
On rank 2 vector bundles on Fano manifolds

Roberto Muñoz, Gianluca Occhetta, and Luis E. Solá Conde

Abstract In this work we deal with vector bundles of rank two on a Fano manifold X

with second and fourth Betti numbers equal to one. We study the nef and pseudoeffec-

tive cones of the corresponding projectivizations and how these cones are related to the

decomposability of the vector bundle. As consequences, we obtain the complete list of

P1-bundles overX that have a second P1-bundle structure, classify all the uniform rank

two vector bundles on this class of Fano manifolds, and show the stability of indecom-

posable Fano bundles (with one exception on P2).

1. Introduction

While the classification of vector bundles on the complex projective line is a well-

stated result, with numberless applications in algebraic geometry, the situation in

higher dimensions is much more involved, even for vector bundles of low rank. For

instance, no indecomposable rank two vector bundles on Pn, n≥ 5, are known so

far, despite of the efforts of many algebraic geometers interested in Hartshorne’s

conjecture (cf. [Ha1]).

On the other hand, several results in the literature provide splitting condi-

tions for vector bundles on Pn. In this direction, the work of Ancona, Peternell

and Wísniewski (cf. [APW]) is of particular interest for our purposes: they show,

using techniques of Mori theory, that if a rank two vector bundle E is indecom-

posable, then −KP(E) cannot be ample, with the exception of a precise list of

bundles.

In a previous paper (cf. [MOS1]) we showed that the amplitude of −KP(E)
might be replaced by milder positivity conditions. Here we address the problem of

understanding how splitting may be inferred from positivity, in the more general

setting of rank two vector bundles on Fano manifolds of Picard number one.

More concretely, we study the nef and pseudoeffective cones of P(E). They are

completely determined by their slopes τ and ρ (see Definition 2.1), and we show

that their values are tightly related with the (in)decomposability of the bundle

(see, e.g., Corollary 5.9).
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The structure of the paper is the following: in Sections 2 and 4 we bound

the set of values of the pair (τ, ρ) for an indecomposable vector bundle under

different sets of hypotheses. We also include a number of examples in which

these invariants are computed and find relations with the Nagata conjecture for

plane curves (see Example 2.13).

In Section 3 we pay special attention to the behavior of these cones with

respect to rational curves contained in X and with the loci of minimal sections

on them: it is in fact a fundamental question whether these cones are determined

by rational curves in P(E).
The second fundamental ingredient of our work, with which we deal in Sec-

tion 5, is a splitting criterion based on [APW, Theorem 10.5] and [B, Theorem 1].

It basically says (see Corollaries 5.5, 5.6 for details), that if E is indecomposable,

then RatCurves(P(E))y cannot contain complete curves for the general y ∈ P(E).
As a consequence we obtain that E decomposes unless τ is sufficiently large.

Throughout Sections 4 and 5 we will also see how our arguments get enhanced

if we make some further assumptions on the cones of P(E), semiampleness of the

generators of Nef(X), for instance. In this last case (see Proposition 4.12), apply-

ing some results of number theory to our formulas, we obtain severe restrictions

on the invariants of (X,E).
On the other hand, assuming that E is Fano (i.e., P(E) Fano) allows us to

put together the Mori machinery and our tools. This leads in Theorem 6.3 to a

proof of a Grauert–Schneider-type result: indecomposable rank two Fano bundles

on Fano manifolds of Picard number one and fourth Betti number b4(X) = 1 are

stable (with one exception on P2). Furthermore, under these hypotheses, we

give, in Theorem 6.5, the complete list of Fano bundles satisfying that iX −
c1 is even, where iX is the index of X and c1 is an integer corresponding to

the first Chern class of E as explained in Section 1.1. These bundles are those

whose projectivization has a second P1-bundle structure. This results leads, in

particular, to a complete classification of uniform rank two vector bundles on

Fano manifolds under some assumptions (see Corollary 6.7).

The techniques and results of the present paper can be applied also to classify

Fano bundles satisfying that iX − c1 is odd. The proof in this case is longer and

more complicated than the one of Theorem 6.5, so we will present it in another

paper [MOS2].

Finally, in Section 7 we show how our techniques may be used to improve

some well-known results concerning Hartshorne’s conjecture for codimension two

subvarieties of Pn.

1.1. Setup
Throughout this paper we will work in the following general setup.

SETUP 1.1

X will be a complex Fano manifold of dimension n whose Picard group is gen-

erated by the ample line bundle OX(HX), and E will be a normalized rank two
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vector bundle on X , that is, whose determinant equals OX(c1HX), with c1 = 0

or −1.

Using the isomorphism Pic(X) ∼= Z〈HX〉, we will freely identify a line bundle

with the corresponding integer. In particular, the determinant of E and the anti-

canonical line bundle are identified with integers c1 and iX (index of X). If a is

an integer and F is a sheaf on X , F(a) denotes the sheaf F ⊗OX(aHX).

As usual P(E) denotes the Grothendieck projectivization of E , that is, P(E) =
ProjX(

⊕
k≥0 S

kE). The tautological line bundle on P(E) will be denoted by O(1),

the natural projection from P(E) to X by π, and the pullback of HX to P(E)
by H . By L we will denote a divisor with associated line bundle O(1), and by

−Krel a relative canonical divisor of P(E) over X , that is, a divisor associated

to the line bundle det(π∗E∨(1)). The second Chern class of E will be denoted by

c2(E) ∈H4(X,Z), and its discriminant c21(E)− 4c2(E) by Δ(E).
The Mori cone of P(E) will be denoted by NE(P(E)). It has two extremal

rays, R1 and R2, where R1 corresponds to π. The ray R2 will often be referred

to as the second extremal ray of P(E). The dual cone of NE(P(E)) is the nef cone
of P(E), denoted by Nef(P(E)). We will also consider the pseudoeffective cone of

P(E), denoted by Eff(P(E)): the closure of the convex cone generated by effective

divisors. By [BDPP], it is the dual of the cone of movable curves ME(P(E)).
Some of our results will require intersection theory of cycles of codimension

one and two. When doing this we will abuse of notation and freely identify cycles

with their numerical classes. We will sometimes assume that b4(X) = 1, in which

case the quotient of H4(X,Z) modulo numerical equivalence is isomorphic to Z.

We will denote by Σ a positive (meaning that Σ ·Hn−2 > 0) generator Σ of this

group, so that we may write c2(E) = c2Σ, H
2
X = dΣ, Δ(E) = (dc21−4c2)Σ =: dΔΣ

for some c2, d ∈ Z. In particular the usual Chern–Wu relation on P(E) may be

written as K2
rel =ΔH2.

We will sometimes consider the minimum integer β such that E(β) has

nonzero global sections, so that there is an exact sequence

(1) 0→OX(−β)−→E −→IZ(c1 + β)→ 0,

where Z ⊂X has pure codimension two and its cohomology class is c2(E(β)). The
interest of this sequence relies on the fact that, since X is Fano, the bundle E
decomposes as a sum of line bundles if and only if Z = ∅. This is in fact equivalent

to Z being numerically equivalent to 0, since Z ·Hn−2 > 0 when Z is nonempty.

By definition, E is stable (resp., semistable) if β >−c1/2 (resp., β ≥−c1/2).

Recall that, by Bogomolov inequality and the Mehta–Ramanathan theorem, if E
is semistable, then Δ(E) ·Hn−2

X ≤ 0. See [HL] for a complete account on stability

of sheaves. If X = Pn, it is well known that E is not stable if Δ = 0 (see [Bt,

Corollary 1]). We will prove in Lemma 2.5 that a similar statement holds for

Fano manifolds of Picard number one.

