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Abstract In this paper we study Lagrangian-invariant objects (LI objects for short) in

the derived categoryDb(A) of coherent sheaves on an abelian variety. For every element

of the complexified ample coneDA we construct a natural phase function on the set of LI

objects, which in the case dimA= 2 gives the phases with respect to the corresponding

Bridgeland stability. The construction is based on the relation between endofunctors of

Db(A) and a certain natural central extension of groups, associated withDA viewed as

a Hermitian symmetric space. In the case whenA is a power of an elliptic curve, we show

that our phase function has a natural interpretation in terms of the Fukaya category of

the mirror dual abelian variety. As a by-product of our study of LI objects we show that

the Bridgeland component of the stability space of an abelian surface contains all full

stabilities.
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Introduction

The notion of stability condition on triangulated categories, introduced by

Bridgeland in [6], axiomatizes the notion of stability of branes coming from the

study of deformations of superconformal field theories (see [8]). The hope is that

the space of stability conditions on a Calabi–Yau threefold is related to the mod-

uli spaces of complex structures on a mirror dual manifold. At present we have

examples of Bridgeland stabilities on Db(X) for any surface X . A program for

constructing such examples for Calabi–Yau threefolds was proposed in [2]. It was

implemented in [16] and [17] for some three-dimensional abelian varieties.

The goal of this paper is to test the existence of a stability condition on

Db(A) for any abelian variety A by looking at certain special objects in Db(A).

Kyoto Journal of Mathematics, Vol. 54, No. 2 (2014), 427–482

DOI 10.1215/21562261-2642449, © 2014 by Kyoto University

Received April 10, 2012. Revised October 5, 2012. Accepted March 13, 2013.

2010 Mathematics Subject Classification: Primary 14F05; Secondary 14K05, 53D37.

Author’s work supported in part by a National Science Foundation grant.

http://dx.doi.org/10.1215/21562261-2642449
http://dx.doi.org/10.1215/21562261-2642449
http://www.ams.org/msc/
http://www.ams.org/msc/


428 Alexander Polishchuk

More precisely, for an element ω = iα+β ∈DA ⊂NS(A)⊗C in the complexified

ample cone (defined by the condition that α is ample), one expects to have a

stability condition on Db(A) with the central charge

Z(F ) =

∫
A

exp(−ω) · ch(F ),

where F ∈Db(A). The starting point of this work is the observation that there are

certain objects in Db(A) that are automatically semistable with respect to any

nice stability condition (see Proposition 3.1.4). Namely, these are Lagrangian-

invariant objects (LI objects for short) defined in [31] (see also Definition 2.1.1).

The simplest examples are the structure sheaves of points Ox. To get other

examples one can consider images of Ox under autoequivalences of Db(A), but

in general these do not exhaust all LI objects (see Remark 4.2.2 and Proposi-

tion 4.2.3). Thus, a stability condition should give a phase for any LI object F ,

that is, a lifting of ArgZ(F ) ∈ R/2πZ to R. Furthermore, a nonzero morphism

F1 → F2 can exist only if the phase of F1 does not exceed the phase of F2. The

main result of this paper is the construction of such a phase function associ-

ated with each ω ∈DA. We also verify some properties of this function that one

expects from the theory of stability conditions (see Theorem 3.3.2).

The major role in our construction is played by the action of a certain group

on the set SH
LI
/N∗ of classes of LI objects modulo the equivalence relation gen-

erated by translations and tensoring with line bundles in Pic0(A) and with vector

spaces. This group, which we denote by Ũ(Q), is a central extension by Z of the

group of Q-points of an algebraic group U=UXA
defined as automorphisms of

the abelian variety XA =A× Â compatible with the skew-symmetric autoduality

of XA. The preimage of the subgroup of Z-points in Ũ(Q) is closely related to

the group of autoequivalences of Db(A) (see [21], [23], [25]). The main idea that

brings the Siegel domain DA into the picture is that the above central extension

has a natural interpretation in terms of the action of U(Q) on DA (see Theo-

rem 2.3.2). This allows us to parameterize the set SH
LI
/N∗ of classes of LI objects

by points of a natural Z-covering of the set of Q-points of a certain homogeneous

algebraic variety LG= LGA for the group U (the points LG(Q) are in bijection

with Lagrangian abelian subvarieties in A× Â), and the phase function appears

naturally in this context.

If dimA= 2, then the stability condition corresponding to ω was constructed

by Bridgeland in [7], and we check that our phases for LI objects match the ones

coming from this stability condition (see Section 3.4).

In the case when A = En, where E is an elliptic curve without complex

multiplication, we give a mirror-symmetric interpretation of our picture in terms

of the Fukaya category of the mirror dual abelian variety (following the recipe

of [12]). We show that the central charge on LI objects in Db(A) defined using

ω ∈ DA matches the integral of the holomorphic volume form over the corre-

sponding Lagrangian tori and, hence, that LI objects in Db(A) give rise to graded

Lagrangians on the mirror dual side (see Section 3.5).
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We also observe that the set L̃G(Q) parameterizing classes of LI objects

also parameterizes a certain natural collection of t-structures on Db(A), gener-

alizing the ones obtained from the standard t-structure by applying autoequiva-

lences. (We call them quasistandard.) We conjecture that there is also a natural

t-structure associated with every point of L̃G(R) whose heart is equivalent to

the category of holomorphic bundles on the corresponding noncommutative torus

(see [4], [28], [32]).

Another by-product of our study is a refinement of the results of [21] and

[12] on the action of autoequivalences of Db(A) on numerical classes of objects.

Namely, we construct a natural double covering Spin→U of algebraic groups

over Q and an algebraic representation of Spin on the vector space associated

with the numerical Grothendieck group of A such that the action of elements

projecting to U(Q) is induced by endofunctors of Db(A) (see Theorem 2.5.3).

The paper is organized as follows. Section 1 contains some auxiliary results

not involving derived categories. In particular, we give an interpretation of the

index of a nondegenerate line bundle on an abelian variety in terms of the function

Argχ on the complexified ample cone (see Theorem 1.2.1). We also prove some

useful results about the group U and the variety of Lagrangian subvarieties LG

in A × Â. In Section 2 we study the central extension Ũ(Q) → U(Q) coming

from a natural 1-cocycle with values in O∗(DA) and its action on LI objects

in Db(A) and their numerical classes. In Section 3 we parameterize LI objects

(up to a certain equivalence) by points of a natural Z-covering L̃G(Q)→ LG(Q)

equipped with an action of Ũ(Q), and we construct a family of phase functions

on L̃G(Q) parameterized by DA × C, equivariantly with respect to Ũ(Q). We

also study the connection with Bridgeland stability conditions on abelian surfaces

(see Theorem 3.4.3) and with mirror symmetry (see Section 3.5). Also, as a by-

product of our study of LI objects we show that any full stability on an abelian

surface A belongs to the Bridgeland component of the stability space Stab(A)

(see Proposition 3.4.4). In Section 4 we construct a family of t-structures on

Db(A) parameterized by L̃G(Q) and study a relation between LG(Q)/U(Q)

and the Fourier–Mukai partners of A (see Section 4.2).

NOTATIONS AND CONVENTIONS

We work over a fixed algebraically closed field k. We say that an object F of a k-

linear category C is endosimple if HomC(F,F ) = k. For a scheme X we denote by

Db(X) the bounded derived category of coherent sheaves on X . We say that an

object F ∈Db(X) is cohomologically pure if there exists a coherent sheaf H such

that F �H[n] for n ∈ Z. We denote by AbQ the category of abelian varieties up

to an isogeny (i.e., the localization of the category of abelian varieties over k with

respect to the class of isogenies). When we want to consider the F -vector space

associated with a Z-lattice M , where F = Q, R, or C, as an algebraic variety

over F , we denote it by MF .
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1. Preliminaries

Throughout this paper A denotes an abelian variety over k.

1.1. Degree, trace, and Euler bilinear form
Recall that for f ∈ End(A) one has

deg(f) = detTl(f),

where Tl(f) is the representation of f on the Tate module Tl(A) for l �= char(k)

(see [22, Chapter 19, Theorem 4]). Thus, extending deg to a polynomial function

deg : End(A)⊗Q→Q,

homogeneous of degree 2g, we have

deg(1 + tf) = 1+ t ·Tr(f) +O(t2),

where Tr(f) is given by the trace of the action of f on Tl(A)⊗Zl
Ql. Furthermore,

f �→Tr(f · f ′) is a positive definite quadratic form on End(A)⊗Q, where f �→ f ′

is the Rosati involution associated with a polarization of A (see [22, Chapter 21,

Theorem 1]).

Let us fix a polarization on A, and we denote by End(A)+ ⊗Q⊂ End(A)⊗
Q the subspace of elements invariant with respect to the corresponding Rosati

involution. Note that the quadratic form Tr(f2) on End(A)+ ⊗ Q is positive

definite.

PROPOSITION 1.1.1

An element f ∈ End(A)⊗C is determined by the polynomial function

End(A)⊗C→C : x �→ deg(f − x).

Furthermore, if f is invariant with respect to the Rosati involution, then it is

determined by the restriction of the above function to End(A)+ ⊗C.

Proof

We have to check that if deg(f1 − x) = deg(f2 − x) for all x ∈ End(A), then

f1 = f2. Adding to f1 and f2 the same element of End(A)⊗ C, we can assume

that f1 and f2 are invertible in End(A)⊗C. Observe also that deg(f1) = deg(f2).

(This follows by substituting x= 0.) Thus, we obtain

deg(1− xf−1
1 ) = deg(f1 − x)deg(f1)

−1 = deg(f2 − x)deg(f2)
−1 = deg(1− xf−1

2 ).

Considering the linear terms in x we derive

Tr(xf−1
1 ) = Tr(xf−1

2 ).

The nondegeneracy of the form Tr(fg) implies that f−1
1 = f−1

2 .

To prove the second statement, we repeat the above argument, letting x vary

only in End(A)+ ⊗C. �
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We always use the standard identification

NS(A)⊗Q
∼� Hom(A, Â)+ ⊗Q : L �→ φL,

where Hom(A, Â)+ ⊗Q⊂Hom(A, Â)⊗Q consists of self-dual homomorphisms.

The Euler characteristic defines a polynomial function χ : NS(A) ⊗ C → C of

degree g = dimA, which we also view as a function on Hom(A, Â)+⊗C. One has

χ2 = deg (see [22, Chapter 16]).

Recall that the Grothendieck group K0(A) carries the Euler bilinear form

χ
(
[E], [F ]

)
:=

∑
i

(−1)i dimHomi(E,F ),

where E,F ∈ Db(A). We denote by N (A) the numerical Grothendieck group,

that is, the quotient of K0(A) by the kernel of this form; N (A) is a free abelian

group of finite rank (see [9, Example 19.1.4]). Associating with a line bundle L

its class [L] in N (A) defines a polynomial map between free abelian groups of

finite rank

� : NS(A)→N (A).

Therefore, we have the induced polynomial morphism between the corresponding

Q-vector spaces

(1.1.1) � : NS(A)Q →N (A)Q.

COROLLARY 1.1.2

An element φ ∈NS(A)⊗C is determined by the corresponding polynomial func-

tion

NS(A)→C : x �→ χ
(
�(φ), �(x)

)
.

Proof

Since NS(A) is Zariski-dense in NS(A)C, it is enough to prove the similar state-

ment with the polynomial function χ(�(φ), �(·)) on NS(A)⊗C. Note that

χ
(
�(φ), �(x)

)2
= χ

(
�(x− φ)

)2
= deg(x− φ),

where we view x and φ as elements of Hom(A, Â)+ ⊗ C. Let φ0 : A → Â be a

polarization. Then the map x �→ φ−1
0 ◦x gives an isomorphism Hom(A, Â)+⊗Q�

End(A)+ ⊗Q (and the corresponding isomorphism of C-vector spaces). Further-
more, this isomorphism rescales deg by the constant deg(φ0). It remains to apply

Proposition 1.1.1. �

REMARK 1.1.3

When the ground field is C we can identify N (A) ⊗ Q with the subspace of

algebraic cycles in H∗(A,Q) via the Chern character and NS(A)⊗Q with alge-

braic cycles in H2(A,Q). Then � is induced by the exponential map H2(A,Q)→
H∗(A,Q).
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1.2. Characterization of the index of a line bundle
Recall that if L is a nondegenerate line bundle on A (i.e., the corresponding

map φL : A→ Â is an isogeny), then its index i(L) is defined by the condition

Hi(A,L) = 0 for i �= i(L). We will use the following recipe for computing i(L):

it is the number of positive roots of the polynomial P (n) = χ(L ⊗ Ln
0 ), where

L0 is an ample line bundle on A (see [22, Chapter 16]). The index function i(·)
extends uniquely to a Q>0-invariant function on NS(A)Q.

Let DA ⊂NS(A)⊗C be the complexified ample cone. Note that the function

deg and hence χ do not vanish on DA (see [12, Lemma A.3]). Since DA is simply

connected, there is a unique continuous branch of the argument Arg(χ(x)) on

DA such that, for x= iH , where H is an ample class (an element of the ample

cone), we have Arg(χ(iH)) = gπ/2, where g = dimA. It is easy to see that this

branch does not depend on a choice of H . Then for a class x ∈NS(A)⊗R with

χ(x) �= 0 we can define by continuity the argument Arg(χ(x)); that is, we set

Arg
(
χ(x)

)
= lim

t→0+
Arg

(
χ(x+ itH)

)
,

where H is an ample class. Note that, since χ(x) is real, the number Arg(χ(x))/π

is an integer.

THEOREM 1.2.1

For the continuous branch of Arg(χ(·)) on DA, satisfying Arg(χ(iH)) = gπ/2

(where H is ample), one has

Arg
(
χ(x)

)
= i(x)π

for every x ∈NS(A)⊗Q with χ(x) �= 0.

Proof

First, let us consider the case when x is in the ample cone. For z ∈ C we have

χ(zx) = zg · χ(x). Thus, varying z on a unit circle from 1 to i we obtain

Arg
(
χ(ix)

)
=Arg

(
χ(x)

)
+

gπ

2
.

Since Arg(χ(ix)) = gπ/2, we obtain that Arg(χ(x)) = 0. Next, assume that x ∈
NS(A)⊂NS(A)⊗Q. Then for any ample class H the polynomial

P (t) = χ(x+ tH)

has i(x) positive roots, counted with multiplicity (see [22, Chapter 16]). Let

0 < t1 < · · · < tr be all the positive roots of P (t). For t 
 0 the class x + tH

is ample, and so Argχ(x + tH) = 0. Now we are going to decrease t until it

reaches zero and observe the change of Arg(P (t)) = Arg(χ(x+ tH)). Note that

it can change only when t passes one of the roots tj . If tj is a root of P (t) of

multiplicity mj , then for sufficiently small ε > 0 one has

Arg
(
P (tj − ε)

)
=Arg

(
P (tj + ε)

)
+mjπ.
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Adding up the changes we get that

Arg
(
χ(x)

)
=Arg

(
P (0)

)
= i(x)π.

Since i(x) does not change upon rescaling by a positive rational number, the

assertion for any x ∈NS(A)⊗Q follows. �

COROLLARY 1.2.2

For the branch of Arg(deg(·)) on DA normalized by Arg(deg(iH)) = gπ one has

Arg
(
deg(x)

)
= i(x) · 2π

for any x ∈NS(A)⊗Q such that deg(x) �= 0.

We will also need some information on the restriction of Arg(χ(·)) to lines of the

form iH +Rx⊂DA.

LEMMA 1.2.3

(i) For any ample class H ∈NS(A)⊗Q and any x ∈NS0(A,Q) let us choose

any continuous branch of t �→Arg(χ(iH+ tx)), where t ∈R. Then for 0≤ t1 < t2
one has

Arg
(
χ(iH + t1x)

)
−

(
g− i(x)

)π
2
< Arg

(
χ(iH + t2x)

)
(1.2.1)

< Arg
(
χ(iH + t1x)

)
+ i(x)

π

2
.

(ii) For any continuous branch of Arg(deg(·)) on DA one has

Arg
(
deg(ω)

)
≤Arg

(
deg(iH)

)
+ gπ

for any ω ∈DA, where H is an ample class.

Proof

(i) Indeed, the polynomial

P (t) = χ(iH + tx) = igχ
(
H +

t

i
x
)

has all roots purely imaginary, and exactly i(x) of them are in the upper half-

plane, counted with multiplicity (see [22, Chapter 16]). Let us write P (t) = c · (t−
z1) · . . . · (t− zg). Since P (t) �= 0 for all t ∈R, we can choose for every j = 1, . . . , g

a continuous branch of t �→Arg(t− zj) along the real line and use the branch

ArgP (t) = Arg(c) +Arg(t− z1) + · · ·+Arg(t− zg).

Suppose the roots z1, . . . , zi(x) are in the upper half-plane while the zj ’s for

j > i(x) are in the lower half-plane. Then for each j > i(x) the function t �→
Arg(t− zj) is strictly decreasing, and we have

Arg(t1 − zj)−
π

2
<Arg(t2 − zj)<Arg(t1 − zj).
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On the other hand, for j ≤ i(x) we have

Arg(t1 − zj)<Arg(t2 − zj)<Arg(t1 − zj) +
π

2
.

