
On SL(2)-orbit theorems

Kazuya Kato

Abstract We extend SL(2)-orbit theorems for the degeneration of mixed Hodge struc-

tures to a situation in which we do not assume the polarizability of graded quotients.We

also obtain analogous results on Deligne systems.

1. Introduction

1.1.
In this paper, we show that the SL(2)-orbit theorems on the degeneration of

Hodge structures (see [10], [3], [9], [7]) hold in a situation in which we do not

assume the polarizability of the graded quotients for the weight filtration. We

also obtain analogous results on Deligne systems.

1.2.
Recall that a Deligne system of n variables is (V,W,N1, . . . ,Nn, α), where V is

a finite-dimensional vector space over a field E of characteristic 0, W is a finite

increasing filtration on V (called the weight filtration), N1, . . . ,Nn : V → V are

mutually commuting nilpotent linear operators (called themonodromy operators)

which respect W , and α is an action of the multiplicative group Gm on V ,

satisfying certain conditions (see [11]; see also Section 2.1.2 of this paper for a

review).

In this paper, we define a similar notion, namely, a Deligne–Hodge sys-

tem (DH system for short) of n variables, which is (V,W,N1, . . . ,Nn, F ) where

(V,W,N1, . . . ,Nn) has the same properties as in the definition of a Deligne sys-

tem of n variables with E =R, and F is a decreasing filtration on VC =C⊗R V

(called the Hodge filtration) satisfying certain conditions (see Section 2.1.2).

A DH system of zero variables is nothing but a mixed R-Hodge structure.

In general, the notion of a DH system is similar to the notion of an infinites-

imal mixed Hodge module (IMHM) of Kashiwara (see [5]; see also Section 2.1.9

of this paper for a review). In fact, if (V,W,N1, . . . ,Nn, F ) is an IMHM, then

it is a DH system of n variables. In the definition of a DH system, we do not

assume the polarizability of the graded quotients for weight filtration, which was
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assumed for IMHM. Another difference is that, in the definition of a DH system,

the order of (N1, . . . ,Nn) matters though it does not matter for an IMHM.

1.3.
The SL(2)-orbit theorems are statements on the properties of exp(

∑n
j=1 iyjNj)F

for an IMHM (V,W,N1, . . . ,Nn, F ) of n variables in the situation yj/yj+1 →∞
(1 ≤ j ≤ n, yn+1 denotes 1). (In specific work, [10] treats the pure case with

n = 1, [3] treats the pure case in general, [9] treats the mixed case in certain

cases, and [7] treats the mixed case in general.) In this paper, we prove the

following Theorem 1.4, which shows that the SL(2)-orbit theorems in [10], [3],

[9], and [7] are generalizable to DH systems.

THEOREM 1.4

Let (V,W,N1, . . . ,Nn, F ) be a DH system of n variables. Then for N ′
j =∑j

k=1 aj,kNk (1≤ j ≤ n) with aj,k > 0 (1≤ k ≤ j ≤ n) such that aj,k/aj,k+1 � 0

(1≤ k < j ≤ n), (V,W,N ′
1, . . . ,N

′
n, F ) is an IMHM of n variables.

For example, if (V,W,N1,N2, F ) is a DH system of two variables, (V,W,N1, aN1+

N2, F ) for a� 0 is an IMHM.

For N ′
j as in Theorem 1.4, if yj/yj+1 → ∞ (1 ≤ j ≤ n), we have that∑n

j=1 yjNj =
∑n

j=1 y
′
jN

′
j with y′j/y

′
j+1 →∞ (1≤ j ≤ n). Hence the property of

exp(
∑n

j=1 iyjNj)F in the situation yj/yj+1 →∞ (1≤ j ≤ n) for a DH system is

reduced to the case of IMHM.

1.5.
We have a canonical functor from the category of DH systems of n variables

to the category of Deligne systems of n variables over R, which has the shape

(V,W,N1, . . . ,Nn, F ) �→ (V,W,N1, . . . ,Nn, α) for a canonically defined α (see Sec-

tion 2.2). We have also a canonical functor from the category of Deligne systems

of n variables over R or over C to the category of DH systems of n variables

which has the shape (V,W,N1, . . . ,Nn, α) �→ (V ⊕2,W⊕2,N⊕2
1 , . . . ,N⊕2

n , F ) for a

canonically defined F (Section 2.3). Here in the case of a Deligne system over C,

V ⊕2 is regarded as an R-vector space by the restriction of scalars. We study

Deligne systems and DH systems by using these two functors and applying the

results on one to the other.

From the above theorem on DH systems, we obtain the following theorem

on Deligne systems.

THEOREM 1.6

Let (V,W,N1, . . . ,Nn, α) be a Deligne system of n variables over R or over C.

Then for N ′
j =

∑j
k=1 aj,kNk with aj,k > 0 (1≤ k ≤ j ≤ n) such that aj,k/aj,k+1 �

0 (1≤ k < j ≤ n), the associated DH system (V ⊕2,W⊕2, (N ′
1)

⊕2, . . . , (N ′
n)

⊕2, F )

of n variables associated to the Deligne system (V,W,N ′
1, . . . ,N

′
n, α) is an IMHM.
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This shows that, roughly speaking, any Deligne system of n variables underlies

some IMHM if it is modified in an elementary way.

From Theorem 1.4 (resp., Theorem 1.6) and the SL(2)-orbit theorem in [7,

Theorem 0.5], we have the part on DH systems (resp., Deligne systems) in the

following theorem.

THEOREM 1.7

(a) Let (V,W,N1, . . . ,Nn, F ) be a DH system of n variables. If yj/yj+1 � 0

(1≤ j ≤ n, yn+1 denotes 1), (V,W, exp(
∑n

j=1 iyjNj)F ) is a mixed Hodge struc-

ture. The splitting of W associated to this mixed Hodge structure (canonical split-

ting from Section 2.2.1) converges when yj/yj+1 →∞ (1≤ j ≤ n).

(b) Let E be R or C, and let (V,W,N1, . . . ,Nn, α) be a Deligne system of

n variables over E. Let W ′ be the increasing filtration on V defined by α. (For

w ∈ Z, W ′
w is defined as the sum of the weight k part for α for all k ≤w.) If yj > 0

(1 ≤ j ≤ n) and yj/yj+1 � 0 (1 ≤ j < n), then W ′ is the relative monodromy

filtration (see Section 2.1.1) of
∑n

j=1 yjNj with respect to W . The splitting τ0
of W defined by the Deligne system (V,W,

∑n
j=1 yjNj , α) of one variable (see

Section 3.1.3) converges when yj > 0 (1≤ j ≤ n) and yj/yj+1 →∞ (1≤ j < n).

In Theorem 4.2.1 in Section 4.2, we will give more precise descriptions of the

convergences in (a) and (b) of this theorem.

The following result is deduced from Theorems 1.4 and 1.6 and from the fact

that the category of IMHMs of n variables is an abelian category (see [5]).