Finally, we will consider rational curves in X , for which we will adopt the

notation and conventions appearing in [K]. Given a rational curve � ⊂ X , the
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pullback of E via the normalization of � takes the form OP1(a) ⊕ OP1(b) with

a+ b= (HX · �)c1. We will say that � has splitting type (a, b) with respect to E ,
or that E has splitting type (a, b) with respect to �. A rational curve of HX -

degree one is called a line. Given a family of rational curves M in X (i.e., a

component of RatCurvesn(X)) of HX -degree μ, with universal family p : U →M
and evaluation morphism ev : U →X , and given a nonnegative integer t, we will

denote by Mt ⊂M the locally closed subset, endowed with the reduced scheme

structure, parameterizing curves on which E has splitting type ((c1+ t)μ/2, (c1−
t)μ/2). In the same way we will use pt : U t →Mt and evt : U t →X to denote the

corresponding associated maps. We say that E is uniform with respect to M if

M=Mt for some t.

Given an element � ∈ Mt we will sometimes consider minimal sections of

P(E) over � that will be denoted by �̃. The set of minimal sections over curves

of Mt is a family of rational curves in P(E) that we will denote by M̃t. We will

use p̃ t and ẽvt to denote the corresponding morphisms.

As usual, a subindex ( )x on M, Mt, M̃t, and so on, means that we are

restricting ourselves to curves passing through the point x.

Given a proper family M of rational curves or of rational 1-cycles, and a

point x ∈ Locus(M) we will denote by ChLocusx(M) the equivalence class of x

with respect to the set-theoretic relation associated to the proper proalgebraic

relation Chain(U) (cf. [K, IV.4.8]). It is the closed subset of X consisting of points

that can be joined to x by a connected chain of cycles parameterized by M.

We will use the fact that the numerical class of every curve in ChLocusx(M)

can be written as a linear combination of the numerical classes of irreducible

components of cycles parameterized by M.

2. The nef cone of a vector bundle

It is well known that the relative anticanonical divisor of a smooth nonconstant

surjective morphism between smooth projective varieties is not ample (cf. [KMM,

Corollary 2.8]). In the next definition we introduce two invariants that give a mea-

sure of the (lack of) positivity of −Krel. For simplicity we will stick to Setup 1.1,

though the definitions are meaningful in a much broader setting.

DEFINITION 2.1

Given (X,E) as in Setup 1.1 we denote by τ(E) the only real number such that

−Krel + τH is nef but not ample, and we call it the slope of Nef(P(E)). In a

similar manner, we define ρ(E) as the only real number such that −Krel + ρH is

pseudoeffective but not big, and call it the slope of Eff(P(E)). (We refer the inter-

ested reader to [L, 2.2 B] for details on pseudoeffective divisors.) Equivalently,

we may have defined

τ(E) = sup
{
τ(E ,C)

∣∣C irreducible curve in P(E)
}
,

ρ(E) = sup
{
τ(E ,C)

∣∣C irreducible movable curve in P(E)
}
,
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where

τ(E ,C) :=

{
−∞ if C is a fiber of π,
Krel·C
H·C otherwise.

If there is no possible confusion we will use τ , ρ, and τ(C) instead of τ(E) and

τ(E ,C).

REMARK 2.2

If � is a rational curve of splitting type (a, b) with respect to E and �̃ is a minimal

section of P(E|�) over �, then τ(�̃) = |b − a|/HX · C ≥ 0. Since it depends only

on E|� and �, abusing notation, we will usually write τ(�) instead of τ(�̃). In

particular, with the notation introduced in Section 1.1, we have that � ∈Mt iff

τ(�) = t.

Throughout the rest of this section we will discuss some features of τ and the

nef cone of P(E). In the following theorem we show that the lowest value of τ is

only achieved by the trivial bundle. Note that the same proof works for vector

bundles of any rank.

THEOREM 2.3

Let (X,E) be as in Setup 1.1. Then τ ≥ 0, and equality holds if and only if

E ∼=O⊕2
X .

Proof

The first assertion follows by definition of τ and the fact that the Q-twisted

bundle E(−c1/2) is not ample since its determinant is zero.

If τ = 0, then Remark 2.2 tells us that the splitting type of every rational

curve � with respect to E is either (0,0) or (−HX · �/2,−HX · �/2). Then the

conclusion follows from the proposition below (cf. also [BdS, Theorem 2.2], where

the same result is proved with different techniques). �

PROPOSITION 2.4

Let M be a rationally connected manifold, and let F be a rank r vector bundle

verifying that P(F|�) ∼= � × Pr−1 for every rational curve in M . Then P(F) ∼=
M × Pr−1 is trivial.

Proof

Let us denote by π : P(F)→M the canonical projection. Take a component C
of Chow(M) containing the class a very free (see [D, Definition 4.5]) rational

curve C ⊂M , and let C̃ be the component of Chow(P(F)) containing the class

of a minimal section C̃ of P(F) over C. By construction C̃ dominates P(F) and

we may consider the quotient ϕ : P(F) ��� Y associated to the proper algebraic

relation given by C̃.
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We claim first that dimY ≤ r−1. In fact, take two general points x1, x2 ∈M .

There exists an irreducible curve C ′ of C joining x1 and x2; hence, given any

element y1 ∈ π−1(x1), we may choose a section of P(F) over C ′ meeting y1 and

π−1(x2). Then Chlocus(C̃)y1 intersects the general fiber of π; hence its dimension

is bigger than or equal to dimM . Since ϕ−1(ϕ(y1)) contains Chlocus(C̃)y1 , the

claim follows.

Let L and D be divisors in P(F) associated to OP(F)(1) and π∗(detF),

respectively, and consider the Q-divisor L − D/r which, by construction, has

intersection zero with every cycle of C̃ and positive intersection with curves on

fibers of π. Furthermore, it is nef on rational curves in P(E). In fact, given a

(nonvertical) rational curve �0 ⊂ P(F), we may consider the normalization � of

its projection into M ; since F|� ∼=OP1(D · �0/r)⊕r, it follows that L−D/r is nef

on P(F|�) and thus on �0.

In particular L−D/r has intersection zero with every component of a cycle

of C̃. If dimY were strictly smaller than r − 1, the general fiber of ϕ would

intersect the fibers of π in positive dimension, but this is impossible, since L−
D/r has positive intersection with curves contained in the fibers of π. Therefore

dimY = r− 1.

Denoting by Z a general fiber of ϕ and by p : Z →M the natural projection

we may consider the projective bundle P(p∗F). It admits a section whose image

we denote by Z ′, and we have a commutative diagram:

Z ′ P(p∗F)
p′

P(F)

π

Z
p

M

Since −KP(F) = −π∗KM + rL − D we have −KZ ≡ (−π∗KM )|Z ; hence

−KZ = −(π|Z)∗KM . This implies that Z is a section of π, since M is simply

connected.

Finally, we consider the surjective morphism F → F ′′ determined by the

section Z and denote by F ′ its kernel. With this notation, the normal bundle

NZ of Z in P(F) is isomorphic to F ′∨ ⊗F ′′. On the other hand we know that

NZ is trivial; therefore F ′ ∼= F ′′⊕r−1. Finally, the rational connectedness of M

provides H1(M,OM ) = 0 and the splitting of the sequence

0→F ′′⊕r−1 −→F −→F ′′ → 0. �

As a consequence of Proposition 2.4 we obtain the following result on the stability

of E when Δ = 0, which will be used in Section 5 to make our splitting criteria

for vector bundles work also in the case Δ= 0 (see Lemma 5.4).

LEMMA 2.5

Let (X,E) be as in Setup 1.1 with Δ= 0. Then E is not semistable unless E is

trivial.
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Proof

Let us assume first that c1 = 0. By [MR2, Theorem. 5.1] no stable vector bundle

of rank ≥ 2 with c1 = c2(E) ·Hn−2 = 0 on X exists, since X is simply connected.

If E is semistable, then h0(E) �= 0 and h0(E(−1)) = 0, so that E is trivial, as c2(E)
is numerically trivial.

If c1 =−1 and E is semistable (hence stable) then S2E(1) is a direct sum of

stable vector bundles whose first Chern class is zero (cf. [HL, Theorem 3.2.11]).

