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Abstract LetX be a smooth projective curve defined over an algebraically closed field

k, and let E be a vector bundle on X. Let OGrr(E)(1) be the tautological line bundle

over the Grassmann bundle Grr(E) parameterizing all the r-dimensional quotients of

the fibers of E. We give necessary and sufficient conditions for OGrr(E)(1) to be ample

and nef, respectively. As an application, we compute the nef cone ofGrr(E). This yields

a description of the nef cone of any flag bundle overX associated to E.

1. Introduction

Let E be a semistable vector bundle over a smooth projective curve defined

over an algebraically closed field of characteristic zero. Miyaoka [Mi, p. 456,

Theorem 3.1] computed the nef cone of P(E). Our aim here is to compute the

nef cone of the flag bundles associated to vector bundles over curves.

Let X be an irreducible smooth projective curve defined over an algebraically

closed field k. (The characteristic is not necessarily zero.) If the characteristic of

k is positive, the absolute Frobenius morphism of X will be denoted by FX .

A vector bundle E on X is called strongly semistable if all the pullbacks of E by

the iterations of FX are semistable.

Let E be a vector bundle on X . Let

(1.1) E1 ⊂E2 ⊂ · · · ⊂Em−1 ⊂Em =E

be the Harder–Narasimhan filtration of E. If the characteristic of k is zero and

f : Y −→X

is a nonconstant morphism, where Y is an irreducible smooth projective curve,

then the pulled-back filtration

f∗E1 ⊂ f∗E2 ⊂ · · · ⊂ f∗Em−1 ⊂ f∗Em = f∗E

coincides with the Harder–Narasimhan filtration of f∗E. If the characteristic of k

is positive, then this is not true in general. However, there is an integer nE , which

depends on E, such that the Harder–Narasimhan filtration of (Fn
X)∗E has this

property if n≥ nE , meaning that the Harder–Narasimhan filtration of f∗(Fn
X)∗E

is the pullback, by f , of the Harder–Narasimhan filtration of (Fn
X)∗E, where f

is any nonconstant morphism to X from an irreducible smooth projective curve.
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Fix an integer r ∈ [1, rank(E) − 1]. Let Grr(E) be the Grassmann bundle

on X parameterizing all the r-dimensional quotients of the fibers of E. The

tautological line bundle on Grr(E) is denoted by OGrr(E)(1).

If the characteristic of k is positive, consider the Harder–Narasimhan filtra-

tion of (FnE

X )∗E

0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vd−1 ⊂ Vd = (FnE

X )∗E,

where nE is as above; if the characteristic of k is zero, then simply take the

Harder–Narasimhan filtration of E. So Vi is Ei in (1.1) if the characteristic of

k is zero. Using only the numerical data associated to this filtration, we can

compute a rational number θE,r (see (3.5)). The following theorem shows that

θE,r controls the positivity of the tautological line bundle OGrr(E)(1) on Grr(E).

THEOREM 1.1

If θE,r > 0, then the tautological line bundle OGrr(E)(1) is ample.

If θE,r = 0, then OGrr(E)(1) is nef but not ample.

If θE,r < 0, then OGrr(E)(1) is not nef.

(See Theorem 3.4 for a proof of this theorem.)

As an application of Theorem 1.1, we compute the nef cone of Grr(E). (This

is done in Section 4.)

In order to know the nef cone of a flag bundle over X associated to E, it is

enough to know the nef cones of the corresponding Grassmann bundles associated

to E. Therefore, using our description of the nef cone of the Grassmann bundles,

we obtain a description of the nef cone of any flag bundle over X associated to

E (see Theorem 5.1).

Let K−1
ϕ :=K−1

Grr(E)⊗ϕ∗KX be the relative anticanonical line bundle for the

natural projection ϕ : Grr(E)−→X . It is known that K−1
ϕ is never ample. If the

characteristic of k is zero, then K−1
ϕ is nef if and only if E is semistable (see [BB]);

if the characteristic of k is positive, then K−1
ϕ is nef if and only if E is strongly

semistable (see [BH]). These criteria for semistability and strong semistability

follow from the description of the nef cone of Grr(E) given in Propositions 4.1

and 4.4.