Summing up over all the roots gives (1.2.1).

(ii) Applying (1.2.1) to t1 = 0 and t2 = 1 we get

Arg
(
χ(iH + x)

)
≤Arg

(
χ(iH)

)
+ i(x)

π

2
≤Arg

(
χ(iH)

)
+ g

π

2
.

Since deg = χ2 on NS, we get the required inequality for points in DA with

rational real and imaginary parts. The general case follows by continuity. �

1.3. The group UA×Â

Recall (see [12], [21], [23], [24]) that with every abelian variety A one can associate

an algebraic group U=UXA
over Q, where XA :=A× Â, as follows. For every

F ⊂Q we define the group of F -points U(F ) as a subgroup of invertible elements

of the algebra End(XA) ⊗ F consisting of g =
(
a b
c d

)
∈ End(XA) ⊗ F with a ∈

Hom(A,A)⊗ F , b ∈Hom(Â,A)⊗ F , and so forth, such that

g−1 =

(
d̂ −b̂

−ĉ â

)
∈ End(A× Â)⊗ F.

The arithmetic subgroup

U(Z) :=U(Q)∩End(A× Â)

is closely related to the group of autoequivalences of Db(A) (see [23]). When we

view the matrix element b above as a function on U(F ) we denote it by b(g).

Our point of view is to consider XA as a “symplectic object” in the cat-

egory of abelian varieties using the skew-symmetric self-duality ηA : XA→̃X̂A

associated with the biextension p∗14P ⊗ p∗23P−1 of XA×XA (see [25], [31]). Then

elements of U(Z) are precisely symplectic automorphisms of XA, that is, auto-

morphisms compatible with ηA. The development of this point of view in [31]

was to view elements of U(Q) as Lagrangian correspondences from XA to itself,

which allowed us to define endofunctors of Db(A) associated with elements of

U(Q) (see [31, Section 3] and Section 2.1 below).

Note that we have the algebraic subgroup T � (End(A)Q)
∗ ⊂U consisting

of diagonal matrices of the form (
a−1 0

0 â

)
.

The following facts about the group U follow easily from Albert’s classification

of the endomorphism algebras of simple abelian varieties (see [12], [24]).

LEMMA 1.3.1

(i) Let us fix a polarization φ :A→ Â, and let Z⊂T be the algebraic sub-

group corresponding to a ∈ (End(A)Q)
∗ such that a lies in the center of End(A)Q

and a−1 = φ−1âφ. Then the group U is an almost direct product of the semisimple

commutant subgroup SU and of Z.
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(ii) The algebraic group U is connected, and the Lie group U(R) is connected
(with respect to the classical topology).

We denote by U0 ⊂ U the Zariski-open subset given by the inequality

deg(b(g)) �= 0. Note that for any g ∈ U0(R) we have deg(b(g)) > 0 (since the

function deg is nonnegative on Hom(A, Â)⊗R).
The following condition on a subset of a group was introduced in [34, Sec-

tion IV.42]. (The term is due to D. Kazhdan.)

DEFINITION 1.3.2

Let G be a group. A subset B ⊂G is called big if for any g1, g2, g3 ∈G one has

B−1 ∩Bg1 ∩Bg2 ∩Bg3 �= ∅.

This notion is useful because of the following result. (Part (i) is due to Weil, and

part (ii) is a more precise version of [26, Lemma 4.2].)

LEMMA 1.3.3

(i) Let B ⊂G be a big subset. Then G is isomorphic to the abstract group

generated by elements [b] for b ∈B subject to the relations [b1][b2] = [b1b2] when-

ever b1b2 ∈B.

(ii) Let Z be an abelian group (with the trivial G-action). Let c, c′ :G×G→
Z be a pair of 2-cocycles such that

c(b1, b2) = c′(b1, b2)

for any b1, b2 ∈ B with b1b2 ∈ B. Let p : Gc → G (resp., p′ : Gc′ → G) be the

extension of G by Z associated with c (resp., c′), and let σ : G → Gc (resp.,

σ′ :G→Gc′) be the natural set-theoretic sections. Then there is a unique isomor-

phism of extensions i :Gc →Gc′ such that i(σ(b)) = σ′(b) (and identical on Z).

Proof

(i) This is [34, IV.42, Lemma 6].

(ii) Note that the subset p−1(B)⊂Gc (resp., (p′)−1(B)⊂Gc′) is big. Thus,

we can define a homomorphism Gc → Gc′ by requiring that it sends zσ(b) to

zσ′(b) for b ∈B, provided we check the compatibility with the relations

σ(b1)σ(b2) = c(b1, b2)σ(b1b2),

σ′(b1)σ
′(b2) = c′(b1, b2)σ

′(b1b2),

whenever b1, b2, b1b2 ∈B. But this boils down to the equality c(b1, b2) = c′(b1, b2).

�

Next, we will show that the subset U0(Q)⊂U(Q) (resp., U0(R)⊂U(R)) is big.
Note that the subset U0(Q)∩U(Z) in the arithmetic group U(Z) is also big (see

Remark 1.4.2).
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LEMMA 1.3.4

For any field extension Q ⊂ F the set U(F ) is Zariski-dense in U. Hence, the

subset U0(F )⊂U(F ) is big in U(F ).

Proof

Since U is connected, the density of U(F ) follows from [5, Corollary 18.3]. Thus,

for any g1, g2, g3 ∈U(F ) the intersection U0 ∩U0g1 ∩U0g2 ∩U0g3 contains a

point of U(F ). �

The group U has two natural parabolic subgroups: P+ is the intersection of U

with the subgroup of upper-triangular 2×2 matrices in End(A× Â)Q, and P− is

the intersection with the subgroup of lower-triangular matrices. We also denote

by N+ ⊂P+ (resp., N− ⊂P−) the subgroup of strictly upper-triangular (resp.,

strictly lower-triangular) matrices. Note that both N+ and N− are isomorphic

to NS(A)Q.

LEMMA 1.3.5

Any normal subgroup of U(Q) containing P−(Q) is the entire U(Q).

Proof

Since P+(Q) is conjugate to P−(Q) by an element

(1.3.1) wφ =

(
0 φ−1

−φ 0

)
,

where φ :A→ Â is a polarization, it is enough to check that U(Q) is generated

by the subgroups P+(Q) and P−(Q). We can write any g =
(
a b
c d

)
∈U(Q) with

invertible a as

g =

(
1 0

ca−1 1

)
·
(
a 0

0 â−1

)
·
(
1 a−1b

0 1

)
.

Finally, any element of U0(Q) has form gwφ with g as above. Thus, the statement

follows from Lemma 1.3.4. �

1.4. Action of U(Q) on Lagrangian subvarieties
Recall that an abelian subvariety L⊂XA =A× Â is isotropic if the composition

L→XA
ηA� X̂A → L̂

is zero, where ηA is the standard skew-symmetric self-duality. If in addition

dimL= dimA, then L is called Lagrangian (for other equivalent definitions see

[31, Section 2.2]). In this case ηA induces an isomorphism XA/L� L̂.

To enumerate all Lagrangian abelian subvarieties in XA it is convenient to

work in the semisimple category AbQ of abelian varieties up to isogeny. Note that

abelian subvarieties of XA are in natural bijection with subobjects of XA in the

category AbQ. Thus, we can use a similar notion of a Lagrangian subvariety in

AbQ. Now if L⊂XA is Lagrangian, then we have an isomorphism XA � L⊕ L̂ in
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AbQ, which implies that L is isomorphic to A in AbQ. Thus, we can describe a

Lagrangian subvariety (in the category AbQ) as an image of a morphism A→XA,

that is, by a pair (x, y), where x ∈ End(A)⊗Q, y ∈Hom(A, Â)⊗Q. The isotropy

condition is the equation

ŷx= x̂y.

The existence of a splitting XA →A in AbQ is equivalent to the condition

(�)
(
End(A)⊗Q

)
x+

(
Hom(Â,A)⊗Q

)
y =End(A)⊗Q.

The pairs (x1, y1) and (x2, y2) define the same subvariety if and only if there

exists an automorphism α of A in AbQ such that x2 = x1α, y2 = y1α. Thus, we

obtain an identification of the set of Lagrangian subvarieties in XA with the set

(1.4.1) LG(Q) :=
{
(x, y)

∣∣ ŷx= x̂y, (�)
}
/(x, y)∼ (xα, yα),

where x ∈ End(A)⊗Q, y ∈Hom(A, Â)⊗Q, and α ∈ (End(A)⊗Q)∗. We denote

by (x : y) ∈ LG(Q) the equivalence class of (x, y) ∈ End(A)⊗Q⊕Hom(A, Â)⊗Q.

Fixing a polarization on A we can identify A with Â, so that the dualization

gets replaced by the Rosati involution x �→ x′ on A := End(A)⊗Q. We claim that

the set LG(Q) can be identified with the set of Q-points of a certain homogeneous

projective variety LG for the group U (a subvariety in the Grassmannian of

right rank-1 A-submodules in A2). Here the action of U on LG is induced

by the natural action of End(XA)Q on pairs (x, y) (viewed as column vectors).

Consider the point (0 : φ0) ∈ LG(Q), where φ0 : A→ Â is a polarization. (The

corresponding Lagrangian is 0× Â⊂XA.) Note that the stabilizer subgroup of

(O : φ0) is the subgroup P− ⊂U of lower-triangular matrices. Thus, we define

LG= LGA =U/P−.

The fact that the set (1.4.1) is indeed the set of Q-points of LG follows from the

transitivity of the action of U(Q) on the set of Lagrangian subvarieties that we

will prove below (see Proposition 1.4.3).

We start with the following useful result.

PROPOSITION 1.4.1

For any collection of Lagrangian subvarieties L1, . . . ,Lr ⊂ XA there exists an

element g ∈U(Z) such that all the Lagrangians gL1, . . . , gLr are transversal to

{0} × Â.

Proof

We use an argument similar to the first part of the proof of [31, Theorem 3.2.11].

Consider elements in U(Z) of the form g+nb for some polarization b : Â→A, where

n ∈ Z. Then the condition that g+nbLi is transversal to {0} × Â is equivalent to

Li being transversal to g+−nb({0} × Â) = Γ(−nb). By [31, Lemma 2.2.7(ii)], the

latter transversality holds for all n except for a finite number. �
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REMARK 1.4.2

The above proposition immediately implies that the subset U0 ∩U(Z) of the

group U(Z) is big (see Section 1.3). Indeed, for any given g1, . . . , gr ∈U(Z) con-
sider the Lagrangian subvarieties Li = gi({0} × Â) ⊂XA, i = 1, . . . , n. Then we

can find g ∈U(Z) such that gLi = ggi({0} × Â) for i = 1, . . . , n are transversal

to {0} × Â. Thus, we get ggi ∈U0 as required. The same proof works for any

finite-index subgroup Γ⊂U(Z). The fact that U0 ∩ Γ is a big subset of Γ was

stated in [26, Lemma 4.3]. However, the proof in [26, Lemma 4.3] was not correct:

it relied on the absence of compact factors in SU(R), which is not always the

case (see [12, Corollary 5.3.3]).

Lagrangian subvarieties in XA, transversal to 0× Â, are all graphs Γ(f) of sym-

metric homomorphisms f ∈Hom(A, Â)+⊗Q (see [31, Example 2.2.4]). This cor-

responds to points of LG(Q) of the form (1 : f), which are precisely Q-points of

the Zariski-open subset

(1.4.2) NS(A)Q �N−wφP
−/P− ⊂ LG,

where wφ is given by (1.3.1) and N− ⊂ U is the subgroup of strictly lower-

triangular matrices. In other words, the subset (1.4.2) is just the N−-orbit of the

point (1 : 0) ∈ LG.

PROPOSITION 1.4.3

(i) The action of U(Q) on the set of Lagrangian subvarieties in XA is tran-

sitive.

(ii) The action of U(R) on LG(R) is transitive.

Proof

(i) The subgroup N−(Q)�NS(A)⊗Q acts on the subset NS(A)Q ⊂ LG by

translations, so the corresponding action on the set of Q-points is transitive. By

Proposition 1.4.1, any point of LG(Q) is obtained from a Q-point of this subset

by an action of U(Z), so the required transitivity follows.

(ii) As is well known, it suffices to check the triviality of the kernel of the

map of Galois cohomology H1(R,P−) → H1(R,U). Since P− is a semidirect

product of
∏

iGLni(Di) (where the Di’s are skew fields) and of Gn
a , in fact, the

set H1(R,P−) is trivial. �

The description (1.4.1) of Q-points of LG can be extended to a similar description

of LG(F ), where F =R or C, so we can still use homogeneous coordinates (x : y),

where x ∈ End(A)⊗ F and y ∈Hom(A, Â)⊗ F , to describe points of LG(F ).

The complexified ample cone DA ⊂ NS(A) ⊗ C is a Hermitian symmetric

space (a tube domain) with the group of isometries U(R) (see [21, Section 5],

[12, Section 8]). Namely, the group U(R) acts on DA by

(1.4.3) g(ω) = (c+ dω)(a+ bω)−1.
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This action is well defined since deg(a+bω) �= 0 for ω ∈DA (see [12, Lemma A3]).

Furthermore, it is transitive, and the stabilizer of a point ω ∈DA is a maximal

compact subgroup of U(R) (see [12, Theorem A1]). Also, the natural embedding

DA ↪→ LG(C) : ω �→ (1 : ω)

is U(R)-equivariant.

2. LI functors and central extensions

2.1. LI objects and functors
Recall that every object K ⊂Db(A×A) gives rise to a functor of Fourier–Mukai

type

ΦK :Db(A)→Db(A) : F �→Rp2∗(p
∗
1F ⊗L K),

where p1 and p2 are projections of A × A to its factors. (We refer to K as

the kernel of the functor ΦK .) The composition ΦK1 ◦ ΦK2 corresponds to the

convolution of kernels K2 ◦A K1 (see [20]; our notation is as in [30]).

Recall that in [31] we have extended the relation between autoequivalences

of Db(A) and the group U(Z) (see [23], [25]) to a construction of endofunctors

of Db(A) (given by kernels on A×A) associated with elements of U(Q) suitably

enhanced. Namely, to every element g ∈ U(Q) we associate its graph L(g) ⊂
XA×XA, which we view as a Lagrangian subvariety in XA×XA with respect to

the symplectic self-duality (−ηA)× ηA (see [31, Section 3.1]). The corresponding

kernel on A×A is constructed as a generator of the subcategory of L(g)-invariants

with respect to the action of XA ×XA on Db(A×A).

More precisely, every Lagrangian subvariety L⊂XA can be equipped with

a line bundle α such that we have an isomorphism of line bundles on L×L

(2.1.1) αl1+l2 ⊗ α−1
l1

⊗ α−1
l2

�PpA(l1),pÂ(l2),

where pA : L → A and pÂ : L → Â are the projections and P is the Poincaré

bundle on A × Â. We refer to (L,α) as Lagrangian pair. For every such pair

(L,α) there exists a unique up to an isomorphism endosimple coherent sheaf

SL,α on A together with an isomorphism

(2.1.2) (SL,α)x+pA(l) ⊗Px,pÂ(l) ⊗ αl � (SL,α)x

on L × A (where l ∈ L, x ∈ A), satisfying a certain natural compatibility con-

dition. We view this condition as invariance with respect to the lifting of L to

the Heisenberg groupoid H=HA, acting on Db(A) (and on Db(A× S) for any

scheme S). By definition, H is a Picard groupoid extension of XA by the stack

of line bundles, so its objects over a scheme S are pairs: a point (x, ξ) ∈XA(S)

and a line bundle L on S. The group operation is determined by

(x1, ξ1) · (x2, ξ2) = Px1,ξ2 · (x1 + x2, ξ1 + ξ2).

The action of (x, ξ) ∈XA(S)⊂H(S) on Db(A× S) is given by the functors

(2.1.3) F �→ T(x,ξ)(F ) = Pξ ⊗ t∗xF,
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where Pξ is the line bundle on A× S corresponding to ξ ∈ Â(S). A choice of a

line bundle α satisfying (2.1.1) gives a lifting of L to a subgroup of H, and the

left-hand side of (2.1.2) is the result of the action of l ∈ L on SL,α.

DEFINITION 2.1.1

LI objects are cohomologically pure nonzero objects in Db(A) that can be

equipped with (L,α)-invariance isomorphism (2.1.2) for some (L,α) as above.

In fact, they are all of the form S⊕n
L,α[m] for some (L,α), n ∈ N, and m ∈ Z (see

[31, Theorem 2.4.5]). Let SHLI(A) denote the set of isomorphism classes of LI

objects on A. In this paper we work mostly with the set SH
LI
(A) of LI objects

viewed up to the action ofH(k), that is, up to translations and tensoring with line

bundles in Pic0(A). We will refer to this equivalence relation as H-equivalence.

We will use the notation N ·F := F⊕N for an LI object F . This defines an action

of the multiplicative monoid N∗ on SH
LI
(A).