PROPOSITION 1.8

The category of Deligne systems of n variables over a field E of characteristic 0

is an abelian category. The category of DH systems of n variables is an abelian

category. In these categories, the underlying vector space V of the kernel (resp.,

cokernel) of a morphism A→B is the kernel (resp., cokernel) of the map of the

underlying vector spaces, and W , Nj , and so on, of the kernel (resp., cokernel)

are the ones induced from those of A (resp., B).

1.9.
We expect that results of this paper are useful to generalize the work [8] on

classifying spaces of degenerating Hodge structures to a situation where we do

not assume the polarizability of the graded quotients for the weight filtration.

We also expect that the study of Deligne systems in this paper is useful

in the studies (like [1] and [6]) which treat the degeneration of motives over

nonarchimedean local fields. In fact, for a nonarchimedean local field K and for

a prime number � which is not the characteristic of the residue field of K, it

is expected that the �-adic étale realization of a motive over K with the �-adic

monodromy operator produces a Deligne system of one variable over Q�, and

degenerations of motives over K yield Deligne systems of many variables over Q�.

The results of this paper show that, once we fix a homomorphism Q� →C of fields,
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the induced Deligne systems over C have nice real analytic properties. Thus we

have real analytic properties of �-adic objects, and such a strange thing should

be useful in the study of degeneration.

2. Deligne systems and Deligne–Hodge systems

2.1. Definitions
2.1.1.

We first review the notion of relative monodromy filtration defined by Deligne

[4, Proposition 1.6.13].

Let V be an abelian group, let W = (Ww)w∈Z be a finite increasing filtration

on V , and let N : V → V be a nilpotent homomorphism such that NWw ⊂Ww

for all w ∈ Z.

Then a finite increasing filtration W ′ = (W ′
w)w∈Z on V is called the relative

monodromy filtration of N with respect to W if it satisfies the following conditions

(a) and (b).

(a) NW ′
w ⊂W ′

w−2 for any w ∈ Z.

(b) For any w ∈ Z and m≥ 0, the map Nm : grW
′

w+mgrWw → grW
′

w−mgrWw is an

isomorphism.

The relative monodromy filtration of N with respect to W need not exist.

If it exists, it is unique (see [4, Proposition 1.6.13]).

If V is a vector space over a field E and if theWw’s are E-linear subspaces and

N is E-linear, the relative monodromy filtration consists of E-linear subspaces

of V if it exists.

2.1.2.

We review the notion of a Deligne system of n variables (see [11]), and define a

DH system of n variables.

A Deligne system over a field E of characteristic 0 (resp., DH system) is

(V,W,N1, . . . ,Nn, α)
(
resp., (V,W,N1, . . . ,Nn, F )

)
,

where V is a finite-dimensional E-vector (resp., R-vector) space, W is a finite

increasing filtration on V by E-linear (resp., R-linear) subspaces, Nj are linear

operators V → V , and α is an action of Gm on V (resp., F is a finite decreas-

ing filtration on VC = C ⊗R V by C-linear subspaces), satisfying the following

conditions (a), (b), (c), (d), and (e) (resp., (a), (b), (c), (d), (f.1), and (f.2)).

(a) The operators N1, . . . ,Nn are nilpotent, mutually commute, and

respect W .

(b) There are finite increasing filtrations W (j) (0≤ j ≤ n) such that W (0) =

W and such that, for 1≤ j ≤ n, W (j) is the relative monodromy filtration of Nj

with respect to W (j−1).
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(c) Let 1≤ j ≤ n, let 0≤ k < j − 1, let w ∈ Z, and let U =W
(k)
w . Then the

restriction W (j)|U of W (j) to U is the relative monodromy filtration of Nj |U with

respect to W (j−1)|U .
(d) Nj(W

(k)
w )⊂W

(k)
w for any j, k,w, and Nj(W

(k)
w )⊂W

(k)
w−2 if k ≥ j.

(e) α splits W (n), W
(j)
w is stable under the action α of Gm for any 0≤ j < n

and w ∈ Z, and Nj is of weight −2 for α (i.e., α(a)Njα(a)
−1 = a−2Nj for any

a ∈Gm) for any 1≤ j ≤ n.

(f.1) NjF
p ⊂ F p−1 for any 1≤ j ≤ n and p ∈ Z.

(f.2) (W (n), F ) is a mixed Hodge structure. Furthermore, for 1≤ k < n, w ∈
Z and for U =W

(k)
w , (W (n)|U , F |U ) is a mixed Hodge structure.

2.1.3.

We denote the category of Deligne systems of n variables over E by Dn,E .

We denote the category of DH systems of n variables by DHn.

2.1.4.

For example, a Deligne system of zero variables over E is nothing but a finite-

dimensional E-vector space endowed with an action of Gm.

A DH system of zero variables is just a mixed R-Hodge structure. In this

paper, we call a mixed R-Hodge structure just a mixed Hodge structure.

2.1.5.

A Deligne system of one variable over E is nothing but (V,W,N,α) where V is

a finite-dimensional E-vector space, W is a finite increasing filtration on V , N

is a nilpotent linear map V → V such that N(Ww)⊂Ww for any w ∈ Z, and α

is an action of Gm on V such that Ww is stable under the action α of Gm for

any w ∈ Z, N is of weight −2 for α, and if we define W ′
w to be the sum of the

weight k part of α for all k ≤w, then W ′ is the relative monodromy filtration of

N with respect to W .

2.1.6.

Both the categories Dn,E and DHn have direct sum, tensor products, symmetric

powers, exterior powers, duals, and Tate twists defined in the evident manners.

The following is easy to see.

LEMMA 2.1.7

Let E be a field of characteristic 0, and let E′ be a subfield of E. Let H =

(V,W,N1, . . . ,Nn, α) be as in the hypothesis of the definition of a Deligne system

of n variables over E. (We do not assume (a)–(e).)

(a) Assume that H =H ′ ⊗E′ E for some H ′ = (V ′,W ′,N ′
1, . . . ,N

′
n, α

′) over

E′. Then H is in Dn,E if and only if H ′ is in Dn,E′ .
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(b) Assume that E is a finite extension of E′. Let H ′ be H but V in H ′ is

regarded as an E′-vector space by the restriction of scalars. Then H is in Dn,E

if and only if H ′ is in Dn,E′ .

The following is also easy to see.

LEMMA 2.1.8

Let (V,W,N1, . . . ,Nn, α) (resp., (V,W,N1, . . . ,Nn, F )) be an object of Dn,E (resp.,

DHn). Then for any aj,k ∈ E (resp., R) (1≤ k ≤ j ≤ n) such that aj,j �= 0 (1≤
j ≤ n), if we put N ′

j =
∑j

k=1 aj,kNk for 1 ≤ j ≤ n, then (V,W,N ′
1, . . . ,N

′
n, α)

(resp., (V,W,N ′
1, . . . ,N

′
n, F )) belongs to Dn,E (resp., DHn).