2. Preliminaries

Let k be an algebraically closed field. Let X be an irreducible smooth projective

curve defined over k. If the characteristic of k is positive, then we have the

absolute Frobenius morphism

FX :X −→X.

For convenience, if the characteristic of k is zero, we denote by FX the identity

morphism of X . For any integer m≥ 1, let

Fm
X :=

m times︷ ︸︸ ︷
FX ◦ · · · ◦ FX :X −→X
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be the m-fold iteration of FX . For notational convenience, we denote by F 0
X the

identity morphism of X .

For a vector bundle E over X of positive rank, define the number

μ(E) :=
degree(E)

rank(E)
∈Q.

A vector bundle E over X is called semistable if, for every nonzero subbundle

V ⊂E, the inequality

μ(V )≤ μ(E)

holds. The vector bundle E is called strongly semistable if the pullback (Fm
X )∗E

is semistable for all m≥ 0.

For every vector bundle E on X , there is a unique filtration of subbun-

dles

0 =E0 ⊂E1 ⊂ · · · ⊂EdE−1 ⊂EdE
=E

such that Ei/Ei−1 is semistable for each i ∈ [1, dE ], and μ(Ei/Ei−1)> μ(Ei+1/Ei)

for all i ∈ [1, dE − 1]. It is known as the Harder–Narasimhan filtration of E. If E

is semistable, then dE = 1.

Given any E, there is a nonnegative integer δ satisfying the condition that,

for all i≥ 1,

(2.1) 0 = (F i
X)∗V0 ⊂ (F i

X)∗V1 ⊂ · · · ⊂ (F i
X)∗Vd−1 ⊂ (F i

X)∗Vd = (F i+δ
X )∗E

is the Harder–Narasimhan filtration of (F i+δ
X )∗E, where

(2.2) 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vd−1 ⊂ Vd = (F δ
X)∗E

is the Harder–Narasimhan filtration of (F δ
X)∗E (see [Lan, p. 259, Theorem 2.7]).

(This is vacuously true if the characteristic of k is zero.) It should be emphasized

that δ in (2.1) depends on E.

Note that the quotient Vi/Vi−1 in the filtration in (2.2) is strongly semistable

for all i ∈ [1, d]. If δ satisfies the above condition, then clearly δ+ j also satisfies

the above condition for all j ≥ 0.

For a vector bundle E on X , let P(E) denote the projective bundle over X

parameterizing all the hyperplanes in the fibers of E. The vector bundle E is

called ample if the tautological line bundle OP(E)(1) on P(E) is ample (see [Ha]

for properties of ample bundles).

A line bundle L over an irreducible projective variety Z defined over k is

called numerically effective (nef for short) if for all pairs of the form (C,f),

where C is a smooth projective curve and f is a morphism from C to Z, the

inequality

degree(f∗L)≥ 0

holds. A vector bundle E is called nef if the tautological line bundle OP(E)(1)

over P(E) is nef.
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The following lemma is well known.

LEMMA 2.1

Let 0 −→W −→ E −→ Q −→ 0 be a short exact sequence of vector bundles. If

both W and Q are ample (resp., nef), then E is ample (resp., nef).

See [Ha, p. 71, Corollary 3.4] for the case of ample bundles and [DPS, p. 308,

Proposition 1.15(ii)] for the case of nef vector bundles.

3. (Semi)Positivity criterion

Let E be a vector bundle over X of rank at least two. Fix an integer r ∈
[1, rank(E)− 1]. Let

(3.1) ϕ : Grr(E)−→X

be the Grassmann bundle over X parameterizing all the quotients, of dimension

r, of the fibers of E. Let

(3.2) OGrr(E)(1)−→Grr(E)

be the tautological line bundle; the fiber of OGrr(E)(1) over any quotient Q of

Ex is
∧r

Q. So the line bundle OGrr(E)(1) is relatively ample.

Take any δ satisfying the condition in (2.1). Let

(3.3) 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vd−1 ⊂ Vd = (F δ
X)∗E

be the Harder–Narasimhan filtration of (F δ
X)∗E. We recall that Vi/Vi−1 is strongly

semistable for all i ∈ [1, d]. Let

t ∈ [1, d]

be the unique largest integer such that

(3.4)
d∑

i=t

rank(Vi/Vi−1)≥ r,

so either t= d, or t is the smallest integer with

d∑
i=t+1

rank(Vi/Vi−1) = rank
((
(F δ

X)∗E
)
/Vt

)
< r.