PROPOSITION 2.1.2

There is a well-defined map

LG(Q)→ SH
LI
(A) : L �→ S(L)

sending a Lagrangian subvariety L⊂XA to the class of the LI sheaf SL,α, where

(L,α) is a Lagrangian pair extending L. The map

LG(Q)×N∗ ×Z→ SH
LI
(A) : (L,N,n) �→N · S(L)[n]

is a bijection of N∗ ×Z sets.

Proof

The fact that S(L) depends only on L follows from [31, Lemma 2.4.2]. The second

statement follows from [31, Theorem 2.4.5] about the structure of the category

of (L,α)-invariants in Db(A) and [31, Corollary 2.4.11] stating that L can be

recovered from SL,α. �

Recall that for an element φ ∈ NS(A) ⊗ Q � Hom(A, Â)+ ⊗ Q the graph Γ(φ)

is a Lagrangian subvariety of XA. Furthermore, these graphs are precisely all

Lagrangians L ⊂ XA such that the projection L → A is an isogeny. The sheaf

SΓ(φ),α associated with a Lagrangian pair (Γ(φ), α) is a simple semihomogeneous

vector bundle with c1/ rk = φ (see [19]). For φ ∈ NS(A)⊗Q we denote the H-

equivalence class of this bundle by

(2.1.4) Vφ = S
(
Γ(φ)

)
.

The above construction of LI sheaves can be applied to Lagrangian subva-

rieties L⊂XA ×XB for a pair of abelian varieties A and B, where we use the

symplectic self-duality (−ηA)× ηB of XA ×XB . We refer to the corresponding

Lagrangian pairs (L,α) as Lagrangian correspondences from XA to XB . The
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obtained LI sheaves SL,α on A×B can be used as kernels of LI functors

ΦL,α := ΦSL,α
:Db(A)→Db(B).

The key property of these functors is that we have canonical isomorphisms

(2.1.5) ΦL,α ◦ Tp1(l) � αl ⊗ Tp2(l) ◦ΦL,α

for l ∈ L, where p1, p2 : L→XA are two projections. Note that every exact equiv-

alence Db(A)→Db(B) is given by such an LI functor with L being the graph of

a symplectic isomorphism XA �XB (see [23]).

Let pAB : L→A×B, pAÂ : L→A× Â, and pBB̂ : L→B× B̂ be the projec-

tions. The line bundle α can always be chosen in such a way that its restriction

to the connected component of zero in ker(pAB) is trivial. In this case SL,α is a

direct summand in (see [31, Lemma 3.2.5])

(2.1.6) pAB∗(α
−1 ⊗ p∗

AÂ
P−1 ⊗ p∗

BB̂
P).

In the case when pAB is an isogeny the finite group scheme ker(pAB) has a

canonical central extension HL by Gm with the underlying line bundle α|ker(pAB).

Furthermore, HL is a Heisenberg group scheme, and (2.1.6) has a natural HL-

action, so that

(2.1.7) SL,α = pAB∗(α
−1 ⊗ p∗

AÂ
P−1 ⊗ p∗

BB̂
P)I

for a maximal isotropic subgroup I ⊂ ker(pAB) lifted to HL. It follows from

the theory of weight-one representations of Heisenberg groups that taking I-

invariants reduces the rank by the factor |ker(pAB)|1/2, so we get

(2.1.8) rkSL,α = deg(pAB : L→A×B)1/2.

In particular, for B = 0 we get

(2.1.9) rkVφ = deg
(
pA : Γ(φ)→A

)1/2
.

EXAMPLE 2.1.3

The functor of tensoring with a line bundle L on Db(A) commutes with the

action of Â and satisfies

L⊗ (t∗xF )�P−φL(x) ⊗ t∗x(L⊗ F ).

In fact, it is the LI functor corresponding to g−φL
=

(
id 0

−φL id

)
. More generally,

for φ ∈ NS(A) ⊗ Q the LI functor corresponding to the element g−φ ∈ N−(Q)

is the functor of tensoring with the semihomogeneous vector bundle Vφ (up to

H-equivalence).

The above construction gives a map

(2.1.10) U(Q)→ SH
LI
(A×A) : g→ S(g) = S

(
L(g)

)
.

We denote by Φg ∈ Fun(Db(A),Db(A))/H the functor associated with the kernel

S(g), defined up to composing with a functor of the form T(x,ξ), (x, ξ) ∈XA (on
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either side). For each (x, ξ) ∈XA we have (noncanonical) isomorphisms

Φg ◦ TN(x,ξ) � TNg(x,ξ) ◦Φg,

where N is such that Ng ∈ End(XA).

Note that we have a well-defined homomorphism induced by Φg

ρ(g) :N (A)→N (A).

DEFINITION 2.1.4

Let F be a cohomologically pure object of Db(A), and let G be an endosimple

LI object. We write

F ≡N ·G

if there exists n ∈ Z such that F [n] and G[n] are sheaves and F [n] has a filtration

of length N such that each consecutive quotient is H-equivalent to G[n]. In the

case of sheaves on A×A we will use the same notation for the relation between

the corresponding endofunctors of Db(A).

One of the main results of [31] is the following calculation of the convolution of

kernels (see [31, Theorem 3.3.4]):

(2.1.11) S(g2) ◦A S(g1)≡N(g1, g2) · S(g1g2)
[
λ(g1, g2)

]
,

for some 2-cocycles N(g1, g2) and λ(g1, g2) of U(Q) with values in N∗ and Z,
respectively.† Furthermore, we have

(2.1.12) N(g1, g2) =
q(L(g1))

1/2q(L(g2))
1/2

q(L(g1g2))1/2
,

where

(2.1.13) q(g) = q
(
L(g)

)
= deg

(
p1 : L(g)→XA

)
.

Also, for g1, g2 ∈U0(Q) such that g1g2 ∈U0(Q) one has

(2.1.14) λ(g1, g2) =−i
(
b(g1)

−1b(g1g2)b(g2)
−1

)
.

Note that in order for the right-hand side to be well defined the argument of i(·)
should be symmetric. This indeed follows from the equality

b−1
1 (a1b2 + b1d2)b

−1
2 = b−1

1 a1 + d2b
−1
2 ,

where we use the usual notation for the entries of g1 and g2.

DEFINITION 2.1.5

We denote by Ũ(Q) the central extension of U(Q) by Z associated with the

†In [31, Theorem 3.3.4] we made the assumption that char(k) = 0, which implies a stronger

statement: the left-hand side of (2.1.11) is a direct sum of objects H-equivalent to the right-
hand side. It is easy to see that the same argument in the positive characteristic case gives a

filtration instead of a direct sum.
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2-cocycle λ(·, ·). Explicitly Ũ(Q) =U(Q)×Z with the product

(g1, n1) · (g2, n2) =
(
g1g2, n1 + n2 + λ(g1, g2)

)
.

Note that, since the subset U0(Q) ⊂U(Q) is big (see Lemma 1.3.4), by Lem-

ma 1.3.3(ii), the formula (2.1.14) determines the extension Ũ(Q) uniquely up to

a unique isomorphism.

Let us denote by SH
LI
(A)/N∗ the set of equivalence classes with respect to the

equivalence relation generated by F ∼N · F for some N ∈ N∗. By (2.1.11), the

map g �→ S(g)modN∗ defines a homomorphism of monoids

(2.1.15) Ũ(Q)→ SH
LI
(A×A)op/N∗,

and hence a homomorphism of monoids

(2.1.16) Ũ(Q)→ Fun
(
Db(A),Db(A)

)
/(H×N∗) : g �→Φg,

where on the right we consider functors up to H-equivalence and up to replacing

Φ with N ·Φ=Φ⊕N .

On the level of numerical Grothendieck groups we can eliminate taking quo-

tients by N∗. Namely, let us set for g ∈U(Q)

(2.1.17) ρ̂(g) =
ρ(g)

q(g)1/2
:N (A)⊗R→N (A)⊗R.

Then from (2.1.11) and (2.1.12) we derive that

ρ̂(g1)ρ̂(g2) = (−1)λ(g1,g2)ρ̂(g1g2),

where g1, g2 ∈U(Q). Thus, ρ̂ defines a homomorphism from Ũ(Q) to GL(N (A)⊗
R), trivial on the central subgroup 2Z ⊂ Z ⊂ Ũ(Q). Note that the quotient

Ũ(Q)/2Z is a double cover of U(Q). Below we introduce an algebraic structure

on this double cover and show that ρ̂ is induced by an algebraic homomorphism

defined over R (see Sections 2.3 and 2.5).

2.2. Splittings over subgroups
We are going to define a splitting of the central extension Ũ(Q)→U(Q) over the

parabolic subgroup P+(Q)⊂U(Q) of lower-triangular matrices (resp., over the

subgroup P−(Q) of upper-triangular matrices). Note that P+(Q) is a semidirect

product of the subgroups of strictly upper-triangular matrices N+(Q)�NS(A)⊗
Q and of diagonal matrices T(Q)� (End(A)⊗Q)∗.

PROPOSITION 2.2.1

(i) There exist unique liftings of the subgroups N+(Q) and N−(Q) to Ũ(Q).

The lifting of the element g+φ =
(
1 φ
0 1

)
, where φ ∈ NS0(A,Q), is given by

(g+φ , i(φ)) ∈ Ũ(Q). The lifting of the element g−φ =
(
1 0
φ 1

)
, where φ ∈NS0(A,Q), is

given by (g−φ ,0) ∈ Ũ(Q). The corresponding functor Φg−
φ

(defined up to
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H-equivalence) is given by tensoring with the semihomogeneous bundle V−φ

(see (2.1.4)).

(ii) For t= ta =
(
a−1 0
0 â

)
∈T(Q) we have (up to H-equivalence)

S(t) =OB

for some abelian subvariety B ⊂A×A such that the two projections p, q :B →A

are isogenies. Hence, the functor Φt is of the form q∗p
∗ (up to H-equivalence).

(iii) For any t ∈T(Q) and g ∈U(Q) one has λ(t, g) = 0.

Proof

(i) The uniqueness of the liftings follows from the fact that there are no nontrivial

homomorphisms from a Q-vector space to Z. Thus, to check the formula for the

lifting of g+φ we have to check that

S(g+φ2
) ◦ S(g+φ1

) = S(g+φ1+φ2
)
[
i(φ1 + φ2)− i(φ1)− i(φ2)

]
,

for φ1, φ2 ∈NS0(A,Q) such that φ1 + φ2 ∈NS0(A,Q). But

λ(g+φ1
, g+φ2

) =−i
(
φ−1
1 (φ1 + φ2)φ

−1
2

)
=−i(φ−1

1 + φ−1
2 ),

so we are reduced to showing that

i(φ−1
1 + φ−1

2 ) = i(φ1) + i(φ2)− i(φ1 + φ2).

Since

i(φ−1
1 + φ−1

2 ) = i
(
φ1(φ

−1
1 + φ−1

2 )φ1

)
= i(φ1 + φ1φ

−1
2 φ1),

this follows from [27, Proposition 15.8] (taking into account that i(−x) = g −
i(x)).

Since the composition of functors ⊗Vφ1 and ⊗Vφ2 is again tensoring with a

bundle that has a filtration with consecutive quotients H-equivalent to Vφ1+φ2 ,

the assertion about the lifting of g−φ follows (cf. Example 2.1.3).

(ii) Assume first that a ∈ End(A). Then L(ta)� A× Â, and its embedding

into XA ×XA is given by

(x, ξ) �→ (ax, ξ, x, âξ).

This implies that (L(ta),O) is a Lagrangian correspondence from XA to itself,

so (2.1.6) in this case gives that

SL(ta),O � (a, idA)∗OA,

and the corresponding functor Φta is the pullback functor a∗. Similarly, if a−1 ∈
End(A), then

SL(ta),O � (idA, a
−1)∗OA,

and the corresponding functor Φta is the pushforward functor (a−1)∗. The general

case is obtained by combining these two.
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(iii) We have to check that the convolution S(g) ◦A S(t) is a sheaf. Indeed,

using the form of S(t) from (ii) we obtain that

S(g) ◦A S(t)� (idA×q)∗(idA×p)∗S(g),

where p, q :B →A are isogenies. �

COROLLARY 2.2.2

There is a unique splitting of the central extension Ũ(Q)→U(Q) over P+(Q)⊂
U(Q) (resp., over P−(Q)), which maps t ∈T(Q) to (t,0) ∈ Ũ(Q).

2.3. Identifying central extensions
Recall that DA ⊂NS(A)⊗C�Hom(A, Â)+ ⊗C denotes the complexified ample

cone of A.

Consider the function Δ :U(R)→O∗(DA) given by

g =

(
a b

c d

)
�→Δ(g)(ω) = deg(a+ bω),

where ω ∈DA.

LEMMA 2.3.1

For g1, g2 ∈U(R) one has

(2.3.1) Δ(g1g2)(ω) =Δ(g1)
(
g2(ω)

)
·Δ(g2)(ω);

that is, Δ is a 1-cocycle.

Proof

This follows from the identity

a+ bω =
(
a1 + b1g2(ω)

)
(a2 + b2ω),

where gi =
(
ai bi
ci di

)
for i= 1,2 and g1g2 =

(
a b
c d

)
. �

Since DA is contractible, we have an exact sequence of U(R)-modules

0→ Z→O(DA)
exp(2πi·?)� O∗(DA)→ 0.

Applying the boundary homomorphism H1(U(R))→H2(U(Z)) to the 1-cocycle

Δ(g)−1 we obtain a central extension UΔ of U(R) by Z. Explicitly,

UΔ =
{
(g, f) ∈U(R)×O(DA)

∣∣Δ(g) = exp(−2πif)
}
.

The multiplication rule on UΔ uses the cocycle condition on Δ: we set

(g1, f1) · (g2, f2) =
(
g1g2, f1

(
g2(·)

)
+ f2

)
.

THEOREM 2.3.2

There is a homomorphism ι : Ũ(Q)→ UΔ, lifting the natural embedding U(Q)→
U(R) and sending n ∈ Z⊂ Ũ(Q) to (1, n) ∈ UΔ. This homomorphism is uniquely
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characterized by the condition that for g ∈U0(Q) one has

ι(g,0) = (g, f),

where

lim
n→∞

Ref(inH) =−g

2

for any ample class H .

Proof

First, we are going to define a section σ :U0(R)→ UΔ of the projection UΔ →
U(R) over the open subset U0(R) ⊂ U(R) consisting of g with deg(b(g)) �= 0.

Note that for g =
(
a b
c d

)
∈U0(R) one has

Δ(g)(ω) = deg(a+ bω) = deg(b) · deg(b−1a+ ω).

Since deg(b) > 0, to define σ(g) = (g, fσ
g ) amounts to choosing a branch of the

argument for deg(b−1a + ω)−1. Let us choose the branch of the argument of

deg(b−1a+ ω) in such a way that

lim
n→+∞

Arg
(
deg(b−1a+ inH)

)
= π · g,

where H is an ample class, and set Arg(Δ(g)(ω)−1) = −Arg(deg(b−1a + ω)).

Then we set ι(g,0) = σ(g) for g ∈ U0(Q). Since U0(Q) is big in U(Q), by

Lemma 1.3.3, it remains to show that for g1, g2 ∈U0(Q) such that g1g2 ∈U0(Q)

one has

σ(g1)σ(g2) = σ(g1g2) ·
(
1, λ(g1, g2)

)
.

In other words, we have to check that

fσ
g1

(
g2(ω)

)
+ fσ

g2(ω) = fσ
g1g2(ω) + λ(g1, g2)

or, equivalently, that with the above choice of Arg(Δ(g)) one has

Arg
(
Δ(g1)

(
g2(ω)

))
+Arg

(
Δ(g2)(ω)

)
(2.3.2)

= Arg
(
Δ(g1g2)(ω)

)
− 2π · λ(g1, g2).

It is enough to check the equality of the limits of both sides for ω = inH as n

goes to infinity (where H is an ample class). Let gi =
(
ai bi
ci di

)
for i = 1,2. Note

that

lim
n→∞

g2(inH) = d2b
−1
2 .

Thus, (2.3.2) reduces to the equality

Arg
(
Δ(g1)(d2b

−1
2 )

)
=−2πλ(g1, g2) = i

(
b−1
1 b(g1g2)b

−1
2

)
.

But

Arg
(
Δ(g1)(d2b

−1
2 )

)
= Arg

(
deg(b−1

1 a1 + d2b
−1
2 )

)
=Arg

(
deg

(
b−1
1 b(g1g2)b

−1
2

))
= 2π · i

(
b−1
1 b(g1g2)b

−1
2

)
by Corollary 1.2.2. �
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The central extension UΔ →U(R) has a natural continuous splitting over the

subgroup P−(R)⊂U(R). Indeed, for g ∈P−(R) we have Δ(g) = deg(a)> 0, so

we can lift g to

σP−(g) =
(
g,− 1

2πi
log

(
deg(a)

))
,

where we choose log(deg(a)) to be in R. The following result will be useful for

us later.

LEMMA 2.3.3

The restriction of the above lifting homomorphism P−(R)→ UΔ to P−(Q) cor-

responds via ι to the lifting homomorphism P−(Q)→ Ũ(Q) considered in Corol-

lary 2.2.2.