Since its rank is three, the second Chern class of every direct summand is zero,

too. Applying [MR2, Theorem 5.1] to each summand, we get that S2E(1) is

trivial. Hence, for any rational curve �⊂X , we have E|� =O(−HX · �/2,−HX ·
�/2), contradicting Proposition 2.4. �

We will often consider the restriction of E to curves in X . Let us then recall some

well-known facts about ruled surfaces (we refer the reader to [Ha2, V Section 2]

for details).

REMARK 2.6

Given a smooth curve C and a P1-bundle P(F), the vector space N1(P(F)) is

generated by the class of a minimal section C̃ and the class of a fiber F . Recall

that F is stable (resp., semistable) if and only if the self-intersection −e of C̃ is

positive (resp., nonnegative). If F is not semistable, then the nef cone of P(F)

is generated by the classes of F and C̃ + eF and the pseudoeffective cone by the

classes of F and C̃; moreover, the only irreducible curve whose class does not lie

in the nef cone is C̃. If F is semistable, then the two cones coincide, and they

are generated by the classes of F and 2C̃ + eF .

Given any curve in X we may consider the restriction of E to its normaliza-

tion C, which we denote by E|C . Given any irreducible curve D in P(E) we may

consider the normalization ι : C →X of π(D) and the strict transform D′ of D

in P(E|C), obtaining

τ(D) =
Krel ·D
H ·D =

KP(E|C)|C ·D′

ι∗H ·D′ ≤ τ(C1),

where C1 is an effective 1-cycle defined as the pushforward into P(E) of C̃ if E|C
is not semistable, and of 2C̃ + eF otherwise. Note that KP(E|C)|C · C̃ = e and

KP(E|C)|C · (2C̃ + eF ) = 0; hence τ(C1) is bigger than 0 if E|C is not semistable

and 0 otherwise.

In particular, we may state the following.

LEMMA 2.7

Let (X,E) be as in Setup 1.1, and assume that E is not trivial. Then

τ = sup
{
τ(C̃)

∣∣ E|C not semistable
}
.
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Proof

By the previous discussion, we only need to show that there exists a curve in X

on which E is not semistable. If this were not the case, then τ(�) would be zero

for every rational curve � in X and E would be trivial by Proposition 2.4. �

REMARK 2.8

A central question on the theory of vector bundles on Fano manifolds is to which

extent the geometry of the bundle is determined by its behavior on rational

curves. Proposition 2.4 and Lemma 2.7 motivate us to define

τ0 := sup
{
τ(C)

∣∣C rational
}
.

So far, we do not know of any example of rank two vector bundles for which

τ �= τ0.

REMARK 2.9

It is well known that a vector bundle with τ < iX (known in the literature as a

Fano bundle, cf. [APW]) satisfies the following properties:

• (Rationality) τ ∈Q;

• (Base point freeness) −Krel + τH is semiample;

• (Rational curves in the second ray) there exists a rational curve � for which

� · (−Krel + τH) = 0. In particular τ = τ0.

It is then natural to ask whether they are satisfied in broader classes of vector

bundles on Fano varieties. Section 2.1 below contains a number of examples in

which we deal with this question.

2.1. Examples
EXAMPLE 2.10

If E ∼=OX(a)⊕OX(b), then −Krel + |b− a|H is semiample but not ample, and

the corresponding morphism contracts a section of P(E) over X , containing the

minimal sections of E over rational curves in X . Note that this in particular

shows that τ is not upper bounded in the class of vector bundles on X .

EXAMPLE 2.11

Indecomposable Fano bundles on projective spaces and quadrics have been exten-

sively studied and completely classified. We refer the interested reader to [SW2],

[SW1], and [APW]. It is well known that the second contraction of the corre-

sponding projectivization is:

• either a smooth blow-up (for X = P2 or Q4), or

• a conic bundle (for X = P2 or Q3), or

• a P1-bundle (for X = P2,P3,Q3 or Q5), or

• a P2-bundle (for Q4).
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A straightforward computation for every example of the list shows that τ = iX−1

unless for Pd bundles, for which τ equals iX − (d+ 1).

There are examples of non-Fano bundles for which P(E) enjoys the properties

stated in Remark 2.9. That is the case, for instance, of the Horrocks–Mumford

bundle.

EXAMPLE 2.12

Let FHM denote the Horrocks–Mumford bundle on P4. The possible splitting

types of lines with respects to FHM are (2,3), (1,4), (0,5), and (−1,6) (cf. [HM]);

hence 7 ≤ τ0 ≤ τ . On the other hand the bundle FHM (1) is globally generated

(cf. [Su, Proposition 5]); therefore τ = 7, and the second ray of the Mori cone is

generated by the class of a section of P(FHM ) over a line of splitting type (−1,6).

Finally we include here an example on P2 due to Schwarzenberger (see [OSS,

Theorem 2.2.5] for details). We will see that one should not expect τ to be

rational in general. Furthermore, even if τ is rational, there could be no rational

classes in the second extremal ray of NE(P(E)).

EXAMPLE 2.13 ([OSS, THEOREM. 2.2.5])

Consider a finite set P = {P1, . . . , Pk} ⊂ P2 of points in the complex projective

plane. Blow up P2 along P to get σ : B→ P2, and denote by E = E1 + · · ·+Ek

the exceptional divisor. The Schwarzenberger bundle maybe defined as the only

bundle E whose pullback to B is an extension of OB(−E) by OB(E), whose

restriction to E is the standard Euler sequence on E.

Now observe that the nefness of E(τ/2) is equivalent to that of its pullback

via σ. Then E(τ/2) is nef if and only if σ∗H − (2/τ)E is nef and, in particular,

2

τ
= ε

(
OP2(1);P

)
,

where ε(OP2(1);P) denotes the Seshadri constant of the line bundle OP2(1) with

respect to the set of k points P . In particular, if k ≥ 9 one gets τ ≥ 2k1/2 (see, for

instance [Ba, Section 8]), and the famous Nagata conjecture may be rephrased

as follows.

CONJECTURE 2.14 (NAGATA)

With the same notation as above, if P ⊂ P2 is very general and k ≥ 9, then

τ = 2k1/2.

A proof of this would provide an example in which τ is not rational, but this

conjecture has been proven only when k1/2 is an integer (cf. [N]). Note that from

Nagata’s proof it follows that E(k1/2) is ample on every curve in P2 if k1/2 is an

integer bigger than or equal to 4. In particular, in this case the exact value of τ

is not achieved on any particular curve in P2 and −Krel + τH is not semiample.
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Let us focus now on the situation in which P consists of 9 very general points.

In this case τ = 6 and E(3) is nef and not ample on the (unique) smooth elliptic

cubic curve C containing P . It is well known that there are no rational curves in

B numerically proportional to the strict transform of C; hence τ(�) �= 6 for every

rational curve �.

On the other hand, let ψ : P2 ��� P2 be the composition of three consecutive

Cremona transformations, based on P1, P2, P3, then on P4, P5, P6, and finally

on P7, P8, P9. Starting with the line �0 by P8 and P9, consider the sequence of

rational curves defined by �n+1 := ψ∗�n. A direct computation provides τ(�n) =

6− 16/((−1)n + 18n2 + 24n+ 7). Hence we get an example in which τ = τ0 but

is not computed by a rational curve.

3. Stability of E versus pseudoeffective divisors of P(E)

In this section we study the relation between the slope ρ of Eff(P(E)) and the

stability of E . We include some preliminary results on families of minimal sections

of P(E) over rational curves that will be useful here and in the forthcoming

sections. Recall that

ρ= sup
{
τ(D)

∣∣D irred. movable curve in P(E)
}
.

Given a curve in X with normalization ι :C →X such that E|C = ι∗E is not

semistable, we will denote by C̃ the image into P(E) of the minimal section of

P(E|C) over C. Then, arguing as in Remark 2.6, we may prove the following.

LEMMA 3.1

Let (X,E) be as in Setup 1.1, and assume that E is semistable. Then

ρ= sup
(
{0} ∪

{
τ(C̃)

∣∣ C̃ movable in P(E), E|C not semistable
})

≥ 0.