Define

(3.5) θE,r :=
(
r− rank

((
(F δ

X)∗E
)
/Vt

))
· μ(Vt/Vt−1) + degree

((
(F δ

X)∗E
)
/Vt

)
,

where t is defined above using (3.4). If E is strongly semistable, then we may

take δ = 0; in that case, θE,r = r · μ(E). Note that the condition that θE,r is

nonzero, or the condition that θE,r is positive, does not depend on the choice of

the integer δ in (3.3).
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LEMMA 3.1

Assume that θE,r > 0. Then the line bundle OGrr(E)(1) −→ Grr(E) in (3.2) is

ample.

Proof

Consider the Plücker embedding

(3.6) ρ : Grr(E)−→ P

(∧r
E

)
.

We have that

(3.7) ρ∗OP(
∧r E)(1) =OGrr(E)(1).

Therefore, to prove that OGrr(E)(1) is ample, it suffices to show that the vector

bundle
∧r

E is ample. Since F δ
X is a finite flat surjective morphism, it follows

that
∧r

E is ample if and only if (F δ
X)∗

∧r
E is ample (see [Ha, p. 73, Proposi-

tion 4.3]).

By the filtration in (3.3) it follows that the vector bundle (F δ
X)∗

∧r
E admits

a filtration of subbundles such that each successive quotient is of the form

(3.8) Va :=

d⊗
i=1

∧ai

(Vi/Vi−1)

with
∑d

i=1 ai = r; we use the standard convention that
∧0

F is the trivial line

bundle for every vector bundle F . Since each Vi/Vi−1 is strongly semistable,

the above vector bundle Va is also strongly semistable (see [RR, p. 285, Theo-

rem 3.18] for Char(k) = 0 and [RR, p. 288, Theorem 3.23] for Char(k)> 0). From

the assumption that θE,r > 0, it follows immediately that

(3.9) degree(Va)> 0.

Since Va is strongly semistable of positive degree, it can be shown that Va is

ample (see [BP]). We include the details for completeness.

To prove that Va is ample, we need to show that, for any coherent sheaf E
on X , there is a positive integer bE such that

(3.10) H1
(
X,Symj(Va)⊗E

)
= 0

for all j ≥ bE (see [Ha, p. 70, Proposition 3.3]). Since H1(X,Symj(Va)⊗E) = 0, if

E is a torsion sheaf, and any vector bundle on X admits a filtration of subbundles

such that each successive quotient is a line bundle, it is enough to prove (3.10)

for all line bundles E . Take a line bundle E . Since Va is strongly semistable, it

follows that Symj(Va) is semistable for all j ≥ 1 (see [RR, p. 285, Theorem 3.18]

for Char(k) = 0 and [RR, p. 288, Theorem 3.23] for Char(k)> 0). Therefore, the

vector bundle Symj(Va)
∗ ⊗E∗ ⊗KX is semistable. Now, from (3.9), we conclude

that

μ
(
Symj(Va)

∗ ⊗E∗ ⊗KX

)
=−j · μ(Va)− degree(E) + 2

(
genus(X)− 1

)
< 0
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for all j sufficiently large and positive. Consequently,

H0
(
X,Symj(Va)

∗ ⊗E∗ ⊗KX

)
= 0

for all j sufficiently large and positive. Therefore, from Serre duality,

H1
(
X,Symj(Va)⊗E

)
= 0

for all j sufficiently large and positive. Hence, Va is ample.