Proof

By Proposition 2.2.1(i), it is enough to check the compatibility of liftings on

T(Q). In view of Proposition 2.2.1(iii) this follows from the equality

σP−(t)σ(g) = σ(tg)

for any g ∈ U0(Q), where σ : U0(R) → UΔ is the section used in the proof of

Theorem 2.3.2. �

Similarly, the extension UΔ → U(R) has a natural continuous splitting over

P+(R), which is the same as before over T(R), and over N+(R) is described

as follows.

LEMMA 2.3.4

There is a unique splitting of UΔ →U(R) over N+(R)�NS(Â,R) which is given

by the branch of

ArgΔ−1|N+(R) =Argdeg(1 +ψω)

that tends to 0 as ω→ 0, where ψ ∈NS(Â,R)�Hom(Â,A)+R .

Proof

It is straightforward to check that this choice of argument gives a lifting. The

uniqueness follows from the fact that there are no nontrivial homomorphisms

from a real vector space to Z. �

Let us consider the induced double cover UΔ/2Z→U(R). We are going to intro-

duce an algebraic structure on this group.

LEMMA 2.3.5

Consider a field extension Q ⊂ F , where either F = R or F is algebraically

closed. Then for every g =
(
a b
c d

)
∈U(F ), the polynomial Δ(g)(φ) = deg(a+ bφ)

on NS(A)(F ) is a complete square (and is nonzero).
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Proof

For g ∈U0 this follows from the equality

deg(a+ bφ) = deg(b)deg(b−1a+ φ) = deg(b)χ(b−1a+ φ)2

and the fact that deg(b) ≥ 0 in the case F = R. Viewing (2.3.1) as an identity

of rational functions on NS(A), we see that if Δ(g1) and Δ(g2) are complete

squares, then Δ(g1g2) is a complete square as a rational function on NS(A) and,

hence, as a polynomial. �

DEFINITION 2.3.6

Let Pol≤g(NS(A)) denote the space of polynomials of degree at most g on NS(A).

We define a double covering Spin = SpinXA
→U of algebraic groups over Q by

setting

Spin =
{
(g, f) ∈U×Pol≤g

(
NS(A)

) ∣∣Δ(g) = f2
}

with the group law

(g1, f1) · (g2, f2) =
(
g1g2, f1

(
g2(·)

)
· f2

)
.

Here the rational function f1(g2(·)) · f2 is actually a polynomial since its square

is Δ(g1g2).

Note that by Lemma 2.3.5, the map π : Spin(R)→U(R) is a double covering.

We have a natural isomorphism of groups

(2.3.3) UΔ/2Z→ Spin(R) : (g, f) �→
(
g, exp(−πif)

)
.

We have two natural subgroups in Spin(R):

(2.3.4) U(Q)spin = π−1
(
U(Q)

)
, U(Z)spin = π−1

(
U(Z)

)
.

LEMMA 2.3.7

Consider the homomorphism

ι : Ũ(Q)/2Z
∼� U(Q)spin ⊂ Spin(R)

induced by ι : Ũ(Q) → UΔ (see Theorem 2.3.2) and the isomorphism (2.3.3).

Then for g =
(
a b
c d

)
∈U0(Q) we have

ι(g,0) =
(
g,

√
deg(b) · χ(b−1a+ φ)

)
,

with
√
deg(b)> 0.

Proof

By Theorem 2.3.2, ι(g,0) = (g, f), where f(φ) is the square root of Δ(g)(φ) =

deg(b) · deg(b−1a+ φ) with the property

lim
n→+∞

Arg f(inH) =
π · g
2

mod2πZ.

Since Argχ(b−1a+inH) has the same limit as n→+∞, the assertion follows. �
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REMARKS 2.3.8

(1) If for a field extension Q ⊂ F there is a multiplicative norm Nm on

End(A)⊗ F such that Nm2 = deg, then the map g �→ (g,Nm(a+ bω)) defines a

splitting of the extension Spin→U over F . For example, if A = En, where E

is an elliptic curve without complex multiplication, then End(A) =Matn(Z) and
deg([M ]A) = det(M)2 for a matrix M ∈Matn(Z). Hence, in this case the norm

det(·) gives a splitting of the spin covering.

(2) The group U(Z)spin is exactly the group U Spin(A× Â) defined by Mukai

in [21]. (The same group is denoted by Spin(A) in [12].)

Using the isomorphism Ũ(Q)/2Z�U(Q)spin we can define a homomorphism

(2.3.5) ρ̂ :U(Q)spin →GL
(
N (A)⊗R

)
such that ρ̂(ι(g,0)) is the operator ρ̂(g) (see (2.1.17)).

2.4. The action on LI objects
Recall that with a Lagrangian correspondence from XA to itself extending a

symplectic isomorphism g : XA → XA in AbQ we associate an endofunctor Φg

of Db(A), defined up to H-equivalence (see Section 2.1). We are going to use

these endofunctors to define an action of Ũ(Q) on some extension of SH
LI
(A)

(see Corollary 2.4.2).

THEOREM 2.4.1

(i) For an element g ∈U(Q) and a Lagrangian subvariety L⊂XA we have

(2.4.1) Φg

(
S(L)

)
≡N(g,L) · S(gL)

[
λ(g,L)

]
for some λ(g,L) ∈ Z and N(g,L) ∈N∗, where we use Definition 2.1.4.

(ii) If L=Γ(φ) for an isogeny φ ∈Hom(A, Â)+⊗Q and if g =
(
a b
c d

)
satisfies

deg(b) �= 0, deg(a+ bφ) �= 0, and deg(c+ dφ) �= 0, then we have

(2.4.2) N(g,L) = deg(a+ bφ)1/2 · q(g)1/2 ·
rkVg(φ)

rkVφ
,

where q(g) is given by (2.1.13), rkVφ is given by (2.1.9), and

(2.4.3) λ
(
g,Γ(φ)

)
=−i(b−1a+ φ).

Proof

(i) Let us extend L and L(g) to Lagrangian pairs (L,α) and (L(g), β). By [31,

Theorem 3.2.11] applied to the Lagrangian correspondence (L(g), β) and to (L,α)

viewed as a Lagrangian correspondence from 0 to XA, we obtain

ΦL(g),β(SL,α) = SL(g)◦L,β◦α[i]

for some i ∈ Z. As in [31, Theorem 3.2.14] one can check that i does not depend

on α and β. Next, we have to relate the composed Lagrangian correspondence

SL(g)◦L,β◦α with S(gL). Here we use the definition of the composition of
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Lagrangian correspondences from [31, Section 3]. Note that the result is a gen-

eralized Lagrangian correspondence in the sense of [31, Definition 3.1.1] We are

going to apply [31, Proposition 2.4.7(ii)] to the generalized Lagrangian Z :=

L(g)◦L j� XA. Note that Z ⊂ L(g)⊂XA×XA is the preimage of L under the

first projection p1 : L(g)→XA, and the homomorphism j : Z →XA is induced

by the second projection p2 : L(g)→XA. By [31, Proposition 2.4.7(ii)], we have

SZ,β◦α ≡ n1/2 ·
∣∣π0(Z)

∣∣1/2 · S(
j(Z0)

)
in SH

LI
(A×A), where n= |π0(j(Z))|. (Here Z0 is the connected component of 0

in Z.) By definition, we have j(Z0) = gL. Thus, we deduce (2.4.1) with

N(g,L) =
∣∣π0(Z)

∣∣1/2 · n1/2.

Also, by [31, (2.4.12)], we have n= deg(Z0 → j(Z0)).

(ii) Now assume that L = Γ(φ), and assume that g(φ) is defined and is an

isogeny. Note that for sufficiently divisible N we have an isogeny

(2.4.4) A→ Z0 : x �→
(
Nx,Nφx,N(a+ bφ)x,N(c+ dφ)x

)
∈ L(g)⊂XA ×XA.

In particular, both projections from Z0 to A are isogenies. Let us consider the

commutative diagram of isogenies

Z0
� Z

j(Z0)
� pA � A

pA,2

�

where pA,2 is the composition Z → L(g)
p2� XA

pA� A. Considering the

degrees we obtain

deg(pA,2 : Z →A) =
∣∣π0(Z)

∣∣ · deg(pA,2|Z0) =
∣∣π0(Z)

∣∣ · deg(j(Z0)→A
)
· n.

Recall that j(Z0) = gL, so we get that

N(g,L) =
deg(pA,2 : Z →A)1/2

deg(gL→A)1/2
.

Now let us consider the projection pA,1 : Z → L(g)
p1� XA

pA� A. Using the

isogeny (2.4.4) we see that

NpA,2|Z0 =N(a+ bφ)pA,1|Z0 .

Hence,

(2.4.5)
deg(pA,2 : Z →A)

deg(pA,1 : Z →A)
=

deg(pA,2|Z0)

deg(pA,1|Z0)
= deg(a+ bφ).

Note that pA,1 factors through the projection Z → L and we have a Cartesian

square
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Z � L(g)

L
�

� XA

p1

�

which shows that deg(Z → L) = deg(p1 : L(g)→XA) = q(L(g)). Thus,

deg(pA,1 : Z →A) = q
(
L(g)

)
· deg(L→A)

and (2.4.5) can be rewritten as

deg(pA,2 : Z →A) = deg(a+ bφ) · q
(
L(g)

)
· deg(L→A).

Therefore,

N(g,L) = deg(a+ bφ)1/2 · q
(
L(g)

)1/2 deg(L→A)1/2

deg(gL→A)1/2
.

Recalling that rkS(L) = deg(L→A)1/2 we obtain (2.4.2).

Finally, to compute λ(g,Γ(φ)) we apply [31, Proposition 3.2.9]. Namely, we

have to consider the fibered product Γ(φ)×A L(g) where we use the first projec-

tion L(g)→A. Note that we have an isogeny

A× Â→
(
Γ(φ)×A L(g)

)
0
: (x, ξ)

(2.4.6)
�→

(
(Nx,Nφx),

(
Nx,Nξ,N(ax+ bξ),N(cx+ dξ)

))
,

where N is sufficiently divisible. Next, we set

F = ker
(
Γ(φ)×A L(g)

γ� A
)
,

where γ is induced by the projection to L(g) followed by L(g)
p2� XA →A. Note

that the composition of γ with the isogeny (2.4.6) is given by (x, ξ) �→N(ax+bξ).

Hence, we have an isogeny

(2.4.7) A→ F0 : x �→
(
(Nx,Nφx),

(
Nx,−Nb−1ax,0,N(cx− db−1ax)

))
.

By [31, Proposition 3.2.9], we have

λ
(
g,Γ(φ)

)
=−i(g0 ◦ f−1

0 ),

where f0 : F0 →A is the natural projection and, for (l,m) ∈ F0 ⊂ Γ(φ)×L(g),

g0(l,m) = pÂ(l)− pÂ,1(m),

where pÂ : Γ(φ) → Â is the natural projection and pÂ,1 is the composition

L(g)
p1� XA → Â. Thus, the compositions of f0 and g0 with the isogeny (2.4.7)

are x �→Nx and x �→N(φ+ b−1ax), respectively. Hence,

g0 ◦ f−1
0 = φ+ b−1a

as required. �
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Let us set

SH
LI
(A)R = SH

LI
(A)×R>0/N

∗,

where n ∈N∗ acts by (F, r) �→ (nF,n−1r). Then the bijection of Proposition 2.1.2

extends to a bijection of R>0 ×Z sets

LG(Q)×R>0 ×Z
∼� SH

LI
(A)R.

COROLLARY 2.4.2

There is an action of Ũ(Q) on SH
LI
(A)R, commuting with the R>0-action, such

that (g,n) acts by

F �→ q
(
L(g)

)−1/2 ·Φg(F )[n].

For g1, g2 ∈U(Q) and L ∈ LG(Q) we have

λ
(
g1, g2(L)

)
+ λ(g2,L) = λ(g1, g2) + λ(g1g2,L).

Also, the maps Φg induce an action of Ũ(Q) on SH
LI
(A)/N∗ � LG(Q)×Z.

Note that the natural maps

SH
LI
(A)→N (A)⊗Q/Q>0,(2.4.8)

SH
LI
(A)R →N (A)⊗R(2.4.9)

associating with an LI sheaf F its class [F ] in N (A) are Ũ(Q)-equivariant, where

the action on N (A)⊗R is given by ρ̂ (see (2.1.17)).

2.5. Action of Spin on N (A)R
We are going to define an algebraic action of Spin on N (A)R inducing the homo-

morphism ρ̂ on U(Q)spin ⊂ Spin(R). The idea is to use the algebraicity of the

corresponding projective representation and of the action of an open subset on

a fixed nonzero vector. We will need the following simple result.

LEMMA 2.5.1

Let V be a vector space over a field F , let X be a scheme (resp., a set), and

let f :X → P(V ), g :X → P(V ), and h :X → P(V ) be regular morphisms (resp.,

maps to the set of F -points) such that the lines f(x), g(x), and h(x) are all

distinct and h(x) ⊂ span(f(x), g(x)) for each x ∈X. Suppose we have a lifting

of f to a regular morphism (resp., map to the set of F -points) f :X → V −{0}.
Then there exist unique liftings of g and h to regular morphisms (resp., maps to

the set of F -points) g,h :X → V − {0} such that h= f + g.

Proof

Consider a subvariety

Y ⊂
(
V − {0}

)
×

(
V − {0}

)
×

(
V − {0}

)
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consisting of (v1, v2, v1 + v2) such that v1 and v2 are linearly independent, and

consider a subvariety

Y ⊂
(
V − {0}

)
× P(V )× P(V )

consisting of (v,L,L′) such that v /∈ L, v /∈ L′, L �= L′, and v ∈ L+L′. Then the

natural projection p : Y → Y is an isomorphism. We have a regular morphism

(resp., map to the set of F -points) (f, g, h) :X → Y . Now the components of the

corresponding map X → Y give the required liftings. �

LEMMA 2.5.2

For a symmetric isogeny φ ∈NS0(A,Q) we have

[Vφ]

rkVφ
= �(φ) ∈N (A)⊗Q,

where Vφ is the semihomogeneous vector bundle (2.1.4) and � : NS(A) ⊗ Q →
N (A)⊗Q is the polynomial map (1.1.1).

Proof

Since rk �(φ) = 1, it suffices to check the required identity up to proportionality.

Recall that if (L = Γ(φ), α) is a Lagrangian pair, then the line in N (A) ⊗ Q
corresponding to Vφ is spanned by the class of pA∗(L), where pA : L→A is the

projection and L= α−1⊗P|L (see (2.1.7)). Also, by the definition of a Lagrangian

pair,

Λ(α)l1,l2 �PpA(l1),pÂ(l2),

so φL : L→ L̂ is given as

φL = p̂A ◦ pÂ = p̂Â ◦ pA,

where pÂ : L→ Â is the projection. Note that for sufficiently divisible N we have

an isogeny

i :A→ L : x �→ (Nx,Nφx)

and the classes of pA∗(L) and [N ]∗(i
∗L) in N (A)⊗Q are proportional. We have

φi∗(L) = î ◦ φα−1⊗P|L ◦ i= p̂A ◦ i ◦ pÂ◦i =N2φ.

Thus, the class [i∗(L)] ∈N (A)⊗Q is proportional to �(N2φ) = [N ]∗�(φ). Hence,

the class of [N ]∗(i
∗L) is proportional to

[N ]∗[N ]∗�(φ) =N2g�(φ)

as required. �

THEOREM 2.5.3

The homomorphism ρ̂ :U(Q)spin →GL(N (A)⊗R) (see (2.1.17)) extends to an

algebraic homomorphism

ρ̂ : Spin→GL
(
N (A)R

)
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defined over R. For (g, f) ∈ Spin(C) and φ ∈NS0(A,C) such that g(φ) is defined

and belongs to NS0(A,C), we have

(2.5.1) ρ̂(g, f)
(
�(φ)

)
= f(φ) · �

(
g(φ)

)
.

Proof

First, we observe that Theorem 2.4.1 implies (2.5.1) in the case when (g, f) ∈
U(Q)spin ⊂ Spin(R) with g ∈ U0(Q) and φ ∈ NS0(A,Q) is such that g(φ) is

defined and belongs to NS0(A,Q). Indeed, from (2.4.1), (2.4.3), (2.4.2), and

Lemma 2.5.2 we obtain in this case

ρ̂(g)
(
�(φ)

)
= (−1)i(b

−1a+φ)
∣∣deg(a+ bφ)

∣∣1/2 · �(g(φ))
= deg(b)1/2 · χ(b−1a+ φ) · �

(
g(φ)

)
.

Thus, our claim holds for

ι(g,0) =
(
g,deg(b)1/2 · χ(b−1a+ φ)

)
.

It remains to note that both sides of (2.5.1) change sign when (g, f) gets multi-

plied by −1 ∈ {±1} ⊂ Spin.

By [26, Theorem 5.1], there is an algebraic homomorphism U →
PGL(N (A)Q) sending g ∈U(Q) to ρ(g)modQ∗. Let us denote the corresponding

action of U on P(N (A)R) by

κ :U× P
(
N (A)R

)
→ P

(
N (A)R

)
.