2.1.9.

The notion of a DH system of n variables is similar to the notion of an IMHM of

Kashiwara. We review the notion of an IMHM. (In fact, we consider in this paper

only IMHMs which have R-structure, and we call such an IMHM just IMHM in

this paper.)

An IMHM of n variables is (V,W,N1, . . . ,Nn, F ) as in the hypothesis of the

definition of a DH system of n variables, satisfying the conditions (a), (f.1), (g),

and (h).

(a) The same as (a) in Section 2.1.2.

(f.1) The same as (f.1) in Section 2.1.2.

(g) For each w ∈ Z, there is a nondegenerate R-bilinear form 〈·, ·〉w : grWw ×
grWw → R which is symmetric if w is even and antisymmetric if w is odd such

that 〈Nju, v〉w + 〈u,Njv〉w = 0 for any j and any u, v ∈ grWw and such that if

yj � 0 (1 ≤ j ≤ n), then (grWw , 〈·, ·〉w, exp(
∑n

j=1 iyjNj)F (grWw )) is a polarized

Hodge structure of weight w. Here F (grWw ) denotes the filtration on grWw,C induced

by F .

(h) For 1 ≤ j ≤ n, the relative monodromy filtration of Nj with respect to

W exists.

By the arguments in [11, Section 3, Example 2], we have the following.

PROPOSITION 2.1.10

An IMHM of n variables is a DH system of n variables.

2.2. A functor DHn →Dn,R

We define a functor DHn →Dn,R.

2.2.1.

We review that, for a mixed Hodge structure (V,W,F ), we have a canonical

splitting of W . (This canonical splitting is called the SL(2)-splitting in [2].)

There is a unique pair (s′, δ) of a splitting s′ : grW =
⊕

w∈Z
grWw

∼=→ V of W

and a linear map δ : grW → grW such that the Hodge (p, q)-component δp,q of δ



On SL(2)-orbit theorems 847

for F (grW ) is zero unless p < 0 and q < 0 and such that F = s′(exp(iδ)F (grW ))

(see [3, Proposition 2.20]).

The canonical splitting s of W is a modification of this s′. It is defined by

s= s′ ◦ exp(ζ) where ζ : grW → grW is the linear map which is determined by δ

as a Lie polynomial of δp,q as in [3, Lemma 6.60].

Any morphisms of mixed Hodge structures commute with the canonical split-

tings.

LEMMA 2.2.2

Let (V,W,N1, . . . ,Nn, F ) be a DH system of n variables, and let α be the canon-

ical splitting of W (n) associated to the mixed Hodge structure (W (n), F ). Then

(V,W,N1, . . . ,Nn, α) is a Deligne system of n variables.

Proof

It is sufficient to prove the following (a) and (b).

(a) For any 0≤ j < n and w ∈ Z, W
(j)
w is stable under the action α of Gm.

(b) For any 1≤ j ≤ n, Nj is of weight −2 for α.

We prove (a). Let U =W
(j)
w . The inclusion map U → V is a morphism of

mixed Hodge structures (W (n)|U , F |U )→ (W (n), F ). Hence the canonical split-

ting of W (n)|U associated to the mixed Hodge structure (W (n)|U , F |U ) and the

canonical splitting of W (n) associated to the mixed Hodge structure (W (n), F )

(i.e., α) are compatible. This proves (a).

We prove (b). By NjF
p ⊂ F p−1 for any p, Nj is a morphism of mixed Hodge

structures (W (n), F )→ (W (n)(−1), F (−1)) where (−1) is the Tate twist. Hence

via Nj , the canonical splitting of W (n) associated to the mixed Hodge structure

(W (n), F ) is compatible with the canonical splitting of W (n)(−1) associated to

the mixed Hodge structure (W (n)(−1), F (−1)). This proves (b). �

2.2.3.

Thus we obtained the functor

DHn →Dn,R; (V,W,N1, . . . ,Nn, F ) �→ (V,W,N1, . . . ,Nn, α).

2.3. A functor Dn,E →DHn for E =R or C
For E = R or C, we define a functor Dn,E →DHn. We consider the case E = R

in Sections 2.3.1–2.3.3 and the case E =C in Section 2.3.4.

2.3.1.

Let (V,W,N1, . . . ,Nn, α) be a Deligne system of n variables over R. We define

a decreasing filtration F on V ⊕2
C

as follows. For w ∈ Z, let Vw be the weight w

part of V with respect to the action α of Gm. We define F as a direct sum of the

following decreasing filtrations on V ⊕2
w,C. If w is an even integer 2r, then define the

filtration F on V ⊕2
w,C by F r = V ⊕2

w,C and F r+1 = 0. If w is an odd integer 2r + 1,
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then define the filtration F on V ⊕2
w,C as follows: F r = V ⊕2

w,C, F
r+2 = 0, and F r+1

is the C-subspace of V ⊕2
w,C generated by (i⊗ x,1⊗ x) (x ∈ Vw).

LEMMA 2.3.2

This (V ⊕2,W⊕2,N⊕2
1 , . . . ,N⊕2

n , F ) is a DH system of n variables.

This is checked easily.

2.3.3.

Thus we obtained the functor

Dn,R →DHn, (V,W,N1, . . . ,Nn, α) �→ (V ⊕2,W⊕2,N⊕2
1 , . . . ,N⊕2

n , F ).

The composition Dn,R →DHn →Dn,R with the functor in Section 2.2 is

(V,W,N1, . . . ,Nn, α) �→ (V ⊕2,W⊕2,N⊕2
1 , . . . ,N⊕2

n , α⊕2).

On the other hand, the composition DHn → Dn,R → DHn is a not so nice

functor, for we forget the Hodge filtration of the original object.

2.3.4.

The functor Dn,C →DHn is defined as the composition

Dn,C →Dn,R →DHn,

where the first functor is to regard a C-vector space as an R-vector space by the

restriction of scalars, and the second is the above functor from Section 2.3.3.

3. SL(2)-orbits

3.1. Splittings of Deligne
We review two theorems of Deligne on splittings of weight filtrations of Deligne

systems in Sections 3.1.3 and 3.1.4 below, which are introduced in [11, Theorems 1

and 2], respectively.

3.1.1.

First we review the notion of a primitive component. Let V be an abelian group,

let W be a finite increasing filtration on V , and let N : V → V be a nilpotent

endomorphism which respects W . Assume that the relative monodromy filtration

W ′ of N with respect to W exists. Let w ∈ Z, and let m≥ 0. Then grW
′

w+mgrWw =

A ⊕ B, where A is the kernel of grW
′

w+mgrWw
Nm+1

−→ grW
′

w−m−2gr
W
w and B is the

image of N : grW
′

w+m+2gr
W
w → grW

′

w+mgrWw . The component A is called the primitive

component of grW
′

w+mgrWw .

3.1.2.

Let V,W,N,W ′ be as in Section 3.1.1. Denote the filtration on Hom(V,V ) induced

by W (resp., W ′) by W•Hom(V,V ) (resp., W ′
•Hom(V,V )). Then W ′

•Hom(V,V )
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is the relative monodromy filtration of the nilpotent homomorphism Ad(N) :

Hom(V,V )→Hom(V,V ) with respect to W•Hom(V,V ).

3.1.3.

Let (V,W,N,α) be a Deligne system of one variable over E. The first theorem

of Deligne is that there is a unique action τ = (τ0, τ1) of G
2
m on V satisfying the

following conditions (a)–(c).

(a) τ1 = α.

(b) τ0 splits W (0) =W .

(c) For k ≥ 1, let N−k ∈ grW−kHom(V,V ) be the weight −k part of N with

respect to the action τ0 of Gm on V . Then N−1 = 0, and for any k ≥ 2, the class

of N−k in grW
′

−2 gr
W
−kHom(V,V ) belongs to the primitive component.

3.1.4.

The second theorem of Deligne is the following.

Let (V,W,N1, . . . ,Nn, α) be a Deligne system of n variables over E. Then

there is a unique action of τ = (τj)0≤j≤n of Gn+1
m on V satisfying the following

conditions (a) and (b).

(a) τn = α.

(b) For 1 ≤ j ≤ n, (V,W (j−1),Nj , τj) is a Deligne system of one variable,

and the action (τj−1, τj) of G
2
m coincides with the action of G2

m in Section 3.1.3

associated to this Deligne system of one variable.

Furthermore, for this τ , we have the following (c), (d), and (e).

(c) For 0≤ j ≤ n, τj splits W (j).

(d) For 1≤ j ≤ k ≤ n, Nj is of weight −2 for τk.

(e) Let 1≤ j ≤ n, and let N̂j be the component of Nj of weight 0 for τj−1.

Then N̂j is of weight 0 for τk for any 0≤ k < j.

3.1.5.

If (V,W,N1, . . . ,Nn, F ) is a DH system of n variables, then we have the associated

action τ = (τj)0≤j≤n of Gn+1
m on V defined by the corresponding Deligne system

(V,W,N1, . . . ,Nn, α) (see Section 2.2).

3.2. SL(2)-orbits
3.2.1.

We say that a Deligne system (V,W,N1, . . . ,Nn, α) of n variables is an SL(2)-

orbit if

τk(a)Njτk(a)
−1 =Nj for 0≤ k < j ≤ n

for any a ∈Gm, where τ = (τj)0≤j≤n is as in Section 3.1.4 (i.e., Nj is of weight

0 for τk for 0≤ k < j ≤ n).

Recall that Nj is of weight −2 for τk if k ≥ j.
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We denote the full subcategory of Dn,E consisting of SL(2)-orbits by D̂n,E .

We say that a DH system H = (V,N1, . . . ,Nn, F ) of n variables is an SL(2)-

orbit if

τk(a)Njτk(a)
−1 =Nj for 0≤ k < j ≤ n and τk(a)F = F for 0≤ k ≤ n

for any a ∈Gm, where τ = (τj)0≤j≤n is as in Section 3.1.5.

We denote the full subcategory of DHn consisting of SL(2)-orbits by D̂Hn.

LEMMA 3.2.2

In the category Dn,E (resp., DHn), D̂n,E (resp., D̂Hn) is stable under taking

direct sums, tensor products, symmetric powers, exterior powers, duals, and Tate

twists.

3.2.3.

As is easily seen, we have the following equivalence of categories between D̂n,E

and the category of finite-dimensional representations of Gm × SL(2)n over E.

For an object (V,W,N1, . . . ,Nn, α) of Dn,E with the associated (τj)0≤j≤n, the

corresponding representation is (V,ρ) where ρ is the action of Gm × SL(2)n on

V characterized by the following properties (a), (b), and (c).

(a) The action of Gm =Gm × {1} ⊂Gm × SL(2)n is τ0.

(b) For 1 ≤ j ≤ n and a ∈ Gm, the action of
(
1/a 0
0 a

)
in the jth SL(2) is

τj(a)/τj−1(a).

(c) In the action of sl(2) on V induced by the action of the jth SL(2),(
0 1
0 0

)
∈ sl(2) acts as Nj .

We have the following.

(d) For 0≤ j ≤ n and a ∈Gm, τj(a) = ρ(a, g) where g = (gk)1≤k≤n ∈ SL(2)n

with gk =
(
1/a 1
0 a

)
if k ≤ j, and gk = 1 if k > j.

Conversely, for a finite-dimensional representation (V,ρ) of Gm×SL(2)n, the cor-

responding object (V,W,N1, . . . ,Nn, α) of D̂Hn is given as follows: W is defined

by τ0, the Nj ’s are given by the above (c), and α= τn is given by the case j = n

of the above (d).

3.2.4.

We next consider D̂Hn.

Let (V,ρ) be a finite-dimensional representation of Gm×SL(2)n over R such

that the action τn of Gm on V defined by the case j = n of Section 3.2.3(d)

has only even weights. Then we have an object [ρ] of D̂Hn defined as follows.

Let (V,W,N1, . . . ,Nn, α) be the object of D̂n,R corresponding to (V,ρ) as in

Section 3.2.3 (so α= τn has only even weights), and let V2r (r ∈ Z) be the weight

2r part of V with respect to α. Let [ρ] = (V,W,N1, . . . ,Nn, F ) where F is the

direct sum over r of the decreasing filtrations on V2r,C defined by F rV2r,C = V2r,C

and F r+1V2r,C = 0.
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Then a general object of D̂Hn is isomorphic to a direct sum of objects of

the form [ρ] ⊗H , where H is a pure Hodge structure which we regard as an

object of D̂Hn in the trivial way: Nj = 0 on H for all j, and W is the pure

weight filtration of the weight of H . More precisely, we have the description from

Proposition 3.2.5(b) of D̂Hn below.

The following Proposition 3.2.5(a) is a consequence of Section 3.2.3 and the

well-known classification of representations of SL(2)n. Proposition 3.2.5(b) is

deduced from Proposition 3.2.5(a) by using the functor DHn →Dn,R from Sec-

tion 2.2.

PROPOSITION 3.2.5

(a) For 1≤ j ≤ n, let Pj be the object of D̂n,E corresponding to the two-dimensional

representation of Gm × SL(2)n given by the projection to the jth SL(2). For k ∈ Z,

let Sk be the object of D̂n,E corresponding to the one-dimensional representation of

Gm × SL(2)n defined as (a, g) �→ ak (a ∈Gm, g ∈ SL(2)n).