We note that if the characteristic of k is zero, then the nef cone of the pro-

jective bundle P(Va) is explicitly described in [Mi, p. 456, Theorem 3.1(4)]. It is

straightforward to check that the tautological line bundle OP(Va)(1) lies in the

interior of the nef cone of P(Va). This also proves that Va is ample under the

assumption that the characteristic of k is zero.

Since Va is ample and (F δ
X)∗

∧r
E admits a filtration of subbundles such that

each successive quotient is of the form Va, using Lemma 2.1 we conclude that the

vector bundle (F δ
X)∗

∧r
E is ample. We noted earlier that OGrr(E)(1) is ample if

(F δ
X)∗

∧r
E is ample. �

LEMMA 3.2

Assume that θE,r defined in (3.5) satisfies the inequality θE,r < 0. ThenOGrr(E)(1)

is not nef.

Proof

Consider the strongly semistable vector bundle Vt/Vt−1 (see (3.5)). Given any real

number ε > 0 and any s ∈ [1, rank(Vt/Vt−1)], there exist an irreducible smooth

projective curve Y , a nonconstant morphism

f : Y −→X,

and a subbundle

(3.11) W ⊂ f∗(Vt/Vt−1)

of rank s such that (see [PS, p. 525, Theorem 4.1])

(3.12) μ(Vt/Vt−1)−
μ(W )

degree(f)
=

μ(f∗(Vt/Vt−1))− μ(W )

degree(f)
< ε.

Set

s= r− rank
((
(F δ

X)∗E
)
/Vt

)
, and set ε=−θE,r

2s
.

Let Q be the quotient of f∗(F δ
X)∗E defined by the composition

f∗(F δ
X)∗E −→ f∗(((F δ

X)∗E
)
/Vt−1

)
−→ f∗(((F δ

X)∗E
)
/Vt−1

)
/W,

where f and W are as in (3.11) for the above choices of s and ε. Note that

degree(Q) = degree(f) · degree
((
(F δ

X)∗E
)
/Vt

)
+

(
degree(f) · degree(Vt/Vt−1)− degree(W )

)
.
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Hence from (3.5),

degree(Q) = degree(f)
(
θE,r +

(
μ(Vt/Vt−1)−

μ(W )

degree(f)

)
· s

)
.

But from (3.12), we have μ(Vt/Vt−1)− μ(W )/degree(f)< ε. Consequently,

(3.13) degree(Q)< 0.

The quotient bundle f∗(F δ
X)∗E −→Q of rank r defines a morphism

φ : Y −→Grr
(
(F δ

X)∗E
)
= (F δ

X)∗Grr(E),

where Grr((F
δ
X)∗E) is the Grassmann bundle parameterizing all r-dimensional

quotients of the fibers of (F δ
X)∗E, and (F δ

X)∗Grr(E) is the pullback of the fiber

bundle Grr(E) −→X using the morphism F δ
X . Consider the commutative dia-

gram

(3.14)

(F δ
X)∗Grr(E)

β−→ Grr(E)

↓ ↓
X

F δ
X−→ X

of morphisms. We have β∗OGrr(E)(1) =OGrr((F δ
X)∗E)(1), where OGrr((F δ

X)∗E)(1)

is the tautological line bundle, and β is the morphism in (3.14). Hence, from the

definition of φ it follows immediately that

(β ◦ φ)∗OGrr(E)(1) =
∧r

Q.

Now from (3.13) we conclude that OGrr(E)(1) is not nef. �

LEMMA 3.3

Assume that θE,r = 0 (defined in (3.5)). Then OGrr(E)(1) is nef but not ample.

Proof

The proof that OGrr(E)(1) is nef is very similar to the proof of Lemma 3.1.

We know that
∧r

E is nef if and only if (F δ
X)∗

∧r
E is nef (see [Fu, p. 360,

Propositions 2.2 and 2.3]). Consider the vector bundles Va in (3.8). We noted

earlier that Va is strongly semistable. The condition that θE,r = 0 implies that

degree(Va)≥ 0.

A strongly semistable vector bundle W over X of nonnegative degree is nef.

To prove this, take any morphism

ψ : Y −→ P(W ),

where Y is an irreducible smooth projective curve. Let h : P(W ) −→X be the

natural projection. The pullback ψ∗h∗W is semistable because W is strongly

semistable. Since ψ∗OP(W )(1) is a quotient of ψ∗h∗W and degree(ψ∗h∗W )≥ 0,

we conclude that degree(ψ∗OP(W )(1))≥ 0. Hence, OP(W )(1) is nef, meaning that

W is nef.

The above observation implies that the vector bundle Va is nef.
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Since each successive quotient of the filtration of (F δ
X)∗

∧r
E is nef (as they

are of the form Va), from Lemma 2.1 we know that (F δ
X)∗

∧r
E is nef. We noted

earlier that
∧r

E is nef if (F δ
X)∗

∧r
E is so. Now using (3.6) and (3.7) we conclude

that OGrr(E)(1) is nef.

To complete the proof of the lemma we need to show that OGrr(E)(1) is not

ample.

Consider Vt/Vt−1 in (3.5). Let

(3.15) f : Grs(Vt/Vt−1)−→X

be the Grassmann bundle parameterizing quotients of the fibers of Vt/Vt−1 of

dimension

(3.16) s := r− rank
((
(F δ

X)∗E
)
/Vt

)
.

Let

(3.17) γ : Grs(Vt/Vt−1)−→Grr
(
(F δ

X)∗E
)

be themorphism of fiber bundles overX that sends any quotient q : (Vt/Vt−1)x −→
Q to the quotient defined by the composition(

(F δ
X)∗E

)
x
−→

((
(F δ

X)∗E
)
/Vt−1

)
x
−→

(((
(F δ

X)∗E
)
/Vt−1

)
x

)
/kernel(q).

To define γ using the universal property of a Grassmannian, let

f∗(Vt/Vt−1)
q̃−→Q−→ 0

be the universal quotient bundle of rank s over Grs(Vt/Vt−1). Now consider the

diagram of homomorphisms

kernel(q̃ ) ↪→ Vt/Vt−1
q̃−→ Q⋂ ⋂

f∗(F δ
X)∗E

q̂−→
(
(F δ

X)∗E
)
/Vt−1 =

(
(F δ

X)∗E
)
/Vt−1

↓ h((
(F δ

X)∗E
)
/Vt−1

)
/kernel(q̃ )

Note that rank((((F δ
X)∗E)/Vt−1)/kernel(q̃ )) = r by (3.16). Let

γ̃ : Grs(Vt/Vt−1)−→Grr
(
f∗(F δ

X)∗E
)
=Grs(Vt/Vt−1)×X Grr

(
(F δ

X)∗E
)

be the morphism representing the surjective homomorphism h ◦ q̂ in the above

diagram. The morphism γ in (3.17) is the composition of γ̃ with the natural

projection Grs(Vt/Vt−1)×X Grr((F
δ
X)∗E)−→Grr((F

δ
X)∗E).

The morphism γ in (3.17) is clearly an embedding. Define the line bundle

L := det
((
(F δ

X)∗E
)
/Vt

)
=

d⊗
i=t+1

∧rank(Vi/Vi−1)
(Vi/Vi−1)

on X . We note that

(3.18) γ∗OGrr((F δ
X)∗E)(1) =OGrs(Vt/Vt−1)(1)⊗ f∗L,

where OGrs(Vt/Vt−1)(1)−→Grs(Vt/Vt−1) is the tautological line bundle.
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For any integer n, the line bundles OGrr((F δ
X)∗E)(1)

⊗n and OGrs(Vt/Vt−1)(1)
⊗n

are denoted by OGrr((F δ
X)∗E)(n) and OGrs(Vt/Vt−1)(n), respectively.

Assume that OGrr(E)(1) is ample. Since F δ
X is a finite morphism, this implies

thatOGrr((F δ
X)∗E)(1) is ample. Therefore, the pullback γ∗OGrr((F δ

X)∗E)(1) is ample

because γ is an embedding. Hence, for sufficiently large positive n, we have

(3.19) dimH0
(
Grs(Vt/Vt−1), γ

∗OGrr((F δ
X)∗E)(n)

)
= cnd0 +

d0−1∑
j=0

ajn
j

with c > 0, where d0 = dimGrs(Vt/Vt−1).