We also have a map

κQ :U(Q)spin ×N (A)⊗R→N (A)⊗R : (g̃,v) �→ ρ̂(g̃)(v)

inducing the restriction of κ(R) to U(Q)spin × P(N (A) ⊗ R). We are going to

extend κQ to an algebraic morphism using the density of U(Q) in U (see Lem-

ma 1.3.4).

Note that for a fixed isogeny φ the right-hand side of (2.5.1) extends to a

regular morphism (defined over Q)

κ�(φ) : π
−1(V )→N (A)R,

where V ⊂U0 ⊂U is an open subset of g ∈U0 such that g(φ) is defined and

is an isogeny. Furthermore, as we have seen in the beginning of the proof,

the corresponding map on π−1(V (Q)) coincides with the restriction of κQ to

π−1(V (Q))× {�(φ)}. In particular, the map

κ�(φ) : π
−1(V )→ P

(
N (A)R

)
obtained from κ�(φ) is the composition of the projection to V with the restriction

of κ to U× {〈�(φ)〉} (since we know this on the dense subset V (Q)).

Now if v ∈N (A)⊗Q is any vector, linearly independent with �(φ), then by

Lemma 2.5.1, we obtain unique liftings

(2.5.2) κv, κ�(φ)+v : π−1(V )→N (A)R
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of the restrictions of κ to π−1(V )× {〈v〉} and π−1(V )× {〈�(φ) + v〉} such that

κ�(φ)+v(g̃) = κ�(φ)(g̃) + κv(g̃).

Furthermore, the set-theoretic part of Lemma 2.5.1 implies that the maps (2.5.2)

induce the corresponding restrictions of κQ on π−1(V (Q)).

Thus, if we consider a basis of N (A)⊗Q of the form (�(φ),v1, . . . ,vn), then

combining the maps κvi constructed above we get a regular morphism

ρ̂V : π−1(V )→GL
(
N (A)R

)
inducing ρ̂ on π−1(V (Q)). We can cover Spin with open subsets of the form

π−1(V )g̃ with g̃ ∈ U(Q)spin and define regular morphisms π−1(V )g̃ →
GL(N (A)R) by sending h̃g̃ to ρ̂V (h̃)ρ̂(g̃). Using the density of U(Q)spin in Spin,

one easily checks that these maps glue into the required algebraic homomorphism

π−1(V )→GL(N (A)R). �

Consider the action of Spin(R) on the trivial C∗-bundle DA×C∗ over the domain

DA given by

(g, f) · (ω, z) =
(
g(ω), f(ω) · z

)
,

where (g, f) ∈ Spin(R), ω ∈ DA, and z ∈ C∗. The map � : D → N (A) ⊗ C
(see (1.1.1)) extends to a C∗-equivariant map

(2.5.3) � :DA ×C∗ →N (A)⊗C : (ω, z) �→ z · �(ω).

From the identity (2.5.1) we immediately get the following result.

COROLLARY 2.5.4

The map (2.5.3) is Spin(R)-equivariant.

PROPOSITION 2.5.5

For any x, y ∈N (A)⊗C and any g̃ ∈ Spin(C) one has

(2.5.4) χ
(
ρ̂(g̃)(x), ρ̂(g̃)(y)

)
= χ(x, y).

Proof

Note that the left-hand side of (2.5.4) depends only on the image of g̃ in U(C).
Let us first consider the case when this image is an element g ∈U(Q). Consider

the functor Φ =ΦL(g),α :Db(A)→Db(A) associated with some Lagrangian corre-

spondence (L(g), α) extending g, so that Φ represents the H-equivalence class of

Φg . Let Ψ be the right adjoint functor to Φ. By [31, Proposition 3.2.7], Ψ differs

by a shift from the LI functor associated with some Lagrangian correspondence

extending L(g−1). Applying (2.1.11) and (2.1.12) for g1 = g and g2 = g−1 we

obtain

Ψ ◦Φ≡N · Id,
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where N = q(g)1/2q(g−1)1/2. Since for F,G ∈Db(A) we have an isomorphism

Hom∗(Φ(F ),Φ(G)
)
=Hom∗(F,ΨΦ(G)

)
,

we deduce the equality

(2.5.5) χ
(
ρ̂(g)

(
[F ]

)
, ρ̂(g)

(
[G]

))
=

q(g−1)1/2

q(g)1/2
· χ

(
[F ], [G]

)
.

Since U(Q) is dense in U (see Lemma 1.3.4), there exists an algebraic character

� :U→Gm such that

χ
(
ρ̂(g)(x), ρ̂(g)(y)

)
=�(g) · χ(x, y)

for any g ∈U(C). The character � restricts trivially to the semisimple subgroup

SU⊂U. Thus, by Lemma 1.3.1(i), it remains to show the triviality of its restric-

tion to Z. In fact, we will show directly that �(t) = 1 for any t=
(
a−1 0
0 â

)
∈T(Q),

where a ∈ (End(A)⊗Q)∗. Note that this implies that �|T = 1 since T(Q) is dense

in T. It suffices to consider the case when a ∈ End(A). Then the correspondence

L(t)⊂XA ×XA is the image of the embedding

A× Â→XA ×XA : (x, ξ) �→
(
ax, ξ, x, â(ξ)

)
.

Hence, in this case q(t) = deg(a) and q(t−1) = deg(â) = deg(a), and our assertion

follows from (2.5.5). �

COROLLARY 2.5.6

For g̃ = (g, fg) ∈ Spin(C), ω ∈DA, and x ∈N (A)⊗C one has

χ
(
�(ω), ρ̂(g̃)−1(x)

)
= fg(ω) · χ

(
�
(
g(ω)

)
, x

)
.

Proof

Indeed, we have

χ
(
�(ω), ρ̂(g̃)−1(x)

)
= χ

(
ρ̂(g̃)

(
�(ω)

)
, x

)
= fg(ω) · χ

(
�
(
g(ω)

)
, x

)
. �

COROLLARY 2.5.7

For any g ∈U(Q) one has q(g) = q(g−1).

EXAMPLES 2.5.8

(1) If A is an abelian variety of dimension n over C without complex multipli-

cation, then we have NS(A) = Z · H , where H is an ample generator, and so

τ �→ τφH gives an identification H→DA, where H is the upper half-plane. The

group U(R) can be identified with SL(2,R) with the action on H � DA given

by fractional-linear transformations (1.4.3). Since Δ(g)(τ · φH) = (a+ bτ)2n, we

have a natural splitting

SL(2,R)→ SpinXA
(R) : g �→

(
g, (a+ bτ)n

)
.

Furthermore, if A is generic, then N (A)⊗Q can be identified with the (g + 1)-

dimensional subspace in H∗(A,Q) spanned by the classes Hi, i = 0, . . . , g, and
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(2.5.1) shows that SL(2,R) acts on N (A) ⊗ R as on the standard (g + 1)-

dimensional irreducible representation. Assume in addition that φH is a principal

polarization of A. Then we can index simple semihomogeneous vector bundles

by rational numbers. Namely, for coprime integers (r, d) with r > 0 we set

Vr,d = V(d/r)φH
.

From (2.1.9) we get in this case that rkVr,d = rn (see also [19, Remark 7.13], [27,

Chapter 12, Exercise 2]). Hence, by Lemma 2.5.2,

ch(Vr,d) =

n∑
i=0

rn−idi · H
i

i!
∈H∗(A,Z).

Note that for r = 0, d = 1 this formula gives ch(Ox). Using the Hirzebruch–

Riemann–Roch formula we get the following relations for the form χ on

N (A)⊗Q:

χ(Hi,Hn−i) = (−1)in!,

χ
(
�(τφH), [Vr,d]

)
= (d− rτ)n.

(2) Continuing the previous example, assume in addition that n= dimA= 3

(keeping the assumptions that A is principally polarized and generic). Then A

is the Jacobian of a curve, so H2/2 is an algebraic class. We claim that the

image of the Chern character ch :K0(A)→H∗(A,Q) contains the Z-submodule

K ⊂ H∗(A,Q) spanned by (Hi/i!)0≤i≤n. Indeed, the Chern characters of the

structure sheaves of a point and of the curve span the submodule ZH2/2 +

ZH3/6. Together with ch(OA) = 1 and ch(O(H)) = exp(H) these classes span

the whole Z-submodule K. On the other hand, using the above formula we see

that for n≥ 3 the images of the Chern characters of LI sheaves (which are all H-

equivalent to either Vd,r or Ox) span a proper Z-submodule in K. In particular,

the LI objects do not generate Db(A) in this case.

(3) If A is an elliptic curve over C with complex multiplication, then we have

an isomorphism

U(R)� SL(2,R)×U(1)/{±1},

where {±1} is embedded into the product diagonally. Also, DA = H, the upper

half-plane, and U(R) acts on DA through the projection to SL(2,R)/{±1}. The
spin covering SpinXA

(R)→U(R) in this case can be identified with the natural

covering

SL(2,R)×U(1)→U(R).

3. Action on stability spaces

3.1. Induced t-structures and stabilities
We refer to [6] for notions related to stability conditions on triangulated cate-

gories. All t-structures considered below are assumed to be bounded and nonde-

generate (see [3]). All stabilities are assumed to be locally finite and numerical.
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We say that a t-structure (resp., a slicing or a stability condition) on Db(A)

is H-invariant if it is invariant under any functor T(x,ξ) with (x, ξ) ∈ A × Â

(see (2.1.3)), that is, under translations and tensoring by Pic0(A). Note that,

by [29, Corollary 3.5.2], every full stability condition is H-invariant.

The general construction of the induced t-structures (resp., stability condi-

tions) from [29] and [18] specializes to the following result on inducingH-invariant

t-structures.

PROPOSITION 3.1.1

Let A and B be abelian varieties of the same dimension, and let Φ : Db(A)→
Db(B) be the LI functor associated with a Lagrangian correspondence (L,α)

from XA to XB such that the projections L → XA and L → XB are surjec-

tive, with the right adjoint functor Φ′ : Db(B) → Db(A). Also, let (D≤0,D≥0)

be an H-invariant t-structure on Db(A). Then there is a unique H-invariant

t-structure (ΦD≤0,ΦD≥0) on Db(B) such that

(3.1.1) Φ(D[a,b])⊂ ΦD[a,b].

It is given by

(3.1.2) ΦD[a,b] =
{
F ∈Db(B)

∣∣ Φ′(F ) ∈D[a,b]
}
.

Similarly, if (P (t))t∈R is an H-invariant slicing on Db(A), then there is a

unique H-invariant slicing (ΦP (t))t∈R on Db(B) such that Φ(P (t))⊂ ΦP (t) for

any t ∈R. We have ΦP (t) = (Φ′)−1(P (t)).

Proof

First, we observe that, by [31, Proposition 3.2.7], Φ′ differs by a shift from the

LI functor associated with the transposed correspondence (σ(L), α−1), where

σ :XA ×XB →XB ×XA is the permutation of factors. Hence, the same argu-

ment as in [31, Lemma 3.3.3] shows that both compositions Φ′ ◦ Φ and Φ ◦ Φ′

are obtained by consecutive extensions from functors T(x,ξ), one of which is the

identity functor.

The fact that (3.1.2) defines a t-structure follows from [29, Theorem 2.1.2]

once we check that in our situation Φ′ ◦Φ is t-exact with respect to the original

t-structure and (Φ ◦ Φ′)(F ) = 0 implies that F = 0. Indeed, the former follows

from the H-invariance of our t-structure. To check the latter property it suffices

to consider the case when F is a coherent sheaf. We observe that the right

adjoint functor to Φ ◦ Φ′ sends a structure sheaf of a point Ox to a sheaf Kx

supported on a finite number of points, including x. Hence, if (Φ ◦ Φ′)(F ) = 0,

then Hom(F,Kx) = 0 for all x ∈B, which implies that F = 0.

The inclusion (3.1.1) follows from the H-invariance of the original t-structure

and from the form of Φ′ ◦ Φ. The fact that the new t-structure is H-invariant

follows from the H-intertwining property of LI functors (see (2.1.5) and [31,

Lemma 3.2.4]). Now suppose that (ΦD1
≤0,ΦD≥0

1 ) is another H-invariant
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t-structure on Db(B) such that Φ(D[a,b]) ⊂ ΦD
[a,b]
1 . Then applying [29, Theo-

rem 2.1.2] again we deduce that

D
[a,b]
1 =

{
F ∈Db(A)

∣∣ Φ(F ) ∈ ΦD
[a,b]
1

}
is a t-structure on Db(A) such that D[a,b] ⊂D

[a,b]
1 . Hence, D

[a,b]
1 =D[a,b] and we

can rewrite (3.1.2) as

ΦD[a,b] =
{
F ∈Db(B)

∣∣ ΦΦ′(F ) ∈ ΦD
[a,b]
1

}
,

which implies that ΦD
[a,b]
1 ⊂ ΦD[a,b], so these t-structures are the same.

The result about slicings is proved analogously. �

Let StabH(A) denote the space of H-invariant stability conditions on A. (It is

known to be nonempty for dimA≤ 2 and in some cases for dimA= 3, see [16].)

DEFINITION 3.1.2

For g ∈U(Q) and a stability σ = (P (·),Z) ∈ StabH(A) we set

g(σ) =
(
ΦgP (·),Z ◦ ρ̂(g)−1

)
,

where ρ̂(g) is given by (2.1.17). By Proposition 3.1.1, this defines an action of

Ũ(Q) on StabH(A) such that the central element 1 ∈ Z⊂ Ũ(Q) sends (P (·),Z)

to (P (·)[1],−Z).

The restriction of the above action to the preimage of U(Z)⊂U(Q) is given by

the standard action of the autoequivalence group of Db(A) on Stab(A) (see [6]).

PROPOSITION 3.1.3

For every g̃ ∈ Ũ(Q) the corresponding transformation of StabH(A) is an isometry

with respect to the generalized metric d(·, ·) introduced in [6, Proposition 8.1].

Proof

Note that the functor Φg sends Harder–Narasimhan constituents of E

with respect to σ to those of Φg(E) with respect to g(σ), and Z(ρ̂(g)−1(Φg(E)))

is a constant multiple (depending only on g) of Z(E). Hence, d(σ1, σ2) ≤
d(g(σ1), g(σ2)). Applying the same inequality to g−1 and the pair (g(σ1), g(σ2))

we deduce that it is in fact an equality. �

PROPOSITION 3.1.4

Any LI object in Db(A) is semistable with respect to any full stability.

Proof

Let E be an (L,α)-invariant object in Db(A), where (L,α) is a Lagrangian pair

(with L⊂XA), and let σ = (P (·),Z) be a full stability. We can assume that Z

takes values in Q+ iQ⊂C. Indeed, the set of such stabilities is dense in the con-

nected component containing σ, and the semistability of E is a closed condition
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on σ. Then for a dense set of real numbers t (namely, those with tan(πt) ∈Q) the

abelian category P ((t, t+1]) is Noetherian (see [1, Proposition 5.0.1]). Applying

the construction of [29] we obtain for each such t the associated constant family

of t-structures over any base S, which is a certain t-structure on Db(A×S), local

over S and such that its heart contains the pullback of P ((t, t+1]) with respect

to the projection p1 :A× S →A. Let us take as a base S = L, and consider the

functor

T(L,α) :D
b(A)→Db(A×L)

that associates with F ∈Db(A) the natural family of objects F on L×A such that

the restriction of F to {l}×A is αl ⊗ Tl(F ) for l ∈ L. (Here, F is obtained from

F by taking the pullback with respect to the map L×A→A : (l, x) �→ pA(l) + x

and then tensoring the result with a certain line bundle.) Since our stability is H-

invariant (by [29, Corollary 3.5.2]), this functor is easily seen to be t-exact; that

is, it sends P ((t, t+1]) to the heart of the corresponding constant t-structure on

Db(A×L). By definition, an (L,α)-invariance structure on E is an isomorphism

T(L,α)(E)� p∗1E.

Since both sides are t-exact functors of E, we deduce that the truncations of

E with respect to our t-structure are still (L,α)-invariant. Applying this for an

appropriate set of phases t we derive that all Harder–Narasimhan constituents of

E are (L,α)-invariant. Let E0 be one of them. Suppose that E0 has cohomological

range [a, b] with respect to the standard t-structure. Then HbE0 and HaE0 are

still (L,α)-invariant, so we have a nonzero morphism HbE0 → HaE0 (see [31,

Theorem 2.4.5]), which gives rise to a nonzero morphism

E0[b]→HbE0 →HaE0 →E0[a].

By the semistability of E0 we should have b≤ a; that is, E0 is cohomologically

pure. Since E0 is a direct sum of several copies of the generator SL,α, it follows

that SL,α is also semistable. �

3.2. Z-covering of LG(R)
Recall that the action of U(R) on LG(R) is transitive (see Proposition 1.4.3), so

we have an identification

(3.2.1) LG(R)�U(R)/P−(R).

We have a natural lifting of P−(R) to a closed subgroup of UΔ (see Lem-

ma 2.3.3). Therefore, the homogeneous space UΔ/P−(R) is a Z-covering of

LG(R). Below we describe this Z-covering explicitly using the homogeneous coor-

dinates (x : y) on LG(R) (see Section 1.4).