Then the category D̂n,E is equivalent to the category of families

(Hm,k)m∈Nn,k∈Z, where Hm,k is a finite-dimensional E-vector space for each

m,k, satisfying Hm,k = 0 for almost all (m,k). The functor from the latter cate-

gory to the former category

(Hm,k)m,k �→
⊕
m,k

Symm(1)(P1)⊗ · · · ⊗ Symm(n)(Pn)⊗ Sk ⊗Hm,k

gives an equivalence of categories. Here Hm,k is regarded as an object of D̂n,E in

the following simple way: V =Hm,k, W0 = V , W−1 = 0, Nj = 0 for all j, and α

is trivial.

The inverse functor sends an object (V,W,N1, . . . ,Nn, α) to (Hm,k)m,k, where

Hm,k =
{
x ∈ V

∣∣∣ Nj(x) = 0, τj(a)x= ak
j∏

�=1

a−m(�)x (1≤ j ≤ n,a ∈Gm)
}
.

(b) For 1≤ j ≤ n, let Pj be the object [ρ] of D̂Hn corresponding to the two-

dimensional representation ρ of Gm × SL(2)n given by (a, g) �→ agj (a ∈ Gm,

g = (gk)k ∈ SL(2)n).

Then the category D̂Hn is equivalent to the category of families

(Hm,k)m∈Nn,k∈Z, where Hm,k is a pure Hodge structure of weight k for each m,k

satisfying Hm,k = 0 for almost all (m,k). The functor from the latter category to

the former category

(Hm,k)m,k �→
⊕
m,k

Symm(1)(P1)⊗ · · · ⊗ Symm(n)(Pn)⊗Hm,k

gives an equivalence of categories. Here Hm,k is regarded as an object of D̂Hn in

the trivial way explained as H in Section 3.2.4.

The inverse functor sends an object (V,W,N1, . . . ,Nn, F ) to (Hm,k)m,k,

where
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Hm,k =
{
x ∈ V

∣∣ Nj(x) = 0, τ0(a)x= akx,

τj(a)τj−1(a)
−1x= a−m(j)x (1≤ j ≤ n,a ∈Gm)

}
,

whose Hodge filtration is the restriction of F .

PROPOSITION 3.2.6

Let (V,W,N1, . . . ,Nn, α) be an object of D̂n,E . Fix 0 ≤ � ≤ j < k ≤ n. Then

for any nonzero elements yt of E (� + 1 ≤ t ≤ k), W (k) is the relative mon-

odromy filtration of
∑k

t=�+1 ytNt with respect to W (j). In other words, (V,W (j),∑k
t=�+1 ytNt, τk) is a Deligne system of one variable.

Proof

By Proposition 3.2.5(a), it is sufficient to check this in the cases of the objects Ps

(1≤ s≤ n) and Sw (w ∈ Z) in Proposition 3.2.5(a). These are checked easily. �

PROPOSITION 3.2.7

An object of D̂Hn is an IMHM. Moreover, if H = (V,W,N1, . . . ,Nn, F ) is an

object of D̂Hn, then for each w ∈ Z, there is a nondegenerate R-bilinear

form 〈·, ·〉w on grWw such that, for any yj > 0 (1 ≤ j ≤ n), (grWw , 〈·, ·〉w,
exp(

∑n
j=1 iyjNj)F (grWw )) is a polarized Hodge structure of weight w and such

that
〈
τj(a)u, τj(a)v

〉
w
= a2w〈u, v〉w, 〈Nju, v〉w + 〈u,Njv〉w = 0

for any u, v ∈ grWw , a ∈Gm, and 1≤ j ≤ n.

Proof

By Proposition 3.2.5(b), it is sufficient to prove this for the objects Pj of D̂Hn

(1≤ j ≤ n) in Proposition 3.2.5(b) and for a pure Hodge structure regarded as

an object of D̂Hn in the trivial way as H in Section 3.2.4.

For a pure Hodge structure, what we have to show is that any pure Hodge

structure is polarizable. (Note that we consider only R-Hodge structures in this

paper.) This is a well-known fact. In fact, any pure Hodge structure is a finite

direct sum of pure Hodge structure of the following forms: (a) pure Hodge struc-

ture of rank 1 of even weight, and (b) pure Hodge structure (V,F ) such that

V has an R-basis (e1, e2) with the property that, for some p �= q, e1 + ie2 is of

Hodge type (p, q) and e1 − ie2 is of Hodge type (q, p). It is easy to see that the

pure Hodge structures in these (a) and (b) are polarizable.

Next we consider the case of Pj . It is a two-dimensional vector space V over

R with basis (e1, e2), W1 = V , W0 = 0, Nje2 = e1, Nje1 = 0, and Nk = 0 for any

k �= j, and the Hodge filtration on VC is defined by F 0 = VC ⊃ F 1 =Ce2 ⊃ F 2 = 0.

The condition (g) in Section 2.1.9 is satisfied because the antisymmetric bilinear

form on grW1 defined by 〈e2, e1〉1 = 1 satisfies the condition (g). The condition (h)

in Section 2.1.9 is satisfied because W (n) is the relative monodromy filtration of
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Nj with respect to W and, for k �= j, W is the relative monodromy filtration of

Nk = 0 with respect to W . �

3.3. Associated SL(2)-orbits
3.3.1.

For an object (V,W,N1, . . . ,Nn, F ) of DHn, let

F̂ = s
(
F (grW

(n)

)
)
,

where s : grW
(n) ∼=→ V is the canonical splitting of W (n) associated to the mixed

Hodge structure (W (n), F ) (see Section 2.2.1).

PROPOSITION 3.3.2

(a) Let (V,W,N1, . . . ,Nn, α) be an object of Dn,E . Then (V,W, N̂1, . . . ,

N̂n, α), where the N̂j ’s are as in Section 3.1.4(e), is an object of D̂n,E .

(b) Let (V,W,N1, . . . ,Nn, F ) be an object of DHn. Then (V,W, N̂1, . . . ,

N̂n, F̂ ), where the N̂j ’s are as in Section 3.1.4(e) and F̂ is as in Section 3.3.1,

is an object of D̂Hn.

We call the object of D̂n,E (resp., D̂Hn) associated to an object of Dn,E (resp.,

DHn) in Proposition 3.3.2 the associated SL(2)-orbit.

The proof of Proposition 3.3.2(a) is easy. (The key point is Section 3.1.4(e).)

The following counterpart of Section 3.1.4(e) for F̂ proves Proposition 3.3.2(b).

PROPOSITION 3.3.3

Let (V,W,N1, . . . ,Nn, F ) be an object of DHn with the associated τ = (τj)0≤j≤n

(see Section 3.1.5). Let F̂ be as in Section 3.3.1. Then we have τj(a)F̂ = F̂ for

any 0≤ j ≤ n and any a ∈Gm.

In the case of an IMHM, this is [2, Lemma 5.5]. We give the proof in the general

case in Sections 3.3.7 and 3.3.8 below after preparations.

3.3.4.