For convenience, the integer rank(Vt/Vt−1) is denoted by rt.

Let K−1
f :=K−1

Grs(Vt/Vt−1)
⊗ f∗KX be the relative anticanonical line bundle

for the projection f in (3.15). We have that

(3.20) K−1
f =OGrs(Vt/Vt−1)(rt)⊗

((∧rt
(Vt/Vt−1)

)⊗s)∗
,

where s is defined in (3.16). The given condition that θE,r = 0 implies that

−s · degree(Vt/Vt−1) = rt · degree
((
(F δ

X)∗E
)
/Vt

)
.

Hence, the two line bundles ((
∧rt(Vt/Vt−1))

⊗s)∗ and L⊗rt differ by tensoring

with a line bundle of degree zero. Therefore, from (3.20) we conclude that(
OGrs(Vt/Vt−1)(1)⊗L

)⊗rt
=K−1

f ⊗ f∗L0,

where L0 is a line bundle on X of degree zero. Now, from (3.18),

(3.21) γ∗OGrr((F δ
X)∗E)(rt) =K−1

f ⊗ f∗L0.

From the projection formula and (3.21),

(3.22) H0
(
Grs(Vt/Vt−1), γ

∗OGrr((F δ
X)∗E)(n · rt)

)
=H0

(
X,

(
f∗(K

−1
f )⊗n

)
⊗L⊗n

0

)
.

We show that the line bundle det(f∗(K
−1
f )⊗n) −→ X is trivial. For that,

let FGLrt
be the principal GLrt(k)-bundle on X defined by the vector bundle

Vt/Vt−1; the fiber of FGLrt
over any point x ∈X is the space of all linear iso-

morphisms from k⊕rt to the fiber (Vt/Vt−1)x. Let FPGLrt
:= FGLrt

/Gm be the

corresponding principal PGLrt(k)-bundle. The vector bundle f∗(K
−1
f )⊗n is the

one associated to the principal PGLrt(k)-bundle FPGLrt
for the PGLrt(k)-module

H0(Grs(k
⊕rt), (K−1

Grs(k⊕rt )
)⊗n). (The action of PGLrt(k) on the space of sections

is given by the standard action of PGLrt(k) on Grs(k
⊕rt).) Since PGLrt(k) does

not have any nontrivial character, the line bundle det(f∗(K
−1
f )⊗n) associated to

FPGLrt
for the PGLrt(k)-module

∧top
H0(Grs(k

⊕rt), (K−1
Grs(k⊕rt )

)⊗n) is trivial.

As det(f∗(K
−1
f )⊗n) is trivial and degree(L) = 0,

degree
((
f∗(K

−1
f )⊗n

)
⊗L⊗n

0

)
= 0.

Since Vt/Vt−1 is strongly semistable, the corresponding principal GLrt(k)-bundle

FGLrt
is strongly semistable. Therefore, the associated vector bundle f∗(K

−1
f )⊗n

is also semistable (see [RR, p. 285, Theorem 3.18] and [RR, p. 288, Theo-

rem 3.23]). This implies that (f∗(K
−1
f )⊗n)⊗L⊗n

0 is semistable.
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For a semistable vector bundle V on X of degree zero, any nonzero section

σ : OX −→ V is nowhere vanishing. Indeed, this follows immediately from the

semistability condition that the line bundle of V generated by the image of σ is

of nonpositive degree. Consequently,

dimH0(X,V)≤ rank(V).

Since (f∗(K
−1
f )⊗n)⊗L⊗n

0 is semistable of degree zero, we have

dimH0
(
X,

(
f∗(K

−1
f )⊗n

)
⊗L⊗n

0

)
≤ rank

((
f∗(K

−1
f )⊗n

)
⊗L⊗n

0

)
= rank

((
f∗(K

−1
f )⊗n

))(3.23)

for all n > 0.