Namely, to every L = (x : y) ∈ LG(R) we associate a holomorphic function

on DA, defined up to rescaling by a positive constant,

δ(L)(ω) = deg(ŷ− x̂ω) = deg(ωx− y)modR>0,
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where ω ∈DA. Note that if we change (x : y) to (xα : yα), then this function gets

multiplied by deg(α) ∈R>0. It is easy to see that for g ∈U(R) one has

(3.2.2) δ
(
g(0 : φ0)

)
=Δ(g−1)modR>0,

where φ0 : A→ Â is a polarization and Δ is the 1-cocycle of U(R) with values

in O∗(DA) defined in Section 2.3. In particular, δ(L)(ω) �= 0 for all ω ∈DA.

LEMMA 3.2.1

For L ∈ LG(R) and g ∈U(R) one has

δ(gL)
(
g(ω)

)
= δ(L)(ω) ·Δ(g−1)

(
g(ω)

)
= δ(L)(ω) ·Δ(g)(ω)−1.

Proof

Pick g′ ∈U(R) such that L= g′(0 : φ0). Then use (3.2.2) and the cocycle condi-

tion for Δ. �

Note also that if we have a Lagrangian subvariety L⊂A× Â, then viewing L as

a point in LG(Q) we have

(3.2.3) δ(L)(ω) = deg(ωp1 − p2)modR>0,

where p1 : L→A and p2 : L→ Â are the projections, and we use the polynomial

function deg : Hom(L, Â)⊗C→C.

DEFINITION 3.2.2

We define the Z-covering p : L̃G(R)→ LG(R) by setting

L̃G(R) =
{
(L,f) ∈ LG(R)×

(
O(DA)/iR

) ∣∣ δ(L) = exp(2πif)modR>0

}
.

We also set

L̃G(Q) := p−1
(
LG(Q)

)
⊂ L̃G(R).

When we need to stress the dependence on A we write ˜LGA(R) (resp., ˜LGA(Q)).

We have an action of UΔ on L̃G(R) given by

(g, fg) · (L,fL) =
(
gL, fL

(
g−1(ω)

)
+ fg

(
g−1(ω)

))
.

The fact that this action is well defined follows from Lemma 3.2.1.

PROPOSITION 3.2.3

(i) There exists a unique bijection

(3.2.4) SH
LI
(A)/N∗ → L̃G(Q) : F �→ L̃F

that lifts the natural projection F �→ LF to LG(Q), sends Ox to ((0 : φ0),0) ∈
L̃G(Q) (where φ0 :A→ Â is a polarization), and is Ũ(Q)-equivariant, where the

action on L̃G(Q) is induced by the embedding ι : Ũ(Q)→ UΔ.
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(ii) Let Vφ be the semihomogeneous vector bundle associated with

φ ∈NS(A)⊗Q, so that LVφ
=Γ(φ) (see (2.1.4)). Then

(3.2.5) L̃Vφ
=

(
Γ(φ), (2πi)−1 · log

(
deg(ω− φ)

)
mod iR

)
,

where the branch of log(deg(·)) is normalized by

Im log
(
deg(iH)

)
=Arg

(
deg(iH)

)
=−gπ

for ample H .

Proof

(i) First, let us compute the stabilizer subgroup St⊂ Ũ(Q) of the class of Ox in

SH
LI
(A)/N∗. By considering the action on the corresponding Lagrangian we see

that St is a certain lifting of P−(Q)⊂U(Q) to Ũ(Q). From the explicit form of

the functors Φt for t ∈T(Q) (see Proposition 2.2.1(ii)) we see that these functors

preserve Ox up to H-equivalence and N∗. Therefore, St is the lifting of P−(Q)

described in Corollary 2.2.2. By Lemma 2.3.3, ι(St) is exactly the stabilizer of

the point ((0 : φ0),0) ∈ L̃G(Q). Hence, there is a well-defined Ũ(Q)-equivariant

map (3.2.4). Since this is a map of Z-torsors over LG(Q) (see Proposition 2.1.2),

it is a bijection.

(ii) Assume first that φ is nondegenerate, that is, that φ ∈NS0(A,Q). Con-

sider the element g+φ−1 ∈N+(Q) as in Proposition 2.2.1(i). Then

g+
φ−1(0 : φ0) = (φ−1φ0 : φ0) = (1 : φ) = Γ(φ).

By Proposition 2.2.1(i), under the canonical lifting of N+(Q) to Ũ(Q) the lifting

of g+φ−1 corresponds to the kernel S(g+φ−1)[i(φ)]. (Note that i(φ−1) = i(φ).) On

the other hand, its canonical lifting to UΔ is

g̃ =
(
g+φ−1 ,− log

(
deg(1 + φ−1ω)

)
/2πi

)
,

where we use the branch of Argdeg(1 + φ−1ω) that tends to 0 as ω → 0 (see

Lemma 2.3.4). By the Ũ(Q)-equivariance of the map (3.2.4), we obtain that the

object Vφ[i(φ)] is mapped under this map to

g̃ ·
(
(0 : φ0),0

)
=

(
Γ(φ), log

(
deg(1− φ−1ω)

)
/2πimod iR

)
=

(
Γ(φ), (2πi)−1 · log

(
deg(ω− φ)

)
mod iR

)
with the same choice of the argument as above. Recall that if we choose the

branch of Argdeg(ω − φ) in such a way that Argdeg(inH − φ) will be πg, then

we will obtain (see Corollary 1.2.2)

Argdeg(−φ) = 2πi(−φ) = 2π
(
g− i(φ)

)
.

Subtracting 2πg we get the branch that gives the limit −2πi(φ) as ω→ 0, which

is exactly what we get for the image of Vφ. This proves the required statement

in the case when φ ∈NS0(A,Q). The general case follows by using the action of
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the subgroup N−(Q) ⊂ Ũ(Q) (see Example 2.1.3). Indeed, this action changes

both sides (3.2.5) by adding to φ an arbitrary element of NS(A)⊗Q. �

Recall that we can view NS(A) ⊗ R as an open subset of LG(R) via the map

φ �→ (1 : φ) = Γ(φ). Proposition 3.2.3(ii) implies that we have a commutative

diagram

NS(A)⊗Q
φ �→ Vφ� SH

LI
(A)/N∗

NS(A)⊗R
�

� L̃G(R)

�

where the right vertical arrow is (3.2.4) and the bottom arrow is the continuous

section of the projection L̃G(R)→LG(R) over NS(A)⊗R given by

(3.2.6) NS(A)⊗R→ L̃G(R) : φ �→
(
Γ(φ), fφ

)
,

where fφ ∈O(DA)mod iR is the branch of (2πi)−1 · log(deg(ω − φ))mod iR sat-

isfying

lim
n→∞

fφ(inH) =−g/2

for any ample H .

DEFINITION 3.2.4

We define the double covering pspin : LGspin(A,R) → LGA(R) by setting

LGspin(A,R) = L̃G(R)/2Z. Explicitly,

LGspin(A,R) =
{
(L,ϕ) ∈ LG(R)×

(
O(DA)/R>0

) ∣∣ δ(L) = ϕ2modR>0

}
.

We also set LGspin(A,Q) = (pspin)−1(LG(Q)).

The isomorphism Spin(R) � UΔ/2Z induces a transitive action of Spin(R) on

LGspin(A,R) (and of U(Q)spin on LGspin(A,Q)).

We also have a natural Ũ(Q)-equivariant map (see (2.4.8))

SH
LI
(A)/N∗ →N (A)⊗Q/Q>0 : F �→ [F ]modQ>0,

which we can view as a map from L̃G(Q) using the bijection (3.2.4). The equiv-

ariance of this map with respect to the Z-action implies that it factors through

LGspin(A,Q). Furthermore, we claim that it extends to a continuous Spin(R)-
equivariant map

(3.2.7) LGspin(A,R)→N (A)⊗R/R>0
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such that we have a commutative diagram

SH
LI
(A)/N∗ � N (A)⊗Q/Q>0

LGspin(A,R)
�

� N (A)⊗R/R>0

�

Indeed, we can define (3.2.7) by sending g̃((0 : φ0),1) to g̃[Ox]modR>0 for g̃ ∈
Spin(R). To check that this map is well defined we observe that Q-points P−(Q)

are dense (with respect to the classical topology) in the stabilizer P−(R) of

the point ((0 : φ0),1) ∈ LGspin(A,R). Since P−(Q) ⊂U(Q)spin leaves the class

[Ox] ∈ SN (A)⊗R invariant, this proves our claim.

LEMMA 3.2.5

The section (3.2.6) induces a section

(3.2.8) NS(A)⊗R→ LGspin(A,R),

which sends φ ∈NS(A)⊗R to (Γ(φ), χ(φ− ω)modR>0).

Proof

Since χ(φ− ω)2 = deg(φ− ω) = deg(ω − φ), this follows from the fact that the

argument of χ(φ− inH) tends to −gπ/2mod2πZ as n→∞. �

EXAMPLE 3.2.6

In the case when A = En, where E is an elliptic curve without complex mul-

tiplication, we can identify End(A) with the algebra of n × n matrices over

Z, and NS(A) with symmetric matrices. Note that for M ∈ End(A) we have

deg(M) = det(M)2 and for φ ∈ NS(A) we have χ(φ) = det(φ). In a coordinate-

free notation, if A=E⊗Λ, where Λ is a free Z-module of rank n, then elements

of NS(A) can be viewed as Z-valued symmetric bilinear forms on Λ, and the

function χ is given by the discriminant. The group U in this case is the symplec-

tic group Sp2n and the variety LGA is the Lagrangian Grassmannian associated

with the 2n-dimensional symplectic vector space. Also, DA is the Siegel upper

half-plane Hn, and the covering UΔ → Sp2n corresponds to a choice of argument

of Z �→ det(A+BZ)2, where Z ∈Hn and
(
A B
C D

)
∈ Sp(2n,R). Thus, UΔ contains

the universal covering S̃p(2n,R) of Sp(2n,R) as a subgroup of index 2 (cf. [23,

Example 4.15]). Now let us consider our lifting of P−(R) to UΔ. It is easy to

check that the restriction of the projection to UΔ → UΔ/S̃p(2n,R) � {±1} to

GL(n,R) ⊂ P−(R) can be identified with the homomorphism A �→ signdet(A).

It follows that UΔ = S̃p(2n,R) ·P−(R), and P−(R)∩ S̃p(2n,R) is the semidirect

product ofN−(R) and of GL+(n,R) (matrices with positive determinant). Hence,

we can identify ˜LGA(R) with the quotient of S̃p(2n,R) by a connected subgroup,
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so ˜LGA(R) is simply connected. It follows that in this case ˜LGA(R) is the uni-

versal covering of the Lagrangian Grassmannian LGA(R).

3.3. Phase function
Since Δ :U(R)→O∗(DA) is a 1-cocycle (see Lemma 2.3.1), it defines a natural

action of the group U(R) (by holomorphic automorphisms) on the trivial C∗-

bundle over DA. We have constructed the central extension UΔ →U(R) by Z
in such a way that Δ lifts to a 1-cocycle of UΔ with coefficients in O(DA). In

other words, we obtain the action of UΔ on DA ×C (respecting the structure of

a C-space), which we view as a universal covering of DA × C∗. (In Section 3.4

we relate this covering to Bridgeland’s stability space in the case dimA = 2.)

Explicitly, this action is given by

(3.3.1) (g, f) · (ω, z) =
(
g(ω), z − f(ω)

)
,

where (g, f) ∈ UΔ and (ω, z) ∈DA ×C.
On the other hand, we have a transitive action of UΔ on the Z-covering

L̃G(R) of LG(R). By definition of this Z-covering, we have a continuous function

f0 :DA × L̃G(R)→R :
(
ω, (L,fL)

)
�→RefL(ω).

We can extend it to a continuous function on (DA ×C)× L̃G(R) setting

f
(
(ω, z), L̃

)
=Re(z) + f0(ω, L̃),

where L̃ ∈ L̃G(R).

LEMMA 3.3.1

The function f is UΔ-invariant; that is, for g̃ ∈ UΔ and (σ, L̃) ∈ (DA × C) ×
L̃G(R) one has

f
(
g̃(σ), g̃(L̃)

)
= f(σ, L̃).

The proof is straightforward.

Now using the map F �→ L̃F of Proposition 3.2.3, we define the phase function

(3.3.2) (DA ×C)× SH
LI
(A)/N∗ →R : (σ, L̃) �→ φσ(F ) := f(σ, L̃F ),

where σ ∈DA ×C. Note that we have

(3.3.3) φ(ω,z)(F ) = φ(ω,0)(F ) +Re(z).

In Section 3.4 we show that in the surface case the function φσ gives the

phases of LI objects with respect to the Bridgeland stability condition on Db(A)

associated with σ ∈ DA × C. In the following theorem we check some of the

properties of φσ that conform to the conjecture that the corresponding stability

condition exists in the higher-dimensional case as well.
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THEOREM 3.3.2

The phase function φσ(F ) satisfies the following properties.

(i) This function is Ũ(Q)-invariant, that is;

φg̃(σ)

(
g̃(F )

)
= φσ(F ),

where the action of Ũ(Q) on DA×C is induced by (3.3.1) via the homomorphism

ι : Ũ(Q)→ UΔ. In particular, for n ∈ Z,

φσ

(
F [n]

)
= φσ(F ) + n.

(ii) For σ = (ω, z) and F ∈ SH
LI
(A) one has

(3.3.4) exp(πiz) · χ
(
�(ω), [F ]

)
∈R>0 · exp

(
πiφσ(F )

)
,

where [F ] ∈N (A)⊗R is the numerical class of F .

(iii) For a semihomogeneous vector bundle Vφ associated with φ ∈NS(A)⊗Q
one has

φ(ω,z)(Vφ) = Re(z) +
1

2π
Arg

(
deg(ω− φ)

)
,

where the branch of Arg(deg(·)) is normalized by Arg(deg(iH)) = −gπ for

ample H .

(iv) For a pair of LI objects F1 and F2 such that the corresponding

Lagrangians LF1 and LF2 in A× Â are transversal, one has

(3.3.5) φσ(F1)≤ φσ(F2) + i(F1, F2),

where i(F1, F2) is the index of the pair (F1, F2), that is, the number such that

Exti(F1, F2) = 0 for i �= i(F1, F2). (It exists by [31, Corollary 3.2.12].)

Proof

(i) The invariance follows from Lemma 3.3.1. The second assertion follows

from this:

φ(ω,z)(F ) = φ(1,n)·(ω,z)

(
F [n]

)
= φ(ω,z−n)

(
F [n]

)
= φ(ω,z)

(
F [n]

)
− n,

where in the last equality we used (3.3.3).

(ii) By part (i), the right-hand side of (3.3.4) is invariant under the diagonal

action of Ũ(Q) on (σ,F ). We claim that the same is true for the left-hand side

(modulo R>0). Indeed, by Corollary 2.5.6, for g̃ = (g, fg) ∈ UΔ we have

χ
(
�(ω), [F ]

)
= exp

(
−πifg(ω)

)
· χ

(
�
(
g(ω)

)
,
[
g̃(F )

])
modR>0.

(Recall that the map F �→ [F ]modN∗ is compatible with the projection UΔ →
Spin(R) sending (g, fg) ∈ UΔ to (g, exp(−πifg)) (see (2.3.3)).) This immediately

implies that the left-hand side of (3.3.4) is invariant modulo R>0 with respect to

the diagonal action of Ũ(Q) on the pair (σ,F ) ∈ (DA ×C)× SH
LI
(A)/N∗.

Thus, it is enough to check the equality for F =Ox. We have χ(�(ω), [Ox]) = 1

for all ω. On the other hand, by the definition of the map of Proposition 3.2.3,

f0(ω, L̃Ox) = 0, so φ(ω,z)(Ox) = Re(z).
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(iii) This follows from Proposition 3.2.3(ii).

(iv) By the Ũ(Q)-invariance of both parts with respect to the diagonal action

on the pair (F1, F2), it is enough to consider the case when F2 =Ox. Note that in

this case the transversality assumption implies that LF1 =Γ(φ) for φ ∈NS(A)Q,

so F1 = Vφ[n] for some n ∈ Z, where Vφ is the simple semihomogeneous bundle

associated with φ. Since φ(ω,z)(Ox) = Re(z), by part (iii), the required inequality

is equivalent to

Arg
(
deg(ω− φ)

)
≤ 0,

where Arg(deg(·)) is normalized by Arg(deg(iH)) =−gπ. But this follows imme-

diately from Lemma 1.2.3(ii). �

REMARK 3.3.3

By Lemma 1.2.3(i), for F1 =O, F2 = Vφ, and σ = (iH,0), where H is an ample

class, the inequality (3.3.5) can be replaced by a stronger one:

φiH,0(O)< φiH,0(Vφ) +
i(φ)

2
.

However, this inequality is not invariant with respect to the group action consid-

ered above, so it cannot be extended to the case of arbitrary σ ∈DA ×C.

The following property is also motivated by the picture with the stability condi-

tions for dimA= 2 (see Section 3.4 below).

PROPOSITION 3.3.4

The fibers of the map

Z :DA ×C→Hom
(
N (A),C

)
: (ω, z) �→ exp(πiz)χ

(
�(ω), ·

)
are exactly the orbits of the action of 2Z⊂C by translations on the second factor.

Proof

Suppose that

exp(πiz)χ
(
�(ω), [F ]

)
= exp(πiz′)χ

(
�(ω′), [F ]

)
for all F . Since χ(�(·), [Ox]) = 1, this implies that exp(πiz) = exp(πiz′). Using

the action of 2Z we can assume that z = z′. Now the fact that ω = ω′ follows

from Corollary 1.1.2. �

EXAMPLE 3.3.5

Recall that the standard stability condition on an elliptic curve has Z(F ) =

−deg(F ) + i rk(F ) and semistable objects that are shifts of semistable bundles

and torsion sheaves. The corresponding phase function φst satisfies

φst(F ) = φ(i,0)(F ) + 1
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for any semistable F . Indeed, this follows from the formulas

φst(Ox) = 1, φst(Vd/r) =
Arg(i− d/r)

π
,

where Vd/r is the simple bundle of degree d and rank r and we normalize the

argument in the upper half-plane by Arg(i) = 1/2.

3.4. Stability conditions on abelian surfaces
In this section, assuming that dimA= 2 we will identify the action of ι(Ũ(Q))⊂
UΔ on DA × C with the natural action of Ũ(Q) on the component Stab† of

Bridgeland’s stability space Stab(A) of Db(A) described in [7, Section 15].

Recall that the stability space Stab(A) carries a natural continuous action of

the group G̃L
+
(2,R), the universal cover of GL+(2,R), which can be described as

the set of pairs (T, f), where T ∈GL+(2,R) and f :R→R is an increasing map

with f(t+1) = f(t)+1 such that the map induced by T on R2 \{0}/R>0 �R/2Z

coincides with fmod2Z. We use the left action of G̃L
+
(2,R) on Stab(A): a pair

(T, f) maps a stability condition (Z,P) to the stability (T ◦Z,P ′), where P ′(t) =

P(f−1(t)). Note that n �→ ((−1)n, t �→ t+n) gives an embedding Z→ G̃L
+
(2,R)

such that 2Z is the kernel of the projection to GL+(2,R).
Recall that for each ω = iα+β ∈DA Bridgeland defined a stability condition

on Db(A) with the central charge

Zω(F ) =−χ
(
�(ω), [F ]

)
and with each Ox stable of phase 1. This defines a submanifold V (A)⊂ Stab(A),

isomorphic to DA, which is a section of the action of G̃L
+
(2,R) on a connected

component Stab†(A) ⊂ Stab(A), so that we have an isomorphism (see [7, Sec-

tions 11 and 15])

(3.4.1) V (A)× G̃L
+
(2,R)� Stab†(A).

Conjecturally, Stab†(A) = Stab(A). Below we show that Stab†(A) contains all

full stabilities (see Proposition 3.4.4).

We have a natural embedding C∗ = GL(1,C) → GL+(2,R) and the corre-

sponding homomorphism of universal coverings C ↪→ G̃L
+
(2,R) (where we use

the map C→C∗ : z �→ exp(πiz)). Hence, from the isomorphism (3.4.1) we obtain

an embedding

(3.4.2) DA ×C� V (A)×C ↪→ Stab†(A).

Note that the central charge corresponding to a point (ω, z) ∈DA ×C is

Z(ω,z)(F ) =− exp(πiz)χ
(
�(ω), [F ]

)
,

and the phase of Ox with respect to this stability is

(3.4.3) φBr
(ω,z)(Ox) = 1+Re(z).
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Recall that the nonempty fibers of the projection

Z : Stab†(A)→Hom
(
N (A),C

)
are exactly the orbits of the action of 2Z⊂C⊂ G̃L

+
(2,R) (see [7, Theorem 15.2]).

Hence, we have

(3.4.4) V (A)×C=Z−1
(
Z

(
V (A)×C

))
.

The image Z(V (A)×C) coincides with C∗ ·�(DA)⊂N (A)⊗C, where we identify
N (A)⊗C with Hom(N (A),C) using χ(·, ·).

Recall that we have an action of the group Ũ(Q) on StabH(A) defined using

functors Φg (see Definition 3.1.2). Also, note that, by [29, Corollary 3.5.2], we

have an inclusion Stab†(A)⊂ StabH(A) since all stabilities in Stab†(A) are full.

PROPOSITION 3.4.1

The subset V (A)×C⊂ StabH(A) is invariant with respect to the action of Ũ(Q),

and the induced action of Ũ(Q) on V (A)×C�DA ×C is exactly (3.3.1).

Proof

First, let us look at the action on central charges. Applying Corollary 2.5.6 to the

element g̃ = (g, exp(−πif)) ∈ Spin(R) coming from an element (g, f) = ι(g′) ∈ UΔ

where g′ ∈ Ũ(Q), we get (see (3.3.1))

Z(ω,z)

(
ρ̂(g′)−1F

)
= Z(ω,z)

(
ρ̂(g̃)−1[F ]

)
= Zι(g′)·(ω,z)(F ).

In particular, the transformed central charge is still in C∗ · �(DA). Recall that

the connected component Stab†(A) is characterized by the condition that the

central charge is in the GL+(2,R)-orbit of �(DA) and the Ox’s are stable of

the same phase for all x ∈ A. Furthermore, by [7, Lemma 12.2], it is enough

to require all Ox to be semistable of the same phase (due to the absence of

spherical objects; see [7, Lemma 15.1]). In our case the condition on the central

charge is satisfied by the above computation, and the semistability of Ox follows

from Proposition 3.1.4, so we get the inclusion g′(V (A)×C)⊂ Stab†. Taking into

account (3.4.4) we derive the required inclusion

g′
(
V (A)×C

)
⊂ V (A)×C⊂ Stab† .

Furthermore, we obtain that the action of g′ ∈ Ũ(Q) on DA × C differs from

the action (3.3.1) by the translation by an element in 2Z⊂ C. Thus, the differ-

ence between the two actions is given by a homomorphism Ũ(Q) → 2Z. Note

that the element 1 ∈ Z ⊂ Ũ(Q) acts on a stability in Stab(A) by changing the

central charge Z to −Z and adding −1 to all the phases. Since this matches

with its action on DA × C given by (3.3.1), the above homomorphism factors

through a homomorphism U(Q) → 2Z. Next, we observe that the action of

P−(Q)⊂ Ũ(Q) preserves the phase of Ox (see the proof of Proposition 3.2.3(i)).

On the other hand, ι(P−(Q)) ⊂ UΔ consists of elements (g, f) with Re(f) = 0
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(see Lemma 2.3.3), so taking into account the formula (3.4.3) we deduce that the

homomorphismU(Q)→ 2Z is trivial onP−(Q). It remains to apply Lemma 1.3.5.

�

COROLLARY 3.4.2

There is a transitive continuous action of UΔ × G̃L
+

2 (R) on Stab†(A), extending

the action of Ũ(Z) (coming from autoequivalences of Db(A)) and the standard

action of G̃L
+

2 (R).

Proof

This follows from the identification (3.4.1) and from the transitivity of the action

of UΔ on DA × C. Note that our action of Ũ(Q) on StabH(A) extends the

standard action of Ũ(Z) by autoequivalences of Db(A). �

THEOREM 3.4.3

For any σ = (ω, z) ∈ DA × C and any LI object F ∈ Db(A), let φBr
σ (F ) be the

phase of F with respect to the corresponding Bridgeland stability condition. Then

φBr
σ (F ) = φσ(F ) + 1,

where the function φσ is given by (3.3.2).

Proof

The assertion is true for F = Ox. Also Theorem 3.3.2(i) together with Propo-

sition 3.4.1 implies that both sides are invariant with respect to the action of

Ũ(Q) on the pair (σ,F ). It remains to use transitivity of the action of Ũ(Q) on

SH
LI
(A)/N∗. �

We finish our consideration of abelian surfaces by observing that Proposition 3.1.4

implies the following description of the component Stab†(A).

PROPOSITION 3.4.4

For an abelian surface A the component Stab†(A) of the stability space consists

of all full stabilities on Db(A).

Proof

Let σ be a full stability on Db(A). By Proposition 3.1.4, any skyscraper sheaf

Ox is σ-semistable. Using [7, Lemmas 12.2 and 15.1] we deduce that Ox is in

fact σ-stable. Now the proof of [7, Proposition 3.1.4] shows that any full stability

belongs to Stab†(A). (One has to run this proof with U(X) being the set of all

full stabilities, which is an open subset of Stab(A).) �
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3.5. Mirror symmetry and phases
In the case when A=En, where E is an elliptic curve without complex multipli-

cation, we can interpret the phase function of Section 3.3 in terms of the Fukaya

category of the mirror dual abelian variety.

Let E =C/(Z+τZ) be an elliptic curve over C, and let Λ be a free Z-module

of rank n. We set

A=Λ⊗C/
(
Λ⊗ (Z+ τZ)

)
�En,

so that we have a natural isomorphism

ΓA :=H1(A,Z)� Λ⊕Λ,

where the second summand corresponds to Λ⊗ τ . The natural polarization of E

given by the Hermitian form Hτ (z1, z2) = z1z2/(Im τ) induces an isomorphism

Â� Λ∗ ⊗C/(Λ∗ ⊗ (Z+ τZ),

where Λ∗ =HomZ(Λ,Z).
Assuming that E has no complex multiplication we obtain identifications

End(A) � EndZ(Λ), Hom(A, Â) � HomZ(Λ,Λ
∗), and NS(A) � HomZ(Λ,Λ

∗)+.

(The latter group consists of symmetric homomorphisms.) Thus, for a field

F ⊃Q we can identify NS(A)⊗F with the space of symmetric bilinear forms on

Λ⊗ F . The ample cone in NS(A)⊗ R consists of positive definite forms. Thus,

DA ⊂NS(A)⊗R is the Siegel half-space consisting of symmetric bilinear forms

on Λ⊗C with positive definite imaginary part.

According to [12] (see also [27, Section 6.5]), one can view the abelian variety

B associated with an element ω = ωA ∈DA � Hn as a mirror dual to (A,ωA).

More precisely, let us set

ΓB =Λ∗ ⊕Λ, B =ΓB ⊗R/ΓB,

and define the complex structure on ΓB ⊗R via the isomorphism

(3.5.1) κω : ΓB ⊗R→Λ∗ ⊗C : (λ∗, λ) �→ λ∗ − ω(λ),

where we view ω as an element of Hom(Λ,Λ∗ ⊗ C)+. Note that there is an

isomorphism B � Λ∗ ⊗C/(Λ∗ +ωΛ). (However, the corresponding identification

of H1(B,Z) with ΓB differs from the original one by the sign on the summand

Λ⊂ ΓB .) We have a natural principal polarization φ0 :B →̃ B̂ given on homology

lattices by

(3.5.2) ΓB → Γ∗
B : (λ∗

0, λ0) �→ (λ∗, λ) �→ λ∗(λ0)− λ∗
0(λ).

Similarly, the natural isomorphism Λ∗⊕Λ∗ � ΓÂ � Γ∗
A corresponds to the pairing

(Λ∗ ⊕Λ∗)× ΓA → Z :
(
(λ∗

1, λ
∗
2), (λ1, λ2)

)
�→ λ∗

1(λ2)− λ∗
2(λ1).

Let us define an isomorphism of orthogonal lattices

γ : ΓA ⊕ ΓÂ → ΓB ⊕ ΓB � ΓB ⊕ ΓB̂ : (λ1, λ2, λ
∗
1, λ

∗
2) �→ (λ∗

2, λ2, λ
∗
1, λ1).
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PROPOSITION 3.5.1

The isomorphism γ induces a mirror duality in the sense of [12, Section 9]

between the pairs (A,ωA) and (B,ωB) for ωB = τ · φ0, where φ0 ∈Hom(B, B̂)+

is the principal polarization defined above.

Proof

By definition, we have to check that the operator of complex structure on (ΓB ⊕
ΓB)⊗R corresponds under γ to

IωA
=

(
α−1β −α−1

α+ βα−1β −βα−1

)
∈UA(R),

where ωA = iα + β, and we view UA(R) as a subgroup in automorphisms of

(ΓA ⊕ ΓÂ)⊗R, and similarly that the complex structure on (ΓA ⊕ ΓÂ)⊗R cor-

responds to IωB
. Both facts are checked by a straightforward computation (cf.

[12, Proposition 9.6.1]). �

Recall that the variety LGA = LGEn is naturally identified with the Lagrangian

Grassmannian associated with the symplectic lattice Λ∗⊕Λ. Thus, a Lagrangian

subvariety L⊂A× Â, viewed as a point of LG(Q), corresponds to a Lagrangian

Z-submodule Π(L) ⊂ Λ∗ ⊕ Λ = ΓB , so that ΓL = H1(L,Z) � Π(L) ⊕ Π(L) ⊂
ΓA ⊕ ΓÂ. Hence, from (3.2.3) we get

(3.5.3) δ(L)(ω) = det(κω|Π(L))
2modR>0,

where we view κω|Π(L) as an element in Hom(Π(L),Λ∗)⊗C and define det2 using

some bases in Π(L) and Λ∗.

Similarly, a point L of LGA(R) corresponds to a real Lagrangian subspace

ΠR(L)⊂ ΓB⊗R, and the formula (3.5.3) still holds (with ΠR(L) instead of Π(L)).

Recall that we have a double covering LGspin(A,R)→ LG(R) consisting of pairs

(L,ϕ) ∈ LGA(R)×O(DA)/R>0 such that ϕ2 = δ(L), so that the group Spin(R)
acts on LGspin(A,R) (see Definition 3.2.4). In our case there is a splittingU(R)→
Spin(R) (see Remark 2.3.8.1), so we have an action of U(R) on LGspin(A,R)
given by

g · (L,ϕ) = (gL,ϕ′), where ϕ′(g(ω)) = ϕ(ω) · det(a+ bω)−1.

We claim that LGspin(A,R)→LGA(R) is in fact the natural double covering

corresponding to a choice of orientation on a Lagrangian subspace in ΓB ⊗ R.
Indeed, let us fix an orientation ε ∈

∧n
(Λ). Then a choice of a square root ϕ=√

δ(L) ∈O∗(DA)/R>0 for L ∈ LGA(R) induces an orientation on ΠR(L)⊂ ΓB ⊗
R as follows. By formula (3.5.3), for each ω the nonzero element

ϕ(ω)−1 · det(κω|ΠR(L)) ∈
∧n

(Λ∗)⊗
∧n(

ΠR(L)
)−1 ⊗R C,

depending continuously on ω, belongs to the R-subspace
∧n

(Λ∗)⊗
∧n

(ΠR(L))
−1.

Thus, we get an isomorphism∧n(
ΠR(L)

)
�

∧n
(Λ)−1 ⊗R,
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and we define the orientation μϕ,ε ∈
∧n

(ΠR(L)) so that it corresponds to ε−1

under this isomorphism, that is,

ϕ(ω)−1 · det(κω|ΠR(L)) · μϕ,ε = ε−1.

Let us associate with L ∈ LGA(Q) the real subtorus in B by setting

TL =Π(L)⊗R/Π(L)⊂ ΓB ⊗R/ΓB =B.

Note that TL is Lagrangian with respect to the translation-invariant symplectic

structure on B corresponding to the standard symplectic structure on ΓB =Λ∗⊕
Λ (i.e., this symplectic structure on B comes from the principal polarization φ0).

As we have shown above, a lifting of L to a point (L,ϕ) ∈ LGspin(A,Q) gives

rise to an orientation of TL.

Since LGspin(A,Q) = ˜LGA(Q)/2Z, the map (3.2.4) induces a map

SH
LI → LGspin(A,Q).

By Lemma 3.2.5, the composition

NS(A)⊗Q→ SH
LI → LGspin(A,Q) : φ �→ Vφ �→

(
Γ(φ), ϕ

)
corresponds to the choice of the square root ϕ(ω) = det(φ−ω), where we use dual

bases of Λ and Λ∗ to compute the determinant (see also Example 3.2.6). The

corresponding orientation on TΓ(φ) is induced by the isomorphism Π(Γ(φ))⊗R�
Λ⊗R and the orientation ε of Λ⊗R.

Let Ωω,ε denote the holomorphic volume form on B defined by

Ωω,ε = κ∗
ω(ε),

where we view ε ∈
∧n

(Λ) ⊂
∧n

(Λ) ⊗ C as an n-form on Λ∗ ⊗ C and use the

isomorphism (3.5.1).

THEOREM 3.5.2

For an endosimple LI object F ∈Db(A) one has

(3.5.4) χ
(
�(ω), [F ]

)
=

∫
[TL]

Ωω,ε,

where L = LF and TL is equipped with the orientation μϕF ,ε coming from the

point (LF , ϕF ) ∈ LGspin(A,Q) associated with F .

Proof

Note that shifting F by [1] changes the orientation of TL, so the assertions for F

and F [n] are equivalent.