Let (V,W,N,F ) be an IMHM of one variable. Then (V,W, exp(iN)F̂ ) is a mixed

Hodge structure. Let τ ′0 be the representation of Gm on V defined by the canon-

ical splitting of W associated to this mixed Hodge structure. On the other hand,

let (V,W,N,α) be the Deligne system of one variable associated to (V,W,N,F )

(see Section 2.2), and consider its τ0.

(a) An important theorem of Deligne is that

τ ′0 = τ0.

This is introduced in [2, Lemma 2.2], and the proof is given in that paper.

(b) On the other hand, in [7], it is proved that τ ′0(a)F̂ = F̂ for a ∈Gm.

By (a) and (b), we have that τ0(a)F̂ = F̂ .
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LEMMA 3.3.5

Let (V,W,N,F ) be a DH system of one variable. Assume that W is pure,

and assume that F̂ = F . Then this object is an SL(2)-orbit, that is, (V,W,

N,F ) ∈ D̂H1.

This is evident.

The following is a special case of Theorem 1.4. (This theorem shows that the

assumption F̂ = F is not necessary in the following lemma.)

LEMMA 3.3.6

Let (V,W,N,F ) be a DH system of one variable. Assume that F̂ = F . Then this

object is an IMHM.

This follows from Lemma 3.3.5 and Proposition 3.2.7.

3.3.7.

We prove Proposition 3.3.3 in the case where n = 1. Let (V,W,N,F ) be a DH

system of one variable. Then (V,W,N, F̂ ) is a DH system of one variable and

satisfies the assumption of Lemma 3.3.6. Hence it is an IMHM. Hence by Sec-

tion 3.3.4, we have that τ0(a)F̂ = F̂ .

3.3.8.

We prove Proposition 3.3.3 in general by induction on n. Assume that n ≥ 2.

Note that (V,W (1),N2, . . . ,Nn, F ) is an object of DHn−1 and the associated

action (τ ′j)0≤j≤n−1 of Gn
m is given by τ ′j = τj+1. By the hypothesis of induction,

(V,W (1), N̂2, . . . , N̂n, F̂ ) is an SL(2)-orbit. From this and from Proposition 3.2.7,

we have the following.

(a) (V,W (1), F ′) with F ′ = exp(
∑n

j=2 iN̂j)F̂ is a mixed Hodge structure.

(b) τ1(a)F
′ = F ′ for any a ∈Gm.

For each w ∈ Z, (a) and (b) also hold when we replace V by U :=Ww (w ∈ Z)

and replace W , Nj , and F by their restrictions to U . From this, we see that

(V,W,N1, F
′) is a DH system of one variable. By the case n = 1 of Proposi-

tion 3.3.3 proved in Section 3.3.7 and by (b), which shows that the functor

F �→ F̂ applied to F ′ does not change F ′, we have that τ0(a)F
′ = F ′ for any

a ∈Gm. Since τ0(a)N̂jτ0(a)
−1 = N̂j for any j, this proves that τ0(a)F̂ = F̂ . This

completes the proof of Proposition 3.3.3 and hence the proof of Proposition 3.3.2.

PROPOSITION 3.3.9

Let H = (V,W,N1, . . . ,Nn, α) (resp., H = (V,W,N1, . . . ,Nn, F )) be an object of

Dn,E (resp., DHn), and let φ(H) be the associated SL(2)-orbit. Then we have the

following.

(a) φ(φ(H)) = φ(H).
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(b) H is an SL(2)-orbit if and only if φ(H) =H .

(c) (τj)0≤j≤n associated to H is the same as that associated to φ(H).

Proof

To start, (c) is reduced to the case of Deligne systems of one variable (see Sec-

tion 3.1.3) and is seen easily in that case. Then, (a) and (b) follow from (c). �

PROPOSITION 3.3.10

For an object of Dn,E with E = R or C, or for an object of DHn, we use the

notation

β(y) =
n∏

j=0

τj
(
(yj/yj+1)

1/2
)

for y = (y0, . . . , yn) ∈Rn+1
>0 ,

where yn+1 denotes 1.

(a) For an object of Dn,E with E =R,C or of DHn and for y = (yj)0≤j≤n ∈
Rn+1

>0 such that yj/yj+1 →∞ (0≤ j < n), we have the convergences

β(y)ykNkβ(y)
−1 → N̂k, β(y)

(∑
j∈I

yjNj

)
β(y)−1 →

∑
j∈I

N̂j

for 1≤ k ≤ n and for any subset I of {1, . . . , n}.
(b) For any object of DHn and for y = (yj)0≤j≤n ∈ Rn+1

>0 such that

yj/yj+1 →∞ (0≤ j ≤ n, yn+1 denotes 1), we have the convergences

β(y)F → F̂ , β(y) exp
(∑
j∈I

iyjNj

)
F → exp

(∑
j∈I

iN̂j

)
F̂

for any subset I of {1, . . . , n}.

Proof

We prove (a). Write Nk =
∑

m∈Zn N
[m]
k , and write τj(a)N

[m]
k τj(a)

−1 = am(j)N
[m]
k

(1≤ j ≤ n, a ∈Gm). Then N
[m]
k = 0 unless m satisfies the following.

(1) m(j) =−2 for any j such that k ≤ j ≤ n.

(2) m(j)≤ 0 for 1≤ j < k.

Form satisfying (1), we have that β(y)ykNkβ(y)
−1 = (

∏k−1
j=0 (yj/yj+1)

m(j)/2) ·
N

[m]
k . When yj/yj+1 →∞ for 0≤ j < n, this converges to N

[m]
k if m(j) = 0 for

0≤ j < k, and to 0 otherwise, and hence converges to N̂
[m]
k for any m.

We prove (b). It is sufficient to prove that β(y)F → F̂ , because the rest

follows from this and from (a).

Let s : grW
(n) ∼=→ V be the canonical splitting of W (n) associated to the

mixed Hodge structure (V,W (n), F ), and let δ, ζ : grW
(n) → grW

(n)

be the maps

associated to this mixed Hodge structure (see Section 2.2.1). We have F =

s(exp(−ζ) exp(iδ)F (grW
(n)

)) = exp(ν)F̂ , where ν : V → V is the nilpotent linear

map characterized by exp(ν) = s exp(−ζ) exp(iδ)s−1. For any 0 ≤ j < n, k ∈ Z,
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and U :=W
(j)
k , the restriction (U,W (n)|U , F |U ) to U is a mixed Hodge structure

(see Section 2.1.2(f.2)), and δ and ζ associated to the last mixed Hodge structure

are compatible with the above δ and ζ , respectively (see Section 2.2.1). This

shows that ν is of weight less than or equal to 0 for τj for any 0 ≤ j < n. Fur-

thermore, ν is of weight less than or equal to −2 for τn. Hence β(y)νβ(y)
−1 → 0.

Furthermore, β(y)F̂ = F̂ by Proposition 3.3.3. Hence

β(y)F =
(
β(y) exp(ν)β(y)−1

)
β(y)F̂ → F̂ . �

REMARK 3.3.11

The terminology SL(2)-orbit in the present paper is different from that in [8].

In [8], we called an IMHM H = (V,W,N1, . . . ,Nn, F ) an SL(2)-orbit if

τk(a)Njτk(a)
−1 =Nj (1≤ k < j ≤ n) and τk(a)F = F (1≤ k ≤ n)

for any a ∈Gm. The difference is that τ0 does not appear in this formulation of [8].

We have the following.

(a) Let n = 0. Then H is an SL(2)-orbit in the sense of [8]. On the other

hand, H is an SL(2)-orbit in the sense of the present paper if and only if F̂ = F .

(b) For n≥ 1, H is an SL(2)-orbit in the sense of [8] if and only if N̂j =Nj

for 2≤ j ≤ n and F̂ = F . The difference is that in [8] there is no condition on N1.

(c) In the pure case, there is no difference between the formulation in [8]

and that in the present paper.

Thus there are more SL(2)-orbits in [8] than in the present paper. The SL(2)-

orbits in this paper are very simple objects and are useful by their simplicity. On

the other hand, the formulation of the SL(2)-orbit in [8] is useful for the study of

classifying spaces of degenerating mixed Hodge structures. In fact, in [8, Part 2],

the classifying space {MHS} of mixed Hodge structures is enlarged as

{MHS} =
{
SL(2)-orbit of zero variable

}
⊂

{
SL(2)-orbit

}

= {degenerating MHS}.

4. Proofs of the main results

4.1. DH systems and IMHM
We prove Theorem 1.4 from the introduction. We also prove the following.

THEOREM 4.1.1

Let E =R or C, and let (V,W,N1, . . . ,Nn, α) be an object of Dn,E . Take 0≤ �≤
j < k ≤ n. Then for yt > 0 (�+ 1≤ t≤ k) such that yt/yt+1 � 0 (�+ 1≤ t < k),

W (k) is the relative monodromy filtration of
∑k

t=�+1 ytNt with respect to W (j).

In other words, (V,W (j),
∑k

t=�+1 ytNt, τk) is a Deligne system of one variable.

Proof

For y = (yt)0≤t≤n ∈Rn+1
>0 , let Ny = β(y)(

∑k
t=�+1 ytNt)β(y)

−1 where β(y) is as in
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Proposition 3.3.10. Let N̂ =
∑k

t=�+1 N̂t. Then by Proposition 3.3.10(a), Ny con-

verges to N̂ when yt/yt+1 →∞ (0≤ t < n). By Propositions 3.3.2(a) and 3.2.6,

the map N̂m : grW
(k)

w+mgrW
(j)

w → grW
(k)

w−mgrW
(j)

w is an isomorphism for any w ∈ Z and

any m ≥ 0. It follows that if yt/yt+1 � 0 (0 ≤ t < n), then the map

Nm
y : grW

(k)

w+mgrW
(j)

w → grW
(k)

w−mgrW
(j)

w is an isomorphism and hence the map

(
∑k

t=�+1 ytNt)
m : grW

(k)

w+mgrW
(j)

w → grW
(k)

w−mgrW
(j)

w is an isomorphism. �

4.1.2.

We prove Theorem 1.4.

By Theorem 4.1.1, the condition (h) in the definition of an IMHM (Sec-

tion 2.1.9) is satisfied. In fact, for N ′
j =

∑j
k=1 aj,kNk with aj,k > 0 such that

aj,k/aj,k+1 � 0 (1≤ k < j), by Theorem 4.1.1, W (j) is the relative monodromy

filtration of N ′
j with respect to W .

It remains to consider the condition (g) in Section 2.1.9, that is, the polar-

izability of grW . On grWw , put the bilinear form in Proposition 3.2.7. For y =

(yj)0≤j≤n ∈ Rn+1
>0 , let F (y) = exp(

∑n
j=1 iyjNj)F , and let I = exp(

∑n
j=1 iN̂j)F̂ .

Let β(y) be as in Proposition 3.3.10. Then by Proposition 3.3.10(b), β(y)F (y)

converges to I when yj/yj+1 →∞ (0≤ j ≤ n, yn+1 denotes 1). Since (V,W, I) is a

mixed Hodge structure (see Proposition 3.2.7), we have that (V,W,β(y)F (y)) is a

mixed Hodge structure when yj/yj+1 � 0. Hence we can consider the Hermitian

form associated to (〈·, ·〉w, β(y)F (y)(grWw )). This Hermitian form converges to the

Hermitian form associated to (〈·, ·〉w, I(grWw )) which is positive definite. Hence the

former Hermitian form is positive definite if yj/yj+1 � 0. Hence when yj/yj+1 �
0, (V,W,F (y)) is a mixed Hodge structure and (grWw , 〈·, ·〉w, F (y)(grWw )) is a polar-

ized Hodge structure of weight w for each w. This proves Theorem 1.4.

By Theorem 1.4, SL(2)-orbit theorems for IMHM in [10], [3], [9], and [7]

are generalized to DHn. For example from [3, Theorem 4.20(vii)], we have the

following.

THEOREM 4.1.3

Let (V,W,N1, . . . ,Nn, F ) be an object of DHn. Assume that W is pure. Then

there is a convergent series g(T1, . . . , Tn) ∈ EndR(V )[[T1, . . . , Tn]] with constant

term 1 such that, when yj/yj+1 � 0 (1≤ j ≤ n, yn+1 denotes 1), we have

exp
( n∑
j=1

iyjNj

)
F = g(y2/y1, y3/y2, . . . , yn+1/yn)

·
n∏

j=1

τj
(
(yj+1/yj)

1/2
)
· exp

( n∑
j=1

iN̂j

)
F̂ .

4.2. On Theorem 1.7 and Proposition 1.8
Concerning Theorem 1.7, we give a more precise statement about the convergence

of the splitting of W .
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THEOREM 4.2.1

Let n≥ 1, and let (V,W,N1, . . . ,Nn, F ) (resp., (V,W,N1, . . . ,Nn, α)) be an object

of DHn (resp., Dn,E with E = R or C). For y = (y1, . . . , yn) ∈ Rn
>0, let H(y) =

(V,W, exp(
∑n

j=1 iyjNj)F ) (resp., H(y) = (V,W,
∑n

j=1 yjNj , α)). Let Ĥ = (V,W,

exp(
∑n

j=1 iN̂j)F̂ ) (resp., Ĥ = (V,W,
∑n

j=1 N̂j , α)). Let h= n (resp., h= n− 1).

Then there is a family (um)m∈Nh of R-linear (resp., E-linear) maps um : V → V

having the following properties.

(a) u0 = 1, and umWw ⊂Ww−1 for any m �= 0 and any w ∈ Z. For 1≤ j ≤ n,

umW
(j)
w ⊂W

(j)
w+m(j) for any m and any w.

(b) Let u(T1, . . . , Th) =
∑

m∈Nh umT
m(1)
1 · · ·Tm(h)

n . Then there is c > 0 such

that u(T1, . . . , Tn) absolutely converges if |Tj |< c for all j.

(c) For yj > 0 (1 ≤ j ≤ n) such that yj/yj+1 � 0 (1 ≤ j ≤ n where yn+1

denotes 1) (resp., (1 ≤ j < n)), let s(y) : grW
∼=→ V be the canonical splitting

(resp., the splitting by τ0) of W in Section 2.2.1 (resp., Section 3.1.3) associated

to the mixed Hodge structure (resp., Deligne system of one variable) H(y). Let

ŝ : grW
∼=→ V be the one associated to the mixed Hodge structure (resp., Deligne

system of one variable) Ĥ. Then

s(y) = u(y2/y1, . . . , yh+1/yh)ŝ

when yj/yj+1 � 0 (1≤ j ≤ h).

By Theorem 1.4, Theorems 1.7 and 4.2.1 for DHn follow from the corresponding

result in [7, Theorem 0.5] for IMHMs.

We will prove in Section 4.2.3 the parts concerning Dn,E (E = R,C) by

reducing them to the part of DHn.

LEMMA 4.2.2

Let E =R, let (V,W,N,α) be a Deligne system of one variable with the associated

(τj)j=0,1, and let (V ⊕2,W⊕2,N⊕2, F ) be the corresponding object of DH1 (see

Section 2.3). Then (V ⊕2,W⊕2, exp(iN⊕2)F ) is a mixed Hodge structure, and we

have τ ′0 = τ⊕2
0 where τ ′0 denotes the canonical splitting of W⊕2 (see Section 2.2.1)

associated to this mixed Hodge structure.

Proof

By Theorem 1.4, any object of DH1 is an IMHM. Hence (V ⊕2,W⊕2,N⊕2, F ) is

an IMHM. It is easy to see that F̂ = F by construction in Section 2.3. Hence the

result follows from Lemma 3.3.6 and Section 3.3.4(a). �

4.2.3.

We prove the parts of Dn,E in Theorems 1.7 and 4.2.1.

By Lemma 4.2.2, these theorems for Dn,E are reduced to the parts for DHn

by using the functor Dn,E →DHn (see Section 2.3). In fact, we have the result
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that (s(y) ◦ ŝ−1)⊕2 : V ⊕2 → V ⊕2 for yj/yj+1 � 0 (yn+1 denotes 1) is a conver-

gent series in y2/y1, . . . , yn+1/yn with constant term 1 satisfying the conditions in

Theorem 4.2.1(a) with W and W (j) (1≤ j ≤ n) replaced by W⊕2 and (W (j))⊕2,

respectively. This shows that u(y) := s(y) ◦ ŝ−1 : V → V is a convergent series

in y2/y1, . . . , yn+1/yn with constant term 1 satisfying the conditions in Theo-

rem 4.2.1(a). Since s(y) depends only on the ratio (y1 : · · · : yn), u(y) is actually
a series in y2/y1, . . . , yn/yn−1.

4.2.4.

For a ∈R, define the functor θa : DHn →DHn as

(V,W,N1, . . . ,Nn, F ) �→ (V,N ′
1, . . . ,N

′
n, F ) where N ′

j =

j−1∑
k=0

(ak/k!)Nj−k.

That is, (N ′
1, . . . ,N

′
n)

t = exp(aR)(N1, . . . ,Nn)
t where R is the (n,n) matrix whose

(j, k)th entry is 1 if k = j − 1 and 0 otherwise, and (·)t denotes the transpose.

For an object H of DHn, we have the following.

(a) θa+bH = θa(θbH).

Since θaθ−a is the identity functor by (a), we see that the following holds.

(b) θa : DHn →DHn is an equivalence of categories.

By Theorem 1.4, we have that the following holds.

(c) If H is an object of DHn, then θaH is an IMHM if a� 0.

For a ∈R, let DH(a)
n be the full subcategory of DHn consisting of all objects

H such that θaH is an IMHM. By (c), we have the following.

(d) DHn =
⋃

aDH(a)
n . Note that DH(a)

n ⊂DH(b)
n if a≤ b.

4.2.5.

We prove Proposition 1.8.

First we prove the part concerning DHn. Proposition 1.8 is true if DHn is

replaced by the category of IMHMs of n variables (see [5]). For a ∈R, the category

DH(a)
n in Section 4.2.4 is equivalent to the category of IMHMs of n variables by

the functor θa. This shows that DH(a)
n is an abelian category and the kernel and

the cokernel are described as in Proposition 1.8. By Section 4.2.4(d), this proves

Proposition 1.8 for DHn.

We prove the part concerning Dn,E . First we show that we can assume that

E = C. This is because an object of Dn,E or a morphism of Dn,E comes from

Dn,E′ for some subfield E′ of E which is finitely generated over Q. Then we

have an embedding of E′ into C as a subfield. Hence by Lemma 2.1.7(a), we are

reduced to the case E =C.

Next by Lemma 2.1.7(b), we can assume that E =R.

We prove Proposition 1.8 in the case in which E =R. We denote the functor

DHn →Dn,R in Section 2.2 by a and the functor Dn,R →DHn in Section 2.3 by b.

Let f :A= (VA,WA,N1,A, . . . ,Nn,A, αA)→B = (VB ,WB,N1,B, . . . ,Nn,B, αB) be

a morphism of Dn,R, let VK (resp., VC) be the kernel (resp., cokernel) of f : VA →
VB , and letWK ,Nj,K , αK on VK (resp., WC ,Nj,C , αC on VC) be the ones induced
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from those of A (resp., B). Then f induces a morphism b(f) : b(A)→ b(B) of

DHn, and the kernel (resp., cokernel) of b(f) is described as in the part of Proposi-

tion 1.8 concerning DHn, which we have proved. By applying the functor a, we see

that (V ⊕2
K ,W⊕2

K ,N⊕2
1,K , . . . ,N⊕2

n,K , α⊕2
K ) (resp., (V ⊕2

C ,W⊕2
C ,N⊕2

1,C , . . . ,N
⊕2
n,C , α

⊕2
C ))

is an object of Dn,R. This shows that K := (VK ,WK ,N1,K , . . . ,Nn,K , αK) (resp.,

C := (VC ,WC ,N1,C , . . . ,Nn,C , αC)) is an object of Dn,R. We have shown that

the kernel and the cokernel of a morphism in Dn,R exist and are described as

in Proposition 1.8. Let I be the cokernel of K → A (resp., J be the kernel of

B →C). Since DHn is an abelian category, the canonical morphism b(I)→ b(J)

is an isomorphism. By applying the functor a, we see that the canonical mor-

phism I⊕2 → J⊕2 is an isomorphism. Hence the canonical morphism I → J is an

isomorphism. This proves Proposition 1.8 for Dn,R.
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