We have Rjf∗((K
−1
f )⊗n) = 0 for j,n ≥ 1. Hence, from the Riemann–

Roch theorem for the restriction (K−1
f )⊗n|f−1(x), x ∈ X , we conclude that

rank((f∗(K
−1
f )⊗n)) is a polynomial of degree at most d0−1 (which is the dimen-

sion of the fibers of f ). Therefore, using (3.22) and (3.23) we conclude that

dimH0
(
Grs(Vt/Vt−1), γ

∗OGrr((F δ
X)∗E)

(
n · rank(Vt/Vt−1)

))
is a polynomial of degree at most d0 − 1. But this contradicts (3.19).

We assumed that OGrr(E)(1) is ample, and we are led to the above contra-

diction. Therefore, we conclude that OGrr(E)(1) is not ample. This completes the

proof of the lemma. �

Lemmas 3.1, 3.2, and 3.3 together give the following.

THEOREM 3.4

If θE,r > 0, then the line bundle OGrr(E)(1)−→Grr(E) in (3.2) is ample.

If θE,r = 0, then OGrr(E)(1) is nef but not ample.

If θE,r < 0, then OGrr(E)(1) is not nef.

4. The nef cone of Grr(E)

In this section we compute the nef cone of Grr(E) using Theorem 3.4. Being a

closed cone, it is generated by its boundary. For notational reasons, it is con-

venient to treat the cases of characteristic zero and positive characteristic sepa-

rately.

For a smooth projective variety Z, the real Néron–Severi group NS(Z)R is

defined to be

(4.1) NS(Z)R :=
(
Pic(Z)/Pic0(Z)

)
⊗Z R,

where Pic0(Z) is the connected component, containing the identity element, of

the Picard group Pic(Z) of Z.

4.1. Characteristic is zero
In this case, the number δ in (3.5) is zero.
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As in (3.1), ϕ is the projection of Grr(E) to X . Fix a line bundle L1 over

X of degree one. The line bundle ϕ∗L1 is denoted by L. The real Néron–Severi

group NS(Grr(E))R is freely generated by L and OGrr(E)(1).

Although θE,r in (3.5) need not be an integer, we note that L⊗−θE,r is well

defined as an element of NS(Grr(E))R because θE,r ∈Q.

PROPOSITION 4.1

The boundary of the nef cone in NS(Grr(E))R is given by L and OGrr(E)(1)⊗
L⊗−θE,r .

Proof

We first show that it is enough to treat the case where θE,r is a multiple of r.

In fact, this argument is standard (see [Laz, p. 23, Lemma 6.2.8]). However, we

describe the details for completeness.

Write

θE,r =
p1r

q1
,

where p1 and q1 are integers with q1 > 0. Take a pair (Y, f), where Y is an

irreducible smooth projective curve and f is a morphism from Y to X such that

degree(f) is a multiple of q1. The natural map

γ : Grr(f
∗E)−→Grr(E)

produces an isomorphism between NS(Grr(E))R and NS(Grr(f
∗E))R. This iso-

morphism preserves the nef cones. Therefore, it is enough to prove the proposition

for (Y, f∗E). Note that θf∗E,r = (degree(f)p1r)/q1 is a multiple of r.

Hence, we can assume that θE,r/r is an integer.

Consider the vector bundle

F :=E ⊗L
⊗−θE,r/r
1 .

Note that Grr(E) = Grr(F ). From (3.5) and the definition of F it follows imme-

diately that

θF,r = 0.

Since θF,r = 0, from the second part of Theorem 3.4 we know that the nef

cone in NS(Grr(F ))R is generated by OGrr(F )(1) and L. (It is considered as a line

bundle on Grr(F ) using the identification of Grr(F ) with Grr(E).) The propo-

sition follows immediately from this description of the nef cone in NS(Grr(F ))R
using the identification of Grr(F ) with Grr(E). �

REMARK 4.2

We note that the two generators of the nef cone given in Proposition 4.1 lie in

the rational Néron–Severi group NS(Grr(E))Q := (Pic(Z)/Pic0(Z))⊗Z Q.
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4.2. Characteristic is positive
Let p > 0 be the characteristic of k. Consider δ in (3.5). Let ϕ1 : Grr((F

δ
X)∗E)−→

X be the natural projection. Define the line bundle

L1 := ϕ∗
1L1 −→X,

where L1 is a fixed line bundle on X of degree one.