First, let us prove (3.5.4) in the case when LF is transversal to {0} × Â,

that is, when F = Vφ is the semihomogeneous bundle corresponding to φ ∈
Hom(A, Â)+ ⊗ Q � Hom(Λ,Λ∗)+ ⊗ Q (and LF = Γ(φ) ⊂ A × Â). Recall that

rkVφ = deg(LF →A)1/2 (see (2.1.9)). For K =Q or R let ΓK(φ)⊂ (Λ∗ ⊕Λ)⊗K

be the graph of φ viewed as a map of K-vector spaces (i.e., ΓK(φ) =H1(LF ,K)),
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and set

ΓZ(φ) := ΓQ(φ)∩ (Λ∗ ⊕Λ),

so that TL = ΓR(φ)/ΓZ(φ). We also denote by iφ : ΓZ(φ)→ Λ∗ ⊕ Λ the natural

embedding. The orientation on TL is induced by the natural isomorphism ΓR(φ)�
Λ⊗ R and by the orientation of Λ⊗ R given by ε. The cycle [TL] in Hn(A) �
Λn(Λ∗ ⊕Λ) is the image of the positive generator μ ∈

∧n
(ΓZ(φ)) under the map∧n

(iφ) :
∧n(

ΓZ(φ)
)
→

∧n
(Λ∗ ⊕Λ).

Note also that the integration map

Hn(A)→C : γ �→
∫
γ

Ωω,ε

is identified with ∧n
(κω) :

∧n
(Λ∗ ⊕Λ)→

∧n
(Λ∗)⊗C�C,

where the last isomorphism is given by ε. Hence,
∫
[TL]

Ωω,ε = δ(μ) · ε, where

δ ∈
∧n

(Λ∗)⊗
∧n

(ΓZ(φ))
−1 ⊗C is the determinant of the composition

ΓZ(φ)
iφ� Λ∗ ⊕Λ

κω� Λ∗.

The projection p2 : ΓZ(φ)→Λ is an embedding of index deg(LF →A)1/2, so the

commutative diagram

ΓZ(φ)
κωiφ� Λ∗ ⊗C

Λ

p2

� φ− ω� Λ∗ ⊗C

id

�

implies that

δ(μ) · ε= det(φ− ω) · deg(LF →A)1/2 = χ
(
�(ω), �(φ)

)
· rk(F ) = χ

(
�(ω), [F ]

)
,

where the last equality follows from Lemma 2.5.2.

Next, we will check that (3.5.4) is compatible with the action of the group

U(Z) on [F ], ω, and B, where we use the natural symplectic action of U(Z)
on ΓB = Λ ⊕ Λ∗ and the splitting U(Z) → U(Z)spin of the spin covering (see

Remark 2.3.8.1). Namely, for g =
(
a b
c d

)
∈U(Z) the relation(

−ω idΛ∗
)
· g−1 = (a+ bω)∗ ·

(
−g(ω) idΛ∗

)
leads to a commutative diagram

(3.5.5)

ΓB
κω � Λ∗ ⊗C

ΓB

g

� κg(ω)� Λ∗ ⊗C

(a+ bω)∗

�
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Hence, we have

g∗Ωg(ω),ε = det(a+ bω)−1 ·Ωω,ε,

which implies that ∫
g[TL]

Ωg(ω),ε = det(a+ bω)−1 ·
∫
[TL]

Ωω,ε.

Also, the diagram (3.5.5) gives the equation

(3.5.6) κω|Π(L) = (a+ bω)∗ ◦ κg(ω)|Π(gL) ◦ g|Π(L)

in Hom(Π(L),Λ∗)⊗C. Since g · (L,ϕ) = (gL,ϕ′), where ϕ′(g(ω)) = ϕ(ω)det(a+

bω)−1, passing to determinants in (3.5.6) we obtain that the orientation μϕ′,ε

of Π(gL)⊗ R corresponds to μϕ,ε under the isomorphism Π(L)→ Π(gL) given

by g. Hence, the class g[TL] is exactly the fundamental class of TgL associated

with the orientation coming from g[F ]. On the other hand, by Corollary 2.5.6,

χ
(
�(ω), [F ]

)
= χ

(
�
(
g(ω)

)
, g[F ]

)
,

since for g ∈ U(Z) the operator ρ̂(g) is simply the map induced by any auto-

equivalence of Db(A) compatible with the canonical lifting of g to U(Z)spin.
Finally, applying Proposition 1.4.1 and using the U(Z)-invariance, we see

that the general case of (3.5.4) follows from the case when LF is transversal to

{0} × Â considered above. �

REMARK 3.5.3

Note that since LF is equipped with the lifting L̃F to the universal covering

of the Lagrangian Grassmannian (see Example 3.2.6), the Lagrangian torus TL

has a structure of a graded Lagrangian (see [33]). The corresponding choice of a

phase of
∫
TL

obtained from Theorems 3.3.2 and 3.5.2 comes from Kontsevich’s

description of a grading on a Lagrangian (see [33, Example 2.9]).

4. Quasistandard t-structures and Fourier–Mukai partners

4.1. Quasistandard t-structures
The Z-covering L̃G(Q) → LG(Q) appears also naturally when considering t-

structures. Let T (A) be the set of H-invariant t-structures on Db(A). We identify

T (A) with the set of cores of such t-structures, so we view elements of T (A) as

abelian subcategories A⊂Db(A).

THEOREM 4.1.1

(i) There is a natural Ũ(Q)-equivariant embedding

L̃G(Q)→T (A) : L̃ �→ AL̃,

which is uniquely characterized by the condition

A(0:φ0),0 =Coh(A).
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Thus, the LI functor Φg̃ :D
b(A)→Db(A) corresponding to g̃ ∈ Ũ(Q) (defined up

to H; see Section 2.1) satisfies

Φg̃(AL̃)⊂Ag̃L̃.

(ii) For an LI object F and L̃ ∈ L̃G(Q) one has F [−i(L̃F , L̃)] ∈ AL̃, where

i(·, ·) ∈ Z is the unique Ũ(Q)-equivariant function on L̃G(Q)× L̃G(Q) such that

for φ1, φ2 ∈NS(A)⊗Q one has

i(L̃Vφ1
, L̃Vφ2

) = i(φ2 − φ1),

provided φ2 − φ1 is nondegenerate. (Recall that L̃Vφ
is given by (3.2.5).)

Proof

(i) Recall that the action of Ũ(Q) on L̃G(Q) is transitive, and the stabilizer

subgroup of the point ((0 : φ0),0) is P−(Q), lifted to Ũ(Q) as described in

Corollary 2.2.2. Thus, it suffices to check that P−(Q) preserves the standard

t-structure. But this immediately follows from the description of the functors

corresponding to elements of P−(Q) (see Proposition 2.2.1).

(ii) The fact that every LI sheaf is cohomologically pure with respect to each

t-structure constructed in (i) follows from Theorem 2.4.1. The uniqueness of the

Ũ(Q)-equivariant index function i(·, ·) follows from Proposition 1.4.1. It remains

to find the number i= i(φ1, φ2) such that

Vφ1 [−i] ∈AL̃Vφ2

.

Let g =
(
1 φ−1

2
0 1

)
. Then by formula (2.4.1), we have

Φg(Ox) = Vφ2 modN∗.

(There is no shift in this case since the kernel S(g) is a vector bundle.) It follows

that

Φg

(
Coh(A)

)
⊂AL̃Vφ2

.

Note that Γ(φ1) = g(Γ(φ)), where

φ= φ1(1− φ−1
2 φ1)

−1.

Hence, using (2.4.1) and (2.4.3) we obtain

Φg(Vφ) = Vφ1

[
−i(φ2 + φ)

]
modN∗,

so denoting φ3 = 1− φ−1
2 φ1 we obtain

i= i(φ2 + φ1φ
−1
3 ) = i

(
φ3(φ2φ3 + φ1)

)
= i(φ3φ2) = i(φ2 − φ1)

as claimed. �

DEFINITION 4.1.2

We will refer to t-structures on Db(A) constructed in the above theorem as quasi-

standard t-structures.
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PROPOSITION 4.1.3

Let A and B be abelian varieties, and let η : XA → XB be a symplectic iso-

morphism in AbQ (i.e., up to isogeny). Then the map η∗ : LGA(Q)→ LGB(Q)

induced by η extends to a Z-equivariant map

η̃∗ : ˜LGA(Q)→ ˜LGB(Q)

which is compatible with the quasistandard t-structures; that is, for every L̃ ∈
˜LGA(Q) the LI functor Φη associated with η (defined up to H) satisfies

(4.1.1) Φη(AL̃)⊂Aη̃∗L̃
.

Proof

Note that B is isogenous to A; that is, there exists an isomorphism f : A→ B

in AbQ. Let η0 :XA →XB be the induced symplectic isomorphism in AbQ. We

also have natural compatible isomorphisms induced by f :

UXA
→UXB

, ŨXA
(Q)→ ŨXB

(Q),

η0∗ : LGA(Q)→ LGB(Q), η̃0∗ : ˜LGA(Q)→ ˜LGB(Q).

Furthermore, it is easy to see that the t-exactness (4.1.1) holds for η̃0∗ and the

functor Φη0 which is the composition of the pullback and the pushforward under

isogenies. (This is proved similarly to Proposition 2.2.1(ii).) Now let gη ∈U(Q)

be the unique element such that

η = η0 ◦ gη.

Choose any element g̃η ∈ Ũ(Q) over gη , and define

η̃∗ : ˜LGA(Q)→ ˜LGB(Q) : L̃ �→ η̃0∗
(
g̃η(L̃)

)
.

By Theorem 4.1.1(i), the required assertion follows for the functor Φη0 ◦ Φg̃η .

By [31, Theorem 3.2.11], its H-equivalence class differs from Φη[n] by an action

of N∗. (One has to use also [31, Proposition 2.4.7(ii)] as in the proof of [31,

Theorem 3.3.4].) Changing η̃∗ using the action of n ∈ Z⊂ Ũ(Q) on ˜LGA(Q), we

get the required compatibility (4.1.1). �

REMARKS 4.1.4

(1) The quasistandard t-structure associated with L̃F ∈ L̃G(Q) has a simple char-

acterization in terms of the LI object F (defined up to H-equivalence). Namely,

the corresponding subcategory D≤0 ⊂Db(A) consists of all X ∈Db(A) such that

Homi(X,Tx,ξ(F )) = 0 for i < 0 and all (x, ξ) ∈ A× Â. Indeed, by using Ũ(Q)-

action this reduces to the characterization of the standard subcategory D≤0 by

the above condition, where F is a nonzero torsion sheaf.

(2) In the case of an elliptic curve all the quasistandard t-structures are

obtained from the standard one by tilting (up to a shift). More precisely, let

P (·) be the slicing associated with the standard stability on Db(E) for an elliptic

curve E, so that P ((0,1]) = Coh(E) (see Example 3.3.5). Then the quasistandard
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t-structure associated with φ ∈ NS(E,Q) � Q (lifted to ˜LGE(Q) by (3.2.6)) is

P ((Arg(i− φ))/π − 1, (Arg(i− φ))/π]). Note that this construction extends to

irrational numbers φ ∈ R and for k = C the corresponding hearts are equivalent

to the categories of holomorphic bundles on noncommutative 2-tori (see [28],

[32]). We conjecture that this connection between quasistandard t-structures and

noncommutative tori extends to the higher-dimensional case. (The corresponding

equivalence of derived categories is established in [4].) Namely, to every point of

˜LGA(R) \ ˜LGA(Q) there should correspond a t-structure on Db(A) (in a way

compatible with the action of Ũ(Q)) whose heart is equivalent to the category

of holomorphic bundles on the corresponding noncommutative torus.

4.2. Fourier–Mukai partners
Recall that the set of Fourier–Mukai partners (FM partners for short) of a smooth

projective variety X is defined as

FM(X) =
{
Y smooth projective

∣∣ Db(Y )�Db(X)
}
/isomorphism.

For an abelian variety A we can also define the subset FMab(A) ⊂ FM(A) by

considering only FM partners among abelian varieties. In characteristic zero it

is known that FMab(A) = FM(A) (see [14]).

Recall that if B is an FM partner of A, then any equivalence Db(A)�Db(B)

is given by the LI kernel associated with a Lagrangian correspondence (L(η), α)

extending a symplectic isomorphism η :XA �XB (see Section 2.1). The U(Z)-
orbit of the Lagrangian (η∗)

−1(0× B̂) ∈ LGA(Q) does not depend on a choice of

an equivalence Db(A)�Db(B).

PROPOSITION 4.2.1

The above construction gives an embedding

(4.2.1) FMab(A) ↪→LGA(Q)/U(Z).

The image consists of orbits of Lagrangian subvarieties L⊂XA for which there

exists a Lagrangian subvariety L′ ⊂XA such that L∩L′ = 0.

Proof

The first assertion is immediate since the Lagrangian subvariety (η∗)
−1(0× B̂)⊂

XA corresponding to B is isomorphic to B̂. For the second we observe that if we

have a Lagrangian L′ ⊂XA such that L ∩ L′ = 0, then we get an isomorphism

L×L′ →XA and also L′ �XA/L� L̂, which leads to a symplectic isomorphism

L× L̂�XA, so that B = L̂ is an FM partner of A. �

REMARK 4.2.2

The set LGA(Q)/U(Z) = U(Z)\U(Q)/P−(Q) is known to be finite (see [11,

Theorem 6]). Note that this set is also in bijection with the set of endosimple LI

objects in Db(A) up to the action of exact autoequivalences of Db(A) (as follows

from Proposition 2.1.2).



Phases of Lagrangian-invariant objects on an abelian variety 479

Here is an example of a situation when the embedding of Proposition 4.2.1 is a

bijection.

PROPOSITION 4.2.3

Assume that A is principally polarized, and assume that End(A) =R is the ring

of integers in a totally real number field F (so the Rosati involution on F is

trivial). Then the map (4.2.1) is a bijection, and∣∣FMab(A)
∣∣ = ∣∣LGA(Q)/U(Z)

∣∣ = hR,

where hR is the class number of R.

Proof

First, we observe that in this case the set LGA(Q) consists of all subvarieties

in XA =A×A, isogenous to A. We claim that all such subvarieties L⊂XA are

direct summands. Indeed, L is an image of the morphism A → A2 associated

with a pair (a, b) ∈R2 \ {(0,0)}. Consider the exact sequence

0→ I ′ →R2 → I → 0,

where I = (a, b)⊂R. This sequence splits since I is a projective R-module. Hence,

there is a corresponding split exact sequence of abelian varieties

0→AI →A2 →AI′ → 0,

where we use the natural functor M → AM from R-modules to commutative

group schemes with AM (S) = HomR(M,A(S)) (see [10]). Since AI is exactly the

image of the map (a, b) :A→A2, this proves our claim.

It remains to check that the orbits of SL2(R) on the projective line P1(F )

are in bijection with the ideal class group Cl(R). We have a well-defined map

P1(F )/SL2(R)→Cl(R)

sending (a : b) with a, b ∈R to the class of the ideal (a, b). This map is surjective

since every nonzero ideal in R is generated by two elements. To show injectivity

suppose that pairs (a : b) and (a′ : b′) define the same ideal class. Then upon

rescaling we can assume that (a, b) = (a′, b′). Now we have two surjective maps

R2 → I = (a, b), one given by (a, b) and another by (a′, b′), and our assertion

follows from Lemma 4.2.4 below. �

LEMMA 4.2.4

For every nonzero ideal I ⊂R the action of SL2(R) on surjective maps R2 → I

is transitive.

Proof

Since I is a projective R-module, for every surjective map f :R2 → I there exists

an isomorphism

α :R2 ∼� I ′ ⊕ I
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such that f is the composition of α with the projection to I . Note that det(α)

induces an isomorphism of R with I ′⊗R I , so we obtain an isomorphism I ′ � I−1.

Thus, we can view α as an isomorphism R2 → I−1 ⊕ I such that det(α) is the

canonical isomorphism R→ I−1⊗ I . If g :R2 → I is another surjective morphism

and β :R2 ∼� I−1 ⊕ I is the corresponding isomorphism, then γ = β−1 ◦ α is

an element of SL2(R) such that g ◦ γ = f . �

REMARK 4.2.5

In general the embedding (4.2.1) is not a bijection as one can see already in

the case of a nonprincipally polarized abelian variety with End(A) = Z (cf. [23,

Example 4.16]). The Lagrangians not in the image of this map correspond to

categories of twisted sheaves equivalent to Db(A) (see [25]). Note that the set

LGA(Q) is a subset of vertices of the spherical building associated with the group

U, which is related to the boundary of the Baily–Borel compactification of the

Siegel domain DA. It would be interesting to see whether other elements of this

building have an interpretation in terms of Db(A). Also, one can expect some

relation between the quasistandard t-structures and the t-structures associated

with stabilities coming from points of DA or DA ×C. In the case of K3-surfaces

similar questions are studied in [15] and [13].

Acknowledgments. I am grateful to Tom Bridgeland for helpful discussions and

to Maxim Kontsevich for a discussion of the picture in Section 3.5 involving

mirror symmetry.
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