Proof

We begin by showing that ρ ≥ 0; in fact, given δ < 0, we will find a movable

curve Cδ ⊂ P(E) satisfying τ(Cδ)≥ δ. In order to see this, fix a general complete

intersection curve C in X , and consider the restriction E|C , which is semistable

by the Mehta–Ramanathan restriction theorem. The nef cone of P(E|C), which is

equal to ME(P(E|C)), is generated by the fiber F and by −Krel; hence there exists

a very ample curve Cδ in P(E|C) satisfying τ(Cδ)≥ δ. Since we may assume that

Cδ is smooth and, by construction, the normal bundle of Cδ in P(E) is globally

generated, then Cδ is movable in P(E).
On the other hand, given a movable curve D in P(E) with τ(D)> 0, we will

show that D is of the form C̃, for some C. In fact, arguing as in Remark 2.6,

we consider the corresponding ruled surface P(E|C), where C is the normaliza-

tion of π(D). If E|C is semistable, then τ(D) ≤ 0, a contradiction. If E|C is not

semistable, then we consider the strict transform D′ of D in P(E|C). If D′ is

movable in P(E|C), then τ(D) = τ(D′)< 0; hence we may assume that D′ is not

movable, and therefore D′ = C̃. �
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We will now make a closer analysis of the positivity of divisors in P(E) with

respect to rational curves in P(E). We begin with the following straightforward

lemma (see, e.g., [Ha2, Chapter V, Section 2]).

LEMMA 3.2

Let (X,E) be as in Setup 1.1, and let M be a dominating family of rational curves

of HX -degree μ in X. Let D be an effective divisor numerically proportional to

−Krel + bH , and let � be a curve in Mt, t≥ 0. Then

• if b <−t, then P(E|�)⊂D;

• if t > b≥−t and P(E|�) is not contained in D, then P(E|�)∩D contains the

(unique) minimal section �̃, being exactly the section when b=−t.

In particular, if Mt dominates X and b < t, then every linear system of the form

|k(−Krel + bH)| contains a fixed component F , where F denotes the closure of

Locus(M̃t).

A weaker version of this lemma provides a splitting criterion for uniform bundles.

COROLLARY 3.3

Let (X,E) be as in Setup 1.1. Assume, moreover, that M = Mt is a uniform

unsplit covering family of rational curves on X, with t > 0, and that H0(E(−(c1+

t)/2)) �= 0. Then E is decomposable.

Proof

Take D ∈ |L − ((c1 + t)/2)H| = |1/2(−Krel + tH)|, and denote by Z ⊂ X the

biggest subset such that π−1(Z)⊂D, whose cohomology class is c2(E((c1+t)/2)).

Hence it suffices to show that Z is empty: assume the contrary. If � ∈ M is

not contained in Z, then any nonzero section of E((c1 + t)/2)) does not vanish

identically on � and hence is nowhere vanishing on � since E has splitting type

((c1+ t)/2, (c1− t)/2); therefore �∩Z = ∅. It follows that ChLocusz(M)⊂ Z, for

every z ∈ Z, and this contradicts Pic(X)� Z and M unsplit. �

REMARK 3.4

Let us observe that the same result holds in the case t = 0 without assuming

H0(E(−c1/2)) �= 0 (cf. [AW, Proposition. 1.2]).

In Lemma 3.1 we have seen that ρ≥ 0 when E is semistable. The next proposition

shows that the converse is also true and that, moreover, if E is not semistable

then the pseudoeffective cone of P(E) is completely determined by the maximal

destabilizing subsheaf of E .

PROPOSITION 3.5

Let (X,E) be as in Setup 1.1, let β be the minimum integer such that E(β) has

nonzero global sections, and let |k(−Krel + bH)| be a nonempty linear system
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in P(E). Either b≥ 0 or |k(−Krel + bH)| has a base component numerically pro-

portional to −Krel+ρH . In particular, if E is not semistable, then ρ= 2β+c1 < 0.

Proof

Let M be a dominating family of rational curves in X , and denote by μ its HX -

degree. Denote t := τ(�), � ∈M general, and let F be the closure of Locus(M̃t).

Assume b < 0; then b < 0≤ t and Lemma 3.2 above tells us that |k(−Krel +

bH)| has a base component F , the closure of Locus(M̃t). Moreover, either F or

k(−Krel + bH)− F are of type j(−Krel + cH) with ρ≤ c < 0.

If F is not of that type, then we may apply the argument above to |k(−Krel+

bH)− F |, obtaining that it has a base component F . After a finite number of

steps, the nonempty linear system |k′(−Krel+ b′H)| := |k(−Krel+ bH)− rF | will
not contain F as a base component, contradicting the fact that b′ will still be

smaller than zero.

We may then assume that F ≡ j(−Krel + cH) with ρ≤ c < 0. Arguing in a

similar way, we get that every multiple rF of F has F in its base locus; hence

it follows that |rF | is zero-dimensional. In particular, F is not big; hence F

is numerically proportional to (−Krel + ρH). This proves the first part of the

statement.

For the second part, assume that E is not semistable. Then β < −c1/2 by

definition, and we may apply the claim above to |1/2(−Krel + (2β + c1)H)| =
|L+βH| �= ∅ to conclude that it has a base component F . But |L+βH| consists
of irreducible unisecant, that is, of relative degree 1 divisors; hence this is possible

only when F ∈ |L+ βH|. It follows that ρ= 2β + c1. �

REMARK 3.6

The equality ρ= 2β+c1 holds also for bundles which are semistable but not stable

(and so have β = c1 = 0). In fact ρ≥ 0 by Lemma 3.1, but, on the other hand,

|−Krel|= |2L| is not empty. This is no longer true for stable bundles: the blowup

Y of P3 along a twisted cubic (see [SW2]) is isomorphic to a P1-bundle P(E)
over P2. The exceptional divisor of Y over P3 is not unisecant; hence ρ �= 2β+ c1.

The rest of the section is devoted to a Grauert–Mülich-type result for Fano

manifolds. The classical Grauert–Mülich theorem (cf. [OSS, II, Section 2]) tells

us that the general splitting type of a vector bundle on Pn with respect to a line

cannot have gaps of length bigger than one. For other base varieties, one may

still control the gaps between the slopes of the Harder–Narasimhan filtration of

the restriction of a vector bundle on a manifold to general complete intersection

curves (see, for instance [FHS], [MR1], [Fl]). However it was already noted by

Hirschowitz in [Hi] that the standard arguments work in a much broader setting.

In the case of dominating families of rational curves on Fano manifolds, a

similar result can be obtained as a byproduct of the arguments of this section; we

state it here for bundles of rank two. We will make use of the following remark.
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REMARK 3.7

Let (X,E) be as in Setup 1.1, and let M be a dominating family of rational

curves, satisfying that Mx is irreducible for x ∈X general. Let t := τ(�), � ∈M
general, and assume t �= 0. Then the closure of Locus(M̃t) is P(E) or a unisecant

divisor.

Proof

Assume that M̃t does not dominate P(E), and let D be the closure of Locus(M̃t).

Let f be a general fiber of π; by the generality of f we can assume that π(f) /∈
π(D \ Locus(M̃t)) and that the intersection of D and f is transversal; by the

irreducibility of Mx the intersection number is then one. �

The following result may be interpreted as a Grauert–Mülich-type theorem for

rational curves on Fano manifolds.

PROPOSITION 3.8

Let (X,E) be as in Setup 1.1. Let M be a dominating family of rational curves

on X such that Mx is irreducible for the general x ∈X. Let μ denote the HX -

degree of M. Either τ(�)≤ 1/μ for the general � ∈M, or E is destabilized by a

line bundle of degree β =−(τ(�) + c1)/2.