LEMMA 4.3

The nef cone in NS(Grr((F
δ
X)∗E))R (defined in (4.1)) is generated by L1 and

OGrr((F δ
X)∗E)(1)⊗L

⊗−θ
(Fδ

X )∗E,r

1 .

Proof

The proof is exactly identical to the proof of Proposition 4.1. We refrain from

repeating it. �

As in (3.1), the projection of Grr(E) to X is denoted by ϕ. Define

L := ϕ∗L1.

PROPOSITION 4.4

The boundary of the nef cone in NS(Grr(E))R is given by L and OGrr(E)(p
δ)⊗

L⊗−θ
(Fδ

X )∗E,r .

Proof

Consider the commutative diagram of morphisms in (3.14). The morphism

β in this diagram produces an isomorphism between NS(Grr(E))R and

NS(Grr((F
δ
X)∗E))R. This isomorphism preserves the nef cones.

We have β∗OGrr(E)(1) = OGrr((F δ
X)∗E)(1) and (F δ

X)∗L1 = L⊗pδ

1 . Hence, the

proposition follows from Lemma 4.3. �

REMARK 4.5

The two generators of the nef cone given in Proposition 4.4 lie in NS(Grr(E))Q.

5. The nef cone of flag bundles

Fix integers

0< r1 < r2 < · · ·< rν−1 < rν < rank(E).

Let

Φ : Fl(E)−→X

be the corresponding flag bundle, so for any x ∈X , the fiber Φ−1(x) parameter-

izes all filtrations of linear subspaces

(5.1) Ex ⊃ S1 ⊃ S2 ⊃ · · · ⊃ Sν−1 ⊃ Sν

such that dimEx − dimSi = ri for all i ∈ [1, ν].
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For each i ∈ [1, ν], let Grri(E) be the Grassmann bundle over X parameter-

izing all the ri-dimensional quotients of the fibers of E. Let

(5.2) φi : Fl(E)−→Grri(E)

be the natural projection that sends any filtration as in (5.1) to Ex/Si. Let

ωi ∈NS
(
Grri(E)

)
R

be the element OGrri (E)(1) ⊗ L⊗−θE,ri (resp., OGrri (E)(p
δ) ⊗ L⊗−θ

(Fδ
X )∗E,ri ) in

Proposition 4.1 (resp., Proposition 4.4) if the characteristic of k is zero (resp.,

positive). Define

ω̃i := φ∗
iωi ∈NS

(
Fl(E)

)
R
,

where φi is the projection in (5.2).

THEOREM 5.1

The nef cone in NS(Fl(E))R is generated by {ω̃i}νi=1 ∪Φ∗L′, where L′ is a line

bundle over X of degree one.

Proof

The dimension of the R-vector space NS(Fl(E))R is ν + 1, and the vector space

is generated by {ω̃i}νi=1 ∪Φ∗L′. We note that L′ and all the ω̃i’s are nef.

Fix any point x ∈X . For each i ∈ [1, ν], define

ω̃x,i := ω̃i|Φ−1(x) ∈NS
(
Φ−1(x)

)
R
.

The dimension of the R-vector space NS(Φ−1(x))R is ν. It is known that the nef

cone of NS(Φ−1(x))R is generated by {ω̃x,i}νi=1 (see [Br, p. 187, Theorem 1] for a

general result). In view of this, the theorem follows from Proposition 4.1 (resp.,

Proposition 4.4) when the characteristic of k is zero (resp., positive). �

REMARK 5.2

All the elements of the generating set of the nef cone in NS(Fl(E))R given in

Theorem 5.1 lie in NS(Fl(E))Q.
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