique

irreducible quotient, which we denote by π0,i.

THEOREM 2.5

The irreducible Harish-Chandra modules of Spin(2n+1,1) with the regular inte-

gral infinitesimal character Λ are parameterized by the set

{π0,i | i= 1, . . . , n+ 1}.

The lengths of π0,i, i= 1,2, . . . , n+ 1, are n− i+ 1, respectively.

The socle filtrations of π0,i are

π0,i �
π0,i

π0,i+1

if i= 1, . . . , n and π0,n+1 = π0,n+1 is irreducible.

Starting from π0,n+1 = π0,n+1, we obtain the K-spectrum of π0,i inductively, by

using Theorem 2.5. As before, let Λ0 :=∞.

THEOREM 2.6

For i= 1, . . . , n+ 1, the K-spectrum of π0,i is

K̂(π0,i) =
{
(τλ, V

K
λ )

∣∣ Λp−1 − n+ p− 1≥ λp ≥ Λp − n+ p (1≤ p≤ i− 1);

Λp − n+ p− 1≥ λp ≥Λp+1 − n+ p (i≤ p≤ n− 1);(2.10)

Λn − 1≥ λn ≥ |Λn+1| (if i < n+ 1)
}
.

In each case, every K-type occurs in π0,i with multiplicity one.

3. Composition factors of Iη,Λ,σ

In this section we first determine the submodules of Iη,Λ,σ . It is known by [3]

that a (g,K)-module V can be a submodule of C∞(G/N ;η)K if and only if the

Gelfand–Kirillov dimension DimV of it is equal to dimN . For G = Spin(r,1),

Dimπ0,1 = 0, and the Gelfand–Kirillov dimensions of other irreducible modules

are all dimN (see, e.g., [1]). Therefore, an irreducible submodule of Iη,Λ,σ is

isomorphic to one of π0, π1, or π0,i, i= 2, . . . , n+ 1.

3.1. Unique simple submodule
By the discussion in [6, Section 4.2], the following lemma holds.

LEMMA 3.1

Let (π,V ) be an irreducible Harish-Chandra module with DimV = dimN . Let
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{XP (δp, νp) | p = 1, . . . , k} be the set of principal series representations which

contain (π,V ) as a subquotient. If (π,V ) is a submodule of Iη,Λ,σ, then σ is a

submodule of δp|Mη for every p= 1, . . . , k.

Conversely, for σ ∈ M̂η, suppose that there exists a principal series XP (δ, ν)

with infinitesimal character Λ which satisfies σ ⊂ δ|Mη . Then, Iη,Λ,σ is nonzero.

By this lemma, we can determine the nonzero standard Whittaker (g,K)-modules

and their subrepresentations.

PROPOSITION 3.2

Suppose that r = 2n and the infinitesimal character Λ is regular integral. Let

γ = (γ1, . . . , γn−1) be the highest weight of the irreducible representation σ of

Mη � Spin(2n− 2).

(1) The irreducible module π0 (resp., π1) is a submodule of Iη,Λ,σ if and only

if γ satisfies (1.2) (resp., (1.3)).

(2) The irreducible module π0,i, i= 2, . . . , n, is a submodule of Iη,Λ,σ if and

only if γ satisfies (1.4).

Especially, Iη,Λ,σ is nonzero if and only if the highest weight of σ satisfies one of

the conditions (1.2), (1.3), or (1.4) for some i= 2, . . . , n. In these cases, π0, π1,

or π0,i is the unique simple submodule of Iη,Λ,σ.

Proof

We first show (2). By Theorem 2.3, π0,i, i = 2, . . . , n, is a composition factor

of the principal series π0,k if and only if k = i or i − 1. Therefore, if π0,i is a

submodule of Iη,Λ,σ , then σ ⊂ δ0,i|Mη and σ ⊂ δ0,i−1|Mη . Conversely, if σ satisfies

this condition, then Iη,Λ,σ is nonzero, by Lemma 3.1.

Recall the branching rule for the restriction of an irreducible representation of

Spin(2n−1) to Spin(2n−2). For an irreducible representation δμ of Spin(2n−1)

with the highest weight μ= (μ1, . . . , μn−1), the restriction δμ|Spin(2n−2) is a direct

sum of σ′ ∈ Spin(2n− 2)̂ , whose highest weight γ = (γ1, . . . , γn−1) satisfies

μp ≥ γp ≥ μp+1, p= 1, . . . , n− 2, μn−1 ≥ |γn−1|, μp − γp ∈ Z.

It follows that the restriction of δ0,k ∈ M̂ to Mη is a direct sum of σ′ ∈ M̂η ,

whose highest weight γ = (γ1, . . . , γn−1) satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Λp − n+ p+ 1

2 ≥ γp ≥ Λp+1 − n+ p+ 3
2 , p= 1, . . . , k− 2,

Λk−1 − n+ k− 1
2 ≥ γk−1 ≥ Λk+1 − n+ k+ 1

2 ,

Λp+1 − n+ p+ 1
2 ≥ γp ≥Λp+2 − n+ p+ 3

2 , p= k, . . . , n− 2,

Λn − 1
2 ≥ |γn−1|.

(If k = n, then the second and the third lines are omitted.) Therefore, when

2≤ i≤ n, σ ∈ M̂η satisfies σ ⊂ δ0,i|Mη and σ ⊂ δ0,i−1|Mη if and only if the highest

weight γ of σ satisfies (1.4). This proves the only if part of the proposition.
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The proofs of the if part and the uniqueness of the socle of Iη,Λ,σ are the

same as those of [6, Proposition 4.2], so we omit them here.

The proof of (1) is almost the same as that of (2). We can show that π0 or π1

is a submodule of Iη,Λ,σ only if γ satisfies (1.2) or (1.3). But the method used here

does not tell us the signature condition for γn−1 in (1.2) and (1.3). To complete

the proof, we need to write explicitly the Whittaker functions characterizing the

submodule of Iη,Λ,σ . This will be done in Section 4 (see Lemma 4.8). �

Just in the same way, we can determine the submodules of Iη,Λ,σ in the case

r = 2n+ 1.

PROPOSITION 3.3

Suppose that r = 2n+1 and that the regular infinitesimal character Λ is integral.

Let γ = (γ1, . . . , γn−1) be the highest weight of the irreducible representation σ

of Mη � Spin(2n − 1). Then the irreducible module π0,i, i = 2, . . . , n + 1, is a

submodule of Iη,Λ,σ if and only if γ satisfies (1.5). Especially, Iη,Λ,σ is nonzero

if and only if the highest weight of σ satisfies the condition (1.5) for some i =

2, . . . , n+ 1. In these cases, π0,i is the unique simple submodule of Iη,Λ,σ.

3.2. Composition factors
Hereafter, we denote Iη,Λ,σ by Iη,Λ,γ if the highest weight of σ is γ. We also

denote by σγ the irreducible representation of Mη whose highest weight is γ. We

determine the irreducible representations appearing in the composition series of

Iη,Λ,γ .

PROPOSITION 3.4

(1) Suppose that r = 2n and that γ satisfies (1.2) or (1.3). Then, an irre-

ducible composition factor of Iη,Λ,γ is isomorphic to π0, π1, or π0,n.

(2) Suppose that r = 2n, i ∈ {2, . . . , n− 1} and that γ satisfies (1.4). Then,

an irreducible composition factor of Iη,Λ,γ is isomorphic to π0,i−1, π0,i, or π0,i+1.

(3) Suppose that r = 2n and that γ satisfies (1.4) for i= n. Then, an irre-

ducible composition factor of Iη,Λ,γ is isomorphic to π0,n−1, π0,n, π0, or π1.

(4) Suppose that r = 2n+1, i ∈ {2, . . . , n}, and that γ satisfies (1.5). Then,

an irreducible composition factor of Iη,Λ,γ is isomorphic to π0,i−1, π0,i, or π0,i+1.

(5) Suppose that r = 2n+ 1 and that γ satisfies (1.5) for i = n+ 1. Then,

an irreducible composition factor of Iη,Λ,γ is isomorphic to π0,n or π0,n+1.

Proof

We will show (2). The proofs of other statements are the same.

Assume that γ satisfies (1.4). Since Iη,Λ,γ is induced from the representation

σγ ⊗ η of MηN , every K-type of a composition factor of Iη,Λ,γ must contain

the representation σγ . By (2.5)–(2.7) and (1.4), this is possible if and only if the

composition factor is isomorphic to π0,i−1, π0,i, or π0,i+1. �
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PROPOSITION 3.5

Suppose that one of the following conditions is satisfied:

(1) r = 2n, γ satisfies (1.2) or (1.3), and π is π0, π1, or π0,n;

(2) r = 2n, i ∈ {2, . . . , n}, γ satisfies (1.4), and π is π0,i−1, π0,i, or π0,i+1;

(3) r = 2n, γ satisfies (1.4) for i= n, and π is π0,n−1, π0,n, π0, or π1;

(4) r = 2n + 1, i ∈ {2, . . . , n}, γ satisfies (1.5), and π is π0,i−1, π0,i, or

π0,i+1;

(5) r = 2n+ 1, γ satisfies (1.5) for i= n+ 1, and π is π0,n, or π0,n+1.

Then the multiplicity of π in Iη,Λ,γ is at least one.

Proof

This can be shown just in the same way as [6, Proposition 4.4]. �

4. K-type shift operators

In order to determine the socle filtration of Iη,Λ,γ , we need to write the actions of

elements in s on this space explicitly. This is achieved by the K-type shift oper-

ators. The contents of this section are almost the same as those of [6, Section 5],

so we do not repeat the explanation and refer the readers to this paper.

4.1. Gelfand–Tsetlin basis
In order to write the K-type shift operators explicitly, we realize the K-types by

using the Gelfand–Tsetlin basis (see [2]).

DEFINITION 4.1

Let λ= (λ1, . . . , λ�r/2�) be a dominant integral weight of Spin(r). A λ-Gelfand–

Tsetlin pattern is a set of vectors Q = (q1, . . . ,qr−1) such that the following

hold:

(1) qi = (qi,1, qi,2, . . . , qi,�(i+1)/2�);

(2) the numbers qi,j are all integers or all half integers;

(3) q2i+1,j ≥ q2i,j ≥ q2i+1,j+1, for any j = 1, . . . , i− 1;

(4) q2i+1,i ≥ q2i,i ≥ |q2i+1,i+1|;
(5) q2i,j ≥ q2i−1,j ≥ q2i,j+1, for any j = 1, . . . , i− 1;

(6) q2i,i ≥ q2i−1,i ≥−q2i,i;

(7) qr−1,j = λj .

Here, �a� is the largest integer not greater than a. The set of all λ-Gelfand–

Tsetlin patterns is denoted by GT(λ).

NOTATION 4.2

For any set or number ∗ depending on Q ∈GT(λ), we denote it by ∗(Q) if we

need to specify Q. For example, qi,j(Q) is the qi,j part of Q ∈GT(λ).
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THEOREM 4.3 ([2])

For a dominant integral weight λ of Spin(r), let (τλ, V
Spin(r)
λ ) be the irreducible

representation of Spin(r) with the highest weight λ. Then GT(λ) is identified

with a basis of (τλ, V
Spin(r)
λ ).

The action of the element Ap,q ∈ so(r) is expressed as follows. For j > 0, let

l2i−1,j := q2i−1,j + i− j, l2i−1,−j :=−l2i−1,j ,

l2i,j := q2i,j + i+ 1− j, l2i,−j :=−l2i,j + 1,

and let l2i,0 = 0. Define ap,q(Q) by

a2i−1,j(Q) = sgn j

√√√√√−
∏

1≤|k|≤i−1(l2i−1,j + l2i−2,k)
∏

1≤|k|≤i(l2i−1,j + l2i,k)

4
∏

1≤|k|≤i,
k �=±j

(l2i−1,j + l2i−1,k)(l2i−1,j + l2i−1,k + 1)
,

for j =±1, . . . ,±i, and

a2i,j(Q) = ε2i,j(Q)

√√√√√−
∏

1≤|k|≤i(l2i,j + l2i−1,k)
∏

1≤|k|≤i+1(l2i,j + l2i+1,k)

(4l22i,j − 1)
∏

0≤|k|≤i
k �=±j

(l2i,j + l2i,k)(l2i,j − l2i,k)
,

for j = 0,±1, . . . ,±i, where ε2i,j(Q) is sgn j if j �= 0, and sgn(q2i−1,iq2i+1,i+1) if

j = 0.

Let σa,b be the shift operator, sending qa to qa + (0, . . . ,
|b|

sgn(b),0, . . . ,0).

THEOREM 4.4 (SEE [2])

Under the above notation, the action of the Lie algebra is expressed as

τλ(A2i+1,2i)Q=
∑

1≤|j|≤i

a2i−1,j(Q)σ2i−1,jQ,

τλ(A2i+2,2i+1)Q=
∑

0≤|j|≤i

a2i,j(Q)σ2i,jQ.

REMARK 4.5

The Gelfand–Tsetlin basis is compatible with the restriction to smaller groups

Spin(k), k = 1, . . . , r − 1. More precisely, the restriction of τλ to Spin(r − 1) is

multiplicity-free, and the highest weights of the irreducible representation appear-

ing in τλ|Spin(r−1) are the above qr−2’s. Moreover, the vector Q= (q1, . . . ,qr−2,

qr−1) is contained in the qr−2-isotypic subspace of τλ|Spin(r−1).

REMARK 4.6

The highest weight λ∗ of the contragredient representation (τλ∗ , V K
λ∗ ) of (τλ, V

K
λ )

is λ∗ = (λ1, . . . , (−1)nλn) if r = 2n, and λ∗ = λ if r = 2n + 1. In this case,

Q∗ := (q∗
1, . . . ,q

∗
r−1) ∈GT(λ∗), q∗

2i+1 := q2i+1, q
∗
2i := (q2i,1, . . . , q2i,i−1, (−1)iq2i,i)

is dual to Q ∈GT(λ).
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4.2. Shift operators
Choose a K-type (τλ, V

K
λ ) of Iη,Λ,γ , whose highest weight is λ. By appropriately

defining the action of g on C∞(A→HomMη(V K
λ , V Mη

γ )), the space HomK(V K
λ ,

Iη,Λ,γ) is identified with{
φ̃ ∈C∞(

A→HomMη (V K
λ , V Mη

γ )
) ∣∣ z · φ̃= χΛ(z)φ̃, z ∈ Z(g);

φ̃ grows moderately at infinity
}
.

The space HomMη (V K
λ , V Mη

γ ) is isomorphic to (V K
λ∗ ⊗V Mη

γ )M
η

, the space of

Mη-invariants in V K
λ∗ ⊗ V Mη

γ . By Remark 4.5, a basis of this space is identified

with the partial Gelfand–Tsetlin patterns

GT
(
(λ/γ)∗

)
:=

{
Q= (qr−3,qr−2,qr−1)

∣∣ qr−3 = γ∗,qr−1 = λ∗;

satisfies Definition 4.1(1)–(6)
}
.

Let V
K/Mη

(λ/γ)∗ be the vector space spanned by GT((λ/γ)∗), and let C∞(A →
V

K/Mη

(λ/γ)∗ ) be the space of V
K/Mη

(λ/γ)∗ -valued C∞-functions on A. By the above dis-

cussion, HomK(V K
λ , Iη,Λ,γ) is identified with a subspace of C∞(A→ V

K/Mη

(λ/γ)∗ ).

Denote by Δs the set of weights of the adjoint representation (Ad, s) of K

on s. For every α ∈Δs, K-type shift operators

Pα :C∞(A→ V
K/Mη

(λ/γ)∗ )→ C∞(A→ V
K/Mη

(λ+α/γ)∗),

∪ ∪
HomK(V K

λ , Iη,Λ,σ) → HomK(V K
λ+α, Iη,Λ,σ)

realize the action of elements in s on Iη,Λ,γ (see [6, Section 5]).

For notational convenience, let ε−k :=−εk and ε0 = 0. Firstly, consider the

case r = 2n. In this case, Δs = {εk | k =±1, . . . ,±n}. By Remark 4.6, (λ+ εk)
∗ =

λ∗ + εk if |k| < n, and (λ ± εn)
∗ = λ∗ ± (−1)nεn. Secondly, consider the case

r = 2n+1. In this case, Δs = {εk | k = 0,±1, . . . ,±n}. By Remark 4.6, (λ+εk)
∗ =

λ+ εk.

For simplicity, denote by Pk the operator Pεk for k = 0,±1, . . . ,±n. When

r = 2n, the explicit forms of these operators are obtained in [4]. In the case

r = 2n+ 1, they are obtained just in the same way.

PROPOSITION 4.7

Suppose φ(a) =
∑

Q∈GT((λ/γ)∗) c(Q;a)Q ∈C∞(A→ V
K/Mη

(λ/γ)∗ ).

(1) When r = 2n, the K-type shift operator Pk, k =±1, . . . ,±(n−1) is given

by the following formula:

Pkφ(a) =−
∑

Q∈GT((λ/γ)∗)

a2n−1,k(Q)
(
∂a − l2n−1,k(Q) + n− 1

)
× c(Q;a)σ2n−1,kQ(4.1)
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+

√
−1ξ

a

∑
0≤|j|≤n−1

∑
σ2n−2,−jQ∈GT((λ/γ)∗)

a2n−2,j(σ2n−2,−jQ)a2n−1,k(Q)

l2n−2,j(σ2n−2,−jQ)− l2n−1,k(Q)

× c(σ2n−2,−jQ;a)σ2n−1,kQ.

Here, ∂a is the differential operator a(d/da). When k =±n, then the number k

in the right-hand side is replaced by (−1)nk.

(2) When r = 2n + 1, the K-type shift operator Pk, k = 0,±1, . . . ,±n, is

given by the following formula:

Pkφ(a) =−
∑

Q∈GT((λ/γ)∗)

a2n,k(Q)
(
∂a − l2n,k(Q) + n

)
c(Q;a)σ2n,kQ

+

√
−1ξ

a

∑
1≤|j|≤n

∑
σ2n−1,−jQ∈GT((λ/γ)∗)

a2n−1,j(σ2n−1,−jQ)a2n,k(Q)

l2n−1,j − l2n,k(Q)
(4.2)

× c(σ2n−1,−jQ;a)σ2n,kQ.

First, we complete the proof of Proposition 3.2(1) by using these operators.

LEMMA 4.8

The irreducible module π0 (resp., π1) is a submodule of Iη,Λ,γ if and only if γ

satisfies (1.2) (resp., (1.3)).

Proof

Let λ be the minimal K-type of π0 (resp., π1). Suppose that γ satisfies (1.2) or

(1.3). By [9, Theorem 2.4], an embedding of π0 (resp., π1) into C∞(G/N ;η)K is

characterized by the system of equations P−1φ= 0, . . . , P−nφ= 0 (resp., P−1φ=

0, . . . , P−n+1φ= 0, Pnφ= 0) for φ ∈ C∞(A→ V
K/Mη

(λ/γ)∗ ). This system of equations

is solved in [4] (though, notation is a little different).

Let Q0 = (γ∗,q2n−2, λ
∗) be a vector in GT((λ/γ)∗) which satisfies

q2n−2,j(Q0) = γ∗
j (j = 1,2, . . . , n− 2) and q2n−2,n−1 = |γ∗

n−1|. Then the function

φ characterizing the embedding of π0 (resp., π1) into Iη,Λ,γ is determined by

the coefficient function c(Q0;a). This function is a solution of the differential

equation(
∂a + n− 1 +

n∑
p=1

λp −
n−2∑
p=1

γp − |γn−1| − (sgnγn−1)
ξ

a

)
c(Q0;a) = 0

(
resp.,

(
∂a + n− 1 +

n−1∑
p=1

λp − λn −
n−2∑
p=1

γp − |γn−1|+ (sgnγn−1)
ξ

a

)
c(Q0;a) = 0

)
.

Since we set ξ > 0, there exists a nonzero moderate growth solution if and only

if γn−1 > 0 (resp., γn−1 < 0), that is, γ satisfies (1.2) (resp., (1.3)). �
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LEMMA 4.9

Let φ be an element of C∞(A→ V
K/Mη

(λ/γ)∗ ). If r, k, λ, and γ satisfy one of the

following conditions, then Pkφ= 0 implies φ= 0, that is, Pk is injective:

(1) r = 2n, k ∈ {2, . . . , n− 1}, γk−1 > λk;

(2) r = 2n, k ∈ {−2, . . . ,−(n− 1)}, γ|k|−1 < λ|k|;

(3) r = 2n, λ∗
n = (−1)nλn > 0, λ∗

n > |γ∗
n−1|= |(−1)n−1γn−1|, k =−(−1)nn;

(4) r = 2n, λ∗
n = (−1)nλn < 0, −λ∗

n > |γn−1|= |(−1)n−1γn−1|, k = (−1)nn;

(5) r = 2n+ 1, k ∈ {2, . . . , n}, γk−1 > λk;

(6) r = 2n+ 1, k ∈ {−2, . . . ,−n}, γ|k|−1 < λ|k|.

Proof

Since the proofs of these are analogous, we show only (1). We will show c(Q;a) = 0

by induction on λ∗
k − q2n−2,k(Q).

Let Q0 be an element of GT((λ/γ)∗) which satisfies q2n−2,k(Q0) = λ∗
k = λk,

and let Q1 := σ2n−2,kQ0. Then Q1 is not in GT((λ/γ)∗), but σ2n−2,−kQ1 =

Q0 ∈ GT((λ/γ)∗) and σ2n−1,kQ1 ∈ GT((λ + εk/γ)
∗), because γ∗

k−1 = γk−1 >

λk = λ∗
k implies that σ2n−1,kQ1 satisfies the conditions in Definition 4.1(5):

q2n−2,k−1(Q1) ≥ γ∗
k−1 = q2n−3,k−1(Q1) ≥ λ∗

k + 1 = q2n−1,k(σ2n−1,kQ1) =

q2n−2,k(σ2n−2,kQ1). Therefore, the term σ2n−2,kQ1 appears in (4.1), and its coef-

ficient in (4.1) is

a2n−2,k(σ2n−2,−kQ1)a2n−1,k(Q1)

l2n−2,k(σ2n−2,−kQ1)− l2n−1,k(Q1)
c(σ2n−2,−kQ1;a)

(4.3)

=
a2n−2,k(Q0)a2n−1,k(σ2n−2,kQ0)

l2n−2,k(Q0)− l2n−1,k(Q0)
c(Q0;a).

In general,

a2n−2,j(Q)a2n−1,k(σ2n−2,jQ)

l2n−2,j(Q)− l2n−1,k(Q)
=

a2n−2,j(σ2n−1,kQ)a2n−1,k(Q)

l2n−2,j(Q)− l2n−1,k(Q)− 1
.

Here, we used the definition of ai,j(Q). Therefore, (4.3) is

a2n−2,k(σ2n−1,kQ0)a2n−1,k(Q0)

(λk + n− k)− (λk + n− k)− 1
c(Q0;a).

It is easy to check that a2n−2,k(σ2n−1,kQ0)a2n−1,k(Q0) is not zero. So if Pkφ= 0,

then c(Q0;a) = 0. We have shown that c(Q;a) is zero for those Q which satisfy

q2n−2,k(Q) = λ∗
k.

Assume that c(Q;a) = 0 is proved for those Q’s which satisfy the condition

λ∗
k − q2n−2,k(Q) = p. Let Q2 be an element of GT((λ/γ)∗) which satisfies λ∗

k −
q2n−2,k(Q2) = p+1. Set Q3 := σ2n−2,kQ2. This Q3 is an element of GT((λ/γ)∗),

and it satisfies λ∗
k − q2n−2,k(Q3) = p and λ∗

k − q2n−2,k(σ2n−2,−iQ3) = p if i �= k.

Then by the hypothesis of induction, c(Q3;a) = 0 and c(σ2n−2,−iQ3;a) = 0 for

i �= k. Consider the right-hand side of (4.1) for Q = Q3. The terms other than
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c(Q2;a) = c(σ2n−2,−kQ3;a) are zero. We can easily see that its coefficient

a2n−2,k(σ2n−2,−kQ3)a2n−1,k(Q3)

l2n−2,k(σ2n−2,−kQ3)− l2n−1,k(Q3)

is not zero. Therefore, if Pkφ(a) = 0, then c(Q2;a) = 0. This completes the proof.

�

Choose a Cartan subalgebra h :=
⊕�(r+1)/2�

i=1 CAr−2i+3,r−2i+2 of g, and let γ :

Z(sor+1)→ U(h)W (g,h) be the Harish-Chandra isomorphism. The following the-

orem is proved in [5].

THEOREM 4.10 ([5, THEOREM 1.1, LEMMA 3.2, PROPOSITION 5.3])

For u ∈C, let Cr+1(u) be the element in Z(sor+1) which satisfies

(4.4) γ
(
Cr+1(u)

)
=

�(r+1)/2�∏
i=1

(u2 +A2
r−2i+3,r−2i+2).

When r = 2n+ 1, let PF2n+2 be the element in Z(so2n+2) which satisfies

γ(PF2n+2) = (−
√
−1)n+1A2,1A4,2 · · ·A2n+2,2n+1.

For τλ ∈ K̂, define

(4.5) uk :=

⎧⎪⎪⎨⎪⎪⎩
l2n−1,k + 1/2 when r = 2n and |k|< n,

l2n−1,(−1)nk + 1/2 when r = 2n and k =±n,

l2n,k when r = 2n+ 1.

(1) For k =±1, . . . ,±�r/2�, there exists a nonzero constant dλ,k such that

(4.6) P−k ◦ Pkφ= dλ,kL
(
Cr+1(uk)

)
φ, φ ∈C∞(A→ V

K/Mη

(λ/γ)∗ ).

(2) When r = 2n+ 1, there exists a nonzero constant dλ such that

(4.7) P0φ= dλL(PF2n+2)φ, φ ∈C∞(A→ V
K/Mη

(λ/γ)∗ ).

5. Determination of composition series

In this section, we determine the socle filtration of Iη,Λ,γ .

LEMMA 5.1

Let V1 and V2 be irreducible factors in Iη,Λ,γ which satisfy one of the following

conditions:

(1) V1 � V2, but they are different irreducible factors;

(2) r = 2n, γ satisfies (1.2), V1 � π0, V2 � π0,n;

(3) r = 2n, γ satisfies (1.2), V1 � π0,n, V2 � π1;

(4) r = 2n, γ satisfies (1.3), V1 � π1, V2 � π0,n;

(5) r = 2n, γ satisfies (1.3), V1 � π0,n, V2 � π0;
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(6) r = 2n, i ∈ {2, . . . , n − 1}, γ satisfies (1.4), V1 � π0,i, V2 � π0,i−1, or

π0,i+1;

(7) r = 2n, γ satisfies (1.4) for i= n, V1 � π0,n, V2 � π0,n−1, π0, or π1;

(8) r = 2n + 1, i ∈ {2, . . . , n}, γ satisfies (1.5), V1 � π0,i, V2 � π0,i−1, or

π0,i+1;

(9) r = 2n+ 1, γ satisfies (1.5) for i= n+ 1, V1 � π0,n+1, V2 � π0,n.

Then there is no nonzero g-action in Iη,Λ,γ which sends an element of V1 to V2.

Proof

If there is a g-action sending an element of V1 to V2, then the K-spectra K̂(V1)

and K̂(V2) should be adjacent, that is, there should be K-types τλ ∈ K̂(V1) and

τλ′ ∈ K̂(V2) such that λ′ − λ is a weight of s. We set εk = λ′ − λ.

First, we show (1). Recall the discussion in Section 4.2. The nonzero s-action

which sends an element of V K
λ ⊂ V1 to V K

λ′ ⊂ V2 is realized by the shift operator

Pkφ �= 0, where φ is a nonzero element in C∞(A→ V
K/Mη

(λ/γ)∗ ) corresponding to an

element in HomK(V K
λ , Iη,Λ,γ).

If r = 2n+ 1 and k = 0, then P0φ = dλL(PF2n+2)φ by (4.7). Since PF2n+2

is a central element, P0φ is a constant multiple of φ. So it realizes the K-type

V K
λ ⊂ V1, or it is a zero element. In either case, P0φ does not realize the K-type

V K
λ′ ⊂ V2 �= V1.

Suppose that k is not zero. Consider the shift P−k ◦ Pkφ. Theorem 4.10(1)

asserts that P−k ◦Pkφ= dλ,kL(Cr+1(uk))φ. Since Cr+1(uk) ∈ Z(g), it acts by the

scalar χΛ(Cr+1(uk)). By (4.4), the image of the Harish-Chandra map of Cr+1(uk)

is

χΛ

(
Cr+1(uk)

)
=

�(r+1)/2�∏
i=1

(u2
k −Λ2

i ).

By the definition (4.5) of uk, the scalar χΛ(Cr+1(uk)) is zero if and only if one

of the following conditions is satisfied:

r = 2n,k > 0, λk =Λi − n+ k− 1/2
(
∃i ∈ {1,2, . . . , n}

)
,(5.1)

r = 2n,k < 0, λ|k| =Λi − n+ |k|+ 1/2
(
∃i ∈ {1,2, . . . , n}

)
,(5.2)

r = 2n,k = n, λn =±Λi − 1/2
(
∃i ∈ {1,2, . . . , n}

)
,(5.3)

r = 2n,k =−n, λn =±Λi + 1/2
(
∃i ∈ {1,2, . . . , n}

)
,(5.4)

r = 2n+ 1, k > 0, λk =Λi − n+ k− 1
(
∃i ∈ {1,2, . . . , n}

)
or |Λn+1|,(5.5)

r = 2n+ 1, k < 0, λ|k| =Λi − n+ |k|
(
∃i ∈ {1,2, . . . , n}

)
or |Λn+1|+ 1.(5.6)

Recall the K-spectra of irreducible (g,K)-modules (see Theorems 2.4, 2.6). If

λ and k satisfy one of (5.1)–(5.6), then the K-type V K
λ′ = V K

λ+εk
is not a K-type of

V1 � V2. Therefore, if V1 � V2 and Pkφ �= 0, then P−k ◦Pkφ is a nonzero multiple

of φ. This is impossible since V1 and V2 are different irreducible subquotients
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and there exist nonzero s-actions sending an element in V1 to V2 and vice versa.

Therefore, (1) is proved.

Let us show the case (9). By Theorem 2.6, two K-types λ ∈ K̂(V1) and

λ′ ∈ K̂(V2) are adjacent if and only if λn = Λn, λ
′
n = Λn − 1 and λp = λ′

p for

p = 1, . . . , n− 1. In this case, the shift operator sending V K
λ to V K

λ′ is P−n. By

(5.6), Pn ◦P−nφ= 0. We know that γn−1 ≥ Λn since γ satisfies (1.5) for i= n+1.

On the other hand, λ′
n =Λn − 1. Then the condition of Lemma 4.9(5) for k = n

(and λ is replaced by λ′) is satisfied. So Pn is injective. It follows that P−nφ= 0,

so that there is no nonzero g-action sending V1 to V2. This proves (9).

In the same way, we can show (2)–(8). �

In order to determine the second and higher floors of Iη,Λ,γ , the next theorem is

very useful.

THEOREM 5.2 ([7, THEOREM 9.5.1])

In the setting of this paper, suppose that irreducible (g,K)-modules X and Y are

not isomorphic. Then Ext1g,K(X,Y ) �= 0 only if �(X)− �(Y )≡ 1 mod 2.

This theorem imposes a parity structure on Iη,Λ,γ . By Yoneda’s description of

Ext1, the group Ext1g,K(X,Y ) is nonzero if and only if there exists a (g,K)-

module E, which is not isomorphic to X ⊕ Y , such that

0→X →E → Y → 0

is exact (see [7, Lemma 9.2.2]). We know that the socle of Iη,Λ,γ consists of

a single irreducible module. We also know that there is no self-extension in

Iη,Λ,γ , by Lemma 5.1(1). Therefore, if the length of the module in the socle

is even (resp., odd), then by this theorem, the lengths of the irreducible factors

in the second floor are odd (resp., even), the third floor even (resp., odd), and

so on.

LEMMA 5.3

Suppose that the unique irreducible submodule of Iη,Λ,γ is π. Then the multiplicity

of π in Iη,Λ,γ is one.

Proof

Assume that there exists a composition factor V1 which is isomorphic to π

but is in the kth floor, k > 1. Then there exists an irreducible subquotient

V2 of Iη,Λ,γ in the (k − 1)st floor such that V1 → V2. This V2 must satisfy

�(V1)− �(V2)≡ 1 mod 2 by Theorem 5.2 and Lemma 5.1(1). We know the can-

didates for V2 (see Proposition 3.4), and the lengths of them (see Theorems 2.1,

2.5). These data imply that the pair (V1, V2) satisfies one of the conditions in

Lemma 5.1. But this lemma tells us that there is no nonzero g-action sending an

element of V1 to V2. Therefore, V1 � V2. This is a contradiction. �
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Proofs of Theorems 1.1, 1.2

The statements (1) in these theorems are proved in Propositions 3.2 and 3.3.

Let us consider the case when r = 2n and γ satisfies (1.2). In this case,

Proposition 3.2(1) says that π0 is the unique simple submodule of Iη,Λ,γ , and

Proposition 3.4(1) says that only π0, π1, or π0,n can be a composition factor of

Iη,Λ,γ . By Lemma 5.3, the multiplicity of π0 in Iη,Λ,γ is just one. By Theorem 2.1,

�(π0) = �(π1) = 0 and �(π0,n) = 1. Therefore, Theorem 5.2 implies that the second

floor of Iη,Λ,γ is a multiple of π0,n, and the third floor of it is a multiple of π1,

and so on. By Proposition 3.5, the multiplicities of π0,n and π1 in Iη,Λ,γ are

at least one. Therefore, the multiplicity of π0,n (resp., π1) in the second (resp.,

third) floor is at least one. We can show that the multiplicity of π0,n (resp., π1)

in the second (resp., third) floor is just one, in the same way as the proof of [6,

Lemma 5.14].

Assume that there exists a nonzero fourth floor in Iη,Λ,γ . Then there exists

a g-action which sends an element in the fourth floor to the third floor. But the

fourth floor is a multiple of π0,n, and the third floor is isomorphic to π1. This

contradicts Lemma 5.1(3). Therefore, there is no fourth floor in Iη,Λ,γ .

The proof of the case when γ satisfies (1.3) is just the same as above.

The proofs of Theorem 1.1(3), (4) and Theorem 1.2(2), (3) are almost the

same as above (easier). For example, suppose that r = 2n and γ satisfies (1.4), i ∈
{2, . . . , n−1}. Then π0,i is the unique simple submodule of Iη,Λ,γ . A composition

factor of Iη,Λ,γ is isomorphic to π0,i, π0,i−1, or π0,i+1. Since �(π0,k) = n− k+ 1,

k = i−1, i, i+1, and since the multiplicity of π0,i in Iη,Λ,γ is just one, the second

floor of Iη,Λ,γ is a direct sum of multiples of π0,i−1 and π0,i+1, and there is no

higher floor. The multiplicity freeness of the factors in the second floor is proved

in the same way as the proof of [6, Lemma 5.14]. �
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