Proof

Set t := τ(�), � ∈ M general, assume t ≥ 2/μ, and consider the corresponding

families Mt and M̃t. We will prove that the evaluation morphism ẽvt : Ũ t ∼=
U t → P(E) is not dominant. Then, by Remark 3.7, the closure of Locus(M̃t)

will be a unisecant divisor, corresponding to an element in HomX(OX(−b),E)
for some b. Restricting to � we see that −b= (τ(�) + c1)/2. Moreover, since Mt

covers X , H0(X,E(b′)) = 0 for b′ < b. This concludes the proof.

In order to see that ẽvt is not dominant, note that for the general element

� of Mt, the restriction of the tangent bundle of X to � is nef. Since d(evt)|� :

(TUt)� → (TX)|� is the evaluation of global sections of (TX)|�, it follows that its

kernel satisfies (TUt|X)|� ∼=O(−1)⊕· · ·⊕O(−1). On the other hand (TP(E)|X)|� ∼=
O(tμ), with tμ≥ 2 by assumption; hence there are no nonzero morphisms from

(TUt|X)|� to (TP(E)|X)|�, and d(ẽvt)|� is not generically surjective. �

4. The pseudoeffective cone of P(E)

In this section we will explore the relation between τ(E) and ρ(E). Unless other-

wise stated we will always assume the following.

SETUP 4.1

(X,E) will be as in Setup 1.1 with b4(X) = 1. As described in Section 1.1 we

will use the following equalities of numerical classes of cycles: c2(E) = c2Σ and

H2
X = dΣ with c2, d ∈ Z, d > 0; Δ(E) = (dc21 − 4c2)Σ =: dΔΣ and K2

rel =ΔH2.
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The main idea we will use is the following.

REMARK 4.2

Pseudoeffective divisors have nonnegative intersection with movable classes of

1-cycles, for instance, with complete intersections of nef divisors. Thus we have

the following restrictions:

(2) (−Krel + ρ′H) · (−Krel + τH)j ·Hn−j ≥ 0, for all j ∈ {0, . . . , n}, ρ′ ≥ ρ.

By the Chern–Wu relation K2
rel = ΔH2, the equality Hn+1 = 0, and the

inequality −KrelH
n > 0, inequality (2) reduces, for each j, to

(3)
(ρ′ +

√
Δ)(τ +

√
Δ)j − (ρ′ −

√
Δ)(τ −

√
Δ)j√

Δ
≥ 0, j ∈ {0, . . . , n}, ρ′ ≥ ρ,

if Δ �= 0, and to

τ j−1(τ + jρ′)≥ 0, for all j ∈ {0, . . . , n}, ρ′ ≥ ρ,

if Δ = 0. In this case, applying Theorem 2.3, Lemma 2.5, and Proposition 3.5,

all the inequalities reduce to

(4) τ + nρ≥ 0.

4.1. The case Δ< 0

Denoting by arg(z) ∈ [0,2π) the argument of a complex number z �= 0, (3) is, in

this case, equivalent to

(5) arg
(
(ρ′ + i

√
−Δ)(τ + i

√
−Δ)j

)
≤ π, for all j ∈ {0, . . . , n}.

Note that the inequality for j = n implies the rest; therefore (3) is equivalent to

(6) arg
(
(ρ′ + i

√
−Δ)(τ + i

√
−Δ)n

)
≤ π.

Applying (6) above to ρ′ = τ , we get the following inequality, which can be

read as the positivity of certain Schur polynomials of the minimal nef twist of E ,
and which can be interpreted as a lower bound for τ in terms of the discriminant

Δ and the invariants of X .

LEMMA 4.3

Let (X,E) be as in Setup 4.1. Then

c21 <
4c2
d

≤ c21 + τ2 tan2
( π

n+ 1

)
.

We obtain stronger restrictions by applying equation (6) to ρ′ = ρ. However, it

is not clear whether ρ < τ . We already know that this occurs when E is not

semistable (see Theorem 2.3, Proposition 3.5). The next proposition shows that

this is also the case if τ is rational and n �= 2,3,5.
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PROPOSITION 4.4

Let (X,E) be as in Setup 4.1, E nontrivial. If τ ∈ Q, then −Krel + τH is big

unless Δ< 0 and n= 2,3, and 5. In particular, ρ < τ .

Proof

Assume that −Krel + τH is not big. On one hand, we get ρ = τ ; hence ρ ≥ 0

by Theorem 2.3, so E is semistable by Proposition 3.5 and Δ≤ 0. On the other

hand, we obtain an equality (−Krel + τH)n+1 = 0 that, arguing as above, leads

us to τ = 0, and to the triviality of E by Theorem 2.3, if Δ = 0.

If Δ< 0, then we get

tan2
( π

n+ 1

)
=

−Δ

τ2
∈Q.

The algebraic degree of tan(π/(n + 1)) over Q is classically known (see [Ni,

pp. 33–41]; see also [Ca, Proposition 2]), and one may check directly that the

only possible values of n are 2, 3, or 5. �

4.2. The case Δ≥ 0

In this case E is not semistable, unless E �OX ⊕OX (cf. Lemma 2.5); hence, by

Proposition 3.5 and Remark 3.6, we know that ρ= 2β+ c1 ≤ 0 and c2(E(β))≥ 0.

In particular, since the numerical classes c2(E(k)) = (c2 + dkc1 + dk2)Σ and

c2(E(−c1 − k)) are equal, we get

(7) ρ= 2β + c1 ≤−
√
Δ.

REMARK 4.5

Equality in (7) holds if and only if E is a direct sum of line bundles. In fact if

equality holds, then c2(E(β)) = 0 and E splits. The converse follows from a direct

computation.

On the other hand, the set of restrictions (3) provide the following.

LEMMA 4.6

Let (X,E) be as in Setup 4.1 with Δ≥ 0. Then

τ ≥
√
Δ, and(8)

−
√
Δ− ε ≤ ρ≤−

√
Δ,(9)

where

ε=
2
√
Δ(τ −

√
Δ)n

(τ +
√
Δ)n − (τ −

√
Δ)n

if Δ> 0 and ε=
τ

n
if Δ= 0.

Proof

With the same notation as in Remark 4.2, if Δ> 0, inequalities (3) give

(ρ+
√
Δ)(τ +

√
Δ)j ≥ (ρ−

√
Δ)(τ −

√
Δ)j for all j ≤ n.
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By (7), ρ+
√
Δ≤ 0; therefore ρ−

√
Δ< ρ+

√
Δ≤ 0, and the previous inequality

tells us in particular that τ ≥
√
Δ: otherwise

(ρ+
√
Δ)(τ +

√
Δ)≤ (ρ+

√
Δ)(τ −

√
Δ)< (ρ−

√
Δ)(τ −

√
Δ).

Finally, since τ −
√
Δ≥ 0≥ ρ+

√
Δ, the set of inequalities in (3) reduces to

the one obtained for j = n, and a simple computation concludes the proof.

If Δ = 0, then (8) follows from Theorem 2.3 and (9) is a restatement of (4).

�

REMARK 4.7

Equality in (8) holds if and only if E is a direct sum of line bundles. In fact, if

τ =
√
Δ > 0, then ε = 0, equality holds in (7), and E splits by Remark 4.5. If

τ =Δ= 0, the same result follows from Theorem 2.3. The converse follows from

a direct computation.

Bounding ε≤ ε′ := (τ −
√
Δ)/n we obtain the following inequality.

COROLLARY 4.8

Let (X,E) be as in Setup 4.1 with Δ≥ 0. Then

(10) τ + nρ+ (n− 1)
√
Δ≥ 0.

Finally, we obtain the following two splitting criteria.

COROLLARY 4.9

Let (X,E) be as in Setup 4.1 with Δ≥ 0, and consider the following interval:

I =
[
−c1 +

√
Δ

2
− ε′

2
,−c1 +

√
Δ

2

]
.

Then

• I ∩Z �= ∅, and
• if I ∩Z=−(c1 +

√
Δ)/2, then E splits as a direct sum of line bundles.

COROLLARY 4.10

Let (X,E) be as in Setup 4.1 with Δ≥ 0. If −(c1 +
√
Δ)/2 ∈ Z and

τ < 2n+
√
Δ,

then E is decomposable.

Proof

It is immediate to see that
√
Δ is an integer if and only if −(c1 +

√
Δ)/2 ∈ Z;

then by Corollary 4.9 it suffices to check that ε′ < 2. �

We finish this section by discussing the effects on Eff(P(E)) of assuming that

−Krel + τH is semiample. More concretely, we will prove that if the associate
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contraction is of fiber type or divisorial, then ρ is completely determined from

the rest of the invariants of (X,E). We will make use of the following observation

on the set of inequalities (2), whose proof follows from a straightforward analysis

of the different forms that (2) takes according to the sign of Δ.

LEMMA 4.11

Let (X,E) be as in Setup 4.1, and assume that E is indecomposable. Then

(−Krel + ρ′H) · (−Krel + τH)j ·Hn−j > 0,

for every ρ′ ≥ ρ unless (j, ρ′) = (n,ρ).

PROPOSITION 4.12

Let (X,E) be as in Setup 4.1, with E indecomposable. Assume further that there

exists a morphism ϕ : P(E)→ Y contracting the second extremal ray R2 of P(E).
Then

• if ϕ is of fiber type, then E is stable, ρ= τ , and n= dimY = 2,3, or 5.

• if ϕ is divisorial, then dimϕ(Exc(ϕ)) = n − 1 and ρ is determined by τ

and Δ. In particular, if Δ< 0, then

(11) arg
(
(ρ+ i

√
−Δ)(τ + i

√
−Δ)n

)
= π.

Proof

If ϕ is a fiber-type contraction, then −Krel + τH is not big; hence ρ= τ and, by

Theorem 2.3, Proposition 3.5, and Remark 3.6, E is stable. In particular, Δ< 0

and we can apply Proposition 4.4 to get n = 2,3, or 5. Finally, Lemma 4.11

provides (−Krel + τH)n ·H > 0, which forces dimY = n.

If ϕ is a divisorial contraction, then the class of Exc(ϕ) is effective and not

big; hence it is numerically proportional to −Krel + ρH . Therefore we have

(−Krel + ρH) · (−Krel + τH)n−1 ·H > 0 and

(−Krel + ρH) · (−Krel + τH)n = 0.

The first expression tells us that dimϕ(Exc(ϕ)) ≥ n − 1, whereas, arguing as

above, the reduction modulo K2
rel =ΔH2 of the second shows that ρ is uniquely

determined by the values of τ and Δ. In particular, when Δ < 0, the relation

between ρ, Δ, and τ is equation (11). �

5. Splitting criteria

Throughout this section we will use the following notation and assumptions unless

otherwise stated.

SETUP 5.1

Let (X,E) be as in Setup 4.1. We denote by M a dominating family of rational

curves on X of HX -degree μ.
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REMARK 5.2

By definition, the zero locus of a section of E(β) has pure codimension 2; hence

a general element �0 of M avoids it (cf. [K, II, Proposition 3.7]), so that E|�0 is

an extension of O((c1 + β)μ) by O(−βμ). In particular, if E is not stable, then

for all � ∈M we have

(12) τ(�)≥ τ(�0) =−(2β + c1) =−ρ,

where the last equality follows from Proposition 3.5 and Remark 3.6.

The following two results are based on [APW, Theorem 10.5] and [B, Theorem 1].

LEMMA 5.3

Let (X,E) be as in Setup 5.1; assume that, for some rational number t, there is

a surface S ⊂ P(E) such that π|S is finite and that (−Krel+ tH) ·C = 0 for every

curve C ⊂ S. Then Δ= t2.

Proof

By hypothesis, (Krel)|S and tH|S are numerically equivalent. Hence ((Krel)|S)
2 =

t2H2
|S . But (Krel)

2 is numerically equivalent to ΔH2 and π|S is finite, therefore

Δ= t2. �

The numerical conditions of the previous lemma lead to a splitting criterion.

LEMMA 5.4

Let (X,E) and M be as in Setup 5.1. If Δ= t2 for some positive rational number

t and there exists a curve � ∈M satisfying τ(�)≤ t, then E is decomposable.

Proof

Since Δ≥ 0, then, by Bogomolov inequality and Lemma 2.5, E is not semistable;

the assumption on τ(�) yields, by (12), that ρ≥−
√
Δ; combining it with (7) we

get ρ=−
√
Δ, and E is decomposable by Remark 4.5. �

A more general splitting criterion can be stated as follows.

COROLLARY 5.5

Let (X,E) and M be as in Setup 5.1. Assume that there exists a rational number

t such that

(13) M̃t
y contains a complete curve T for some y ∈ P(E).

Then E is decomposable.

Proof

Let S be the locus of curves parameterized by the complete curve T . Every curve

in S is numerically proportional to a curve � of M̃t
y . Since τ(�) = t it follows that
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−Krel + tH is numerically trivial on H ; hence Δ = t2 by Lemma 5.3, and the

splitting follows from Lemma 5.4. �

REMARK 5.6

The same arguments work if we assume that for some t, the family M̃t is unsplit

and for some y ∈ Locus(M̃t) there is a component of Chlocusy(M̃t) of dimen-

sion ≥ 2.

Keeping track of the dimensions of the families parameterizing rational curves of

fixed splitting type passing by a general point, one may translate condition (13)

into a numerical splitting criterion.

THEOREM 5.7

Let (X,E) and M be as in Setup 5.1, and assume that Mx is proper for a general

x ∈X and that E is not stable. Assume, moreover, that

• τ < 2iX − ρ− 4/μ if E is not semistable, and

• τ < 2iX − 6/μ if E is semistable.

Then E is decomposable.

Proof

Let x be a general point in X , and denote by tmin (resp., tmax) the mini-

mum (resp., the maximum) integer such that Mtmin
x �= ∅ (resp., Mtmax

x �= ∅).
By Remark 5.2, tmin = −ρ ≥ 0. Since E is not stable, by Proposition 3.5 and

Remark 3.6 we have ρ= 2β + c1. Let D be a divisor in |L+ βH|= | 12 (−Krel +

ρH)|, and let t ∈ [tmin, t
max]. By Lemma 3.2 we deduce that Locus(M̃t) ⊆ D

unless t= tmin = ρ= 0.

Assume first that E is not semistable. The divisor D meets the fiber over

a general x ∈ X in a point; hence, from the argument above, we get that the

existence of a complete curve in Mt
x for some t, implies condition (13). Since

Mx is proper, we may thus express a necessary condition for the bundle not to

split as follows (cf. [APW, Corollary 10.6]):

(a) dimMtmax

x = 0,

(b) dimMt
x − dim(Mt

x ∩ (
⋃

b>tMb
x))≤ 1 if tmin ≤ t < tmax.

In particular, #{Mt
x} ≥ dimMx + 1= iXμ− 1. On the other hand,

(14) #{Mt
x} ≤

μ

2
(tmax − tmin) + 1≤ μ

2
(τ + ρ) + 1,

which combined with the previous equation, gives the first part of the statement.

The case of E semistable but not stable (which corresponds to tmin = ρ= 0)

is slightly different: since Locus(M̃0) �⊂D, we only know that if E is indecom-

posable, then #{Mt
x} ≥ dimMx = iXμ− 2, and we conclude by combining this

with (14). �
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COROLLARY 5.8

With the same notation as above, assume that Δ≥ 0 and that τ < 2iX +
√
Δ−

4/μ. Then E is decomposable.

Proof

By Bogomolov inequality and Lemma 2.5, we may assume that E is not semi-

stable. By (7), we have
√
Δ≤−ρ and we conclude by Theorem 5.7. �

The last statement of this section shows that decomposability is determined by

the pair (τ, ρ).

COROLLARY 5.9

Let (X,E) be as in Setup 4.1; then E is decomposable if and only if τ + ρ= 0.

Proof

Assume that τ + ρ = 0; by Theorem 2.3 we may assume that τ > 0. Hence, by

Lemma 3.1, E is not semistable. Consider a minimal covering family of rational

curves M, of HX -degree μ. By Theorem 5.7 the bundle is decomposable unless

possibly if iX = 2 and μ= 1 (hence M is unsplit). In this case, by Remark 5.2,

E is uniform, and the decomposability follows from Corollary 3.3. The converse

is a direct computation. �

6. Fano bundles

In this section we will apply our techniques to Fano bundles, that is, bundles

whose projectivization is a Fano manifold, in order to obtain structure theorems

and partial classification results. Notice that a bundle E on X is a Fano bundle

if and only if τ < iX .

We begin by describing the second contraction ϕ : P(E) → Y . We will say

that ϕ is a P1-bundle if there is a rank two vector bundle F on Y such that

P(E) = P(F); we will say that ϕ is a conic bundle if there is a rank three vector

bundle F on Y such that P(E) embeds in P(F) as a divisor of relative degree two.

We will denote by l(R2) the length of the extremal ray R2, that is, the minimum

anticanonical degree of rational curves whose numerical class is in R2, and by

C a curve in the ray whose anticanonical degree equals the length. The length

of a P1-bundle contraction is two, while the length of a conic bundle contraction

is either one if there are singular fibers or two if all the fibers are reduced and

irreducible.

LEMMA 6.1

Let (X,E) be as in Setup 4.1, and assume that E is Fano. If E is indecomposable

then, with the same notation as above:

(1) either ϕ is a P1-bundle, l(R2) = 2, τ = iX − 2
H·C , or

(2) ϕ is a conic bundle with reducible fibers, l(R2) = 1, τ = iX − 1
H·C , or
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(3) ϕ is the blowup of a codimension two smooth subvariety, l(R2) = 1, τ =

iX − 1
H·C .

In all cases Y is smooth and Fano.

Proof

Observe first that any nontrivial fiber of ϕ is one-dimensional. In fact, if a fiber

contained a surface, we would have Δ = τ2 by Lemma 5.3, and E would split

by Remark 4.7. By [W, Theorem 1.2] we then get that Y is smooth, and either

l(R2) = 1 and we are in case (2), (3) or l(R2) = 2 and ϕ : P(E)→ Y is a conic bun-

dle without reducible fibers. In this case we conclude by Lemma 6.2. Moreover,

Y is always Fano, since it is covered by rational curves and its Picard number is

one. �

LEMMA 6.2

With the same notation as above, assume that ϕ : P(E)→ Y is a smooth conic

bundle. Then ϕ is a P1-bundle.

Proof

Denote by −K ′ the relative anticanonical divisor of the morphism ϕ : P(E)→ Y ;

by H ′ the pullback via ϕ of HY , the ample generator of Pic(Y ); and by iY
the index of Y . Let f and f ′ be the numerical class of the fibers of π and ϕ,

respectively, and set μ :=H · f ′, μ′ :=H ′ · f . For simplicity, we will denote ν :=

iXμ− 2 =K · f ′, ν′ := iY μ
′ − 2 =K ′ · f . We then have the following intersection

numbers:

−K H −K′ H ′

f 2 0 −ν′ μ′

f ′ −ν μ 2 0

which allow us to write

(15)

(
−K

H

)
=

(
−ν

2
4−νν′

2μ′

μ
2

ν′μ
2μ′

)(
−K ′

H ′

)
.

Assume that ϕ is not a P1-bundle. Equivalently, {−K ′,H ′} is a base of

Pic(P(E)); therefore the determinant of the base-change matrix is ±2, and we

get μ= 2μ′. Using this base change, together with the equality

−Δ= τ2 tan2
( π

n+ 1

)
=
(ν
μ

)2

tan
( π

n+ 1

)
,

obtained as in Proposition 4.4, the Chern–Wu relation K2 = ΔH2 transforms

into

(16) K ′2 = 2
νν′(1 + a)− 4

νμ′(1 + a)
K ′H ′ − 16− 8νν′ + ν2ν′2(1 + a)

ν2μ′2(1 + a)
H ′2,

where a denotes tan2(π/(n+ 1)).
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It is known (see, for instance, [S]) that being ϕ a conic bundle, the cohomol-

ogy class of the closed set of points in Y whose inverse image by ϕ is a singular

conic is −ϕ′
∗(K

′2). By hypothesis, ϕ is smooth; hence the intersection number

K ′2H ′n−1 is equal to zero. Using (16) and the obvious equalities H ′n+1 = 0,

−K ′H ′n = 2Hn
Y , we then have

νν′ =
4

1+ a
= 4cos

( π

n+ 1

)
= 1,2,3 for n= 2,3,5, respectively.

Since ν = iXμ−2 = 2(iXμ′−1) is even, we conclude that the only possibility

is n= 3, iX = 2, iY = 3, and μ′ = 1. In this case, we have −K =K ′ +H ′, H =

−K ′ + H ′, and the Chern–Wu relation reads as K ′2 = −H ′2, from which we

obtain −KH3 =−4K ′H ′3. In particular, X has degree 8, contradicting the fact

that it is a del Pezzo 3-fold of index two (cf. [F]). �

We will now show that, with one exception, indecomposable Fano bundles are

stable. Note that it was conjectured by Grauert and Schneider (actually they

provided an incomplete proof; cf. [GS]) that every indecomposable rank two

vector bundle on Pn, n≥ 4, is semistable.

THEOREM 6.3

Let (X,E) be as in Setup 4.1, and assume that E is Fano, indecomposable, and not

stable; then X � P2 and E is a bundle with c1 = 0, c2 = 1 whose projectivization

is the blowup of a smooth three-dimensional quadric along a line.

Proof

Let M be a minimal covering family of rational curves on X of HX -degree

equal to μ. Assume first that E is not semistable; by Proposition 3.5 we have

ρ < 0; hence, by Theorem 5.7, E is decomposable except possibly when ρ=−1,

μ= 1, and iX = 2. In this case, by Remark 5.2, 2 = iX > τ ≥ τ(�)≥ 1 for every

� ∈ M; hence E is uniform of splitting type (−1,0), and we may conclude by

Corollary 3.3.

Assume now that E is semistable. By Remark 3.6 we have ρ= 0. Let C be

a minimal rational curve generating the second extremal ray of P(E). A divisor

E ∈ |L| is not nef; otherwise we have τ = 0 and E splits by Theorem 2.3. In

particular, E has negative intersection with C; hence the second contraction

ϕ : P(E)→ Y is a smooth blowup with exceptional locus E, by Lemma 6.1; in

particular, E ·C =−1.

On the other hand, β = 0 implies that c2 > 0, so that Δ < 0 and we may

apply Proposition 4.12 to get

(17)
4c2
d

=−Δ= τ2 tan2
( π

2n

)
.

As in the proof of Proposition 4.4, we now use [Ni] and [Ca, Proposition 2] to

get that n is equal to 2 or 3. Moreover, from l(R2) = 1 and E · C =−1 we get

that either μ= 1 (hence τ = iX − 1) and iX = 3 or μ= 3 and iX = 1.
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If n = 3, since a Fano 3-fold with Picard number one is covered either by

lines or by conics, we may assume iX = 3. Then X is a smooth quadric; hence

d= 2, and, from (17) we get 2c2 =
4
3 , which is impossible.

If n= 2, then X is P2. From τ = 2 we get that L+H is nef and trivial on the

second ray; hence L+H = ϕ∗HY for a line bundle HY on Y ; since HY ·f = 1 this

line bundle is the generator of Pic(Y ). Computing the canonical bundle of P(E)
with the blowup formula we get that iY = 3, that is, Y � Q3. The exceptional

divisor E contains a fiber of π, since c2 = 1 and E is semistable. The center of

the blowup contains the image in Y of this fiber, which is a line � in Q3; since

the center is smooth, then the center is �. �

The main result of this section is a characterization of bundles E whose projec-

tivization P(E) has a second contraction which is a P1-bundle. We will first recall

the following.

EXAMPLE 6.4

Let K(G2) be a 5-dimensional Fano homogeneous contact manifold of type G2.

K(G2) is a Fano manifold with Picard number one, index three and b4 = 1 which

is a linear section of the Grassmannian G(1,6) with a P13 (see [M, Example 1]).

Since K(G2) is covered by lines, the restriction of the universal quotient bundle Q
on G(1,6) is a Fano bundle onK(G2), with τ = 1. The projectivization ofQ|K(G2)

has a second P1-bundle structure, over a five-dimensional smooth quadric Q5,

which corresponds to the projectivization of a Cayley bundle C (see [O, 1.3]);

via this description P(Q|K(G2))→K(G2) can be seen as the universal family of

jumping lines of C.

THEOREM 6.5

Let (X,E) be as in Setup 4.1, and assume that E is indecomposable. Then the

following are equivalent:

(1) P(E) admits an unsplit dominating family M′ of rational curves of pos-

itive H-degree;

(2) P(E) has a second contraction which is a P1-bundle;

(3) (X,E) is one of the following;

(a) (P2, TP2);

(b) (P3,N ), with N a null-correlation bundle;

(c) (Q3,S) with S the restriction of a spinor bundle;

(d) (Q5,C) with C a Cayley bundle;

(e) (K(G2),Q), with Q the restriction of the universal quotient bundle.

Proof

(1) ⇒ (2). By Remark 5.6 the dimension of every irreducible component of

Chlocus(M′)y is one, for every y ∈ P(E). By [BCD, Proposition 1], this implies

that the quotient of P(E) by the M′-equivalence relation is a morphism ϕ :
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P(E) → Y . By Kleiman’s criterion P(E) is a Fano manifold; we conclude by

Lemma 6.1 observing that the length of the ray contracted by ϕ is two.

(2) ⇒ (3). Assume that ϕ : P(E)→ Y makes P(E) a P1-bundle over a smooth

(Fano) variety Y . Let E ′ be the normalized rank two vector bundle on Y whose

projectivization is P(E), and let c′1 be its first Chern class. Denote by L′ a divisor

associated with its tautological line bundle, and denote by H ′ the pullback via

ϕ of HY , the ample generator of Pic(Y ). Denote dX :=Hn
X , dY :=Hn

Y . Finally,

take f and f ′ to be fibers of π and ϕ, respectively, and set μ :=H ·f ′, μ′ :=H ′ ·f ,
so that τ = τ(E) = iX − 2/μ, τ ′ := τ(E ′) = iY − 2/μ′.

Using the intersection numbers of H,L,H ′, and L′ with f and f ′ we may

easily write ⎧⎨⎩H ′ =−μ′

2 (c1 − τ)H + μ′L,

L′ =
(
−μ′

4 (c1 − τ)(c′1 − τ ′) + 1
μ

)
H + μ′

2 (c
′
1 − τ ′)L.

Since {H,L} and {H ′,L′} are Z-bases of Pic(P(E)) it follows that the determinant

of the matrix of base change, which is μ′/μ, is ±1; hence μ= μ′. In particular,

we may write H ′ = μ
2 (−Krel + τH), so that

dY
dX

=
(μ
2

)n (−Krel + τH)n ·H/μ

−Krel ·Hn/2
=
(μ
2

)n−1 im((τ + i
√
−Δ)n)√

−Δ
.

The last equality follows from our computations in Section 4 and the negativity

of Δ obtained by Proposition 4.12. Furthermore, as in Proposition 4.4, we have

n = 2,3, or 5 and
√
−Δ = τ tan(π/(n+ 1)). Operating in the expression above

we get

dY
dX

=
( τμ

2cos(π/(n+ 1))

)n−1

,

and this, together with the equation obtained exchanging the roles of X and Y ,

provides

(18) (iXμ− 2)(iY μ− 2) = ττ ′μ2 =

⎧⎪⎪⎨⎪⎪⎩
1 if n= 2,

2 if n= 3,

3 if n= 5.

From this data we may easily obtain (up to exchanging X and Y ) Table 1.

Since the tangent bundle of P2, the null-correlation bundle on P3, and the

Cayley bundle on Q5 are determined, among stable bundles, by their Chern

classes (cf. [H, 8.1], [OSS, Lemma 4.3.2], [O]) and we know that E is stable by

Theorem 6.3 the implication follows.

Table 1

n iX iY d μ τ Δ c1 c2

2 3 3 1 1 1 −3 −1 1

3 4 3 1 1 2 −4 0 1

5 5 3 1 1 3 −3 −1 1
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(3) ⇒ (1). The family of the fibers of the second contraction of P(E) is

unsplit, dominating, and has positive H-degree. �

COROLLARY 6.6

Let (X,E) be as in Setup 4.1, and assume that E is Fano and indecomposable.

Then the following are equivalent:

(1) (X,E) is as in Theorem 6.5(3),

(2) iX − c1 ≡ 0 (mod 2),

(3) τ < iX − 1.

Proof

(1) ⇒ (2) is a direct computation. From (2) it follows that −KP(E) ·C = 2L ·C+

(iX − c1)H ·C is even, and we conclude (3) by Lemma 6.1. By Lemma 6.1 again

we have that, if (3) holds, then τ < iX −1≤ iX −1/H ·C. This implies that P(E)
has a second P1-bundle structure, and we get (1) by Theorem 6.5. �

As a consequence we get the following classification of uniform rank two vector

bundles on Fano manifolds.

COROLLARY 6.7

Let (X,E) be as in Setup 4.1, and let M be a covering unsplit family of rational

curves on X such that Mx is irreducible for a general x ∈X. If E is indecom-

posable and uniform with respect to M, then (X,E) is either (P2, TP2), (Q3,S),
or (K(G2),Q).

Proof

Consider the family of minimal sections M̃ of P(E) over M. By Theorem 6.5

either Locus(M̃) is a divisor or (X,E) is one of the pairs listed there. Moreover,

checking uniformity in the classification, we get that in the second case (X,E) is
(P2, TP2), (Q3,S), or (K(G2),Q).

In particular, it suffices to show that E splits whenever Locus(M̃) is a divisor.

If this is the case, the irreducibility of Mx implies that Locus(M̃) is a unisecant

divisor (cf. Remark 3.7), determined by an injection s :O(b)→E . But the general
element of M does not meet the set of zeros of s; hence by construction b =

(c1 + τ(�))/2. Note that we may assume that τ(�)> 0, by [AW, Proposition 1.2];

then we may conclude by Corollary 3.3. �

REMARK 6.8

Recently, using similar techniques, Watanabe has shown (cf. [Wa]) that the only

P1-bundles over Fano manifolds of Picard number one admitting a second smooth

fibration of relative dimension one are those listed in our theorem. In his proof

no assumption on b4 is needed.
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7. Applications to Hartshorne’s conjecture

Throughout this section we will denote by Y ⊂ Pn, with n ≥ 8, a codimension

two smooth subvariety. By the Barth–Larsen theorem (see, for instance, [L, II,

Theorem 3.2.1]), setting HPn :=OPn(1) we obtain that Pic(Y )� Z〈(HPn)|Y 〉 and
H4(Y )� Z〈(HPn)2|Y 〉. Let N be the normal bundle of Y in Pn, and let E be the

bundle on Pn obtained from Y via the Hartshorne–Serre correspondence, so that

Y ⊂ Pn appears as the set of zeros of a section s ∈H0(Pn,E) and E|Y �N .

We will apply the techniques previously developed to the pair (Pn,E) (and

also to (Y,N ), although Y is not necessarily Fano; see Remark 7.3 below). As

usual, we will denote by c1 and c2 the integers determining the first and second

Chern classes of E (or of N ), and by Δ := c21− 4c2 we denote the discriminant of

E . Note that E is not normalized: in fact, by adjunction and the Kobayashi–Ochiai

theorem c1 = (n+ 1)− iY ≥ 2.

Set τ := τ(E), ρ := ρ(E), denote by β the minimum integer such that E(β)
has sections, and denote by τY , ρY , and βY the corresponding invariants of N .

LEMMA 7.1

Assume that Δ≥ 0. Then ρ≥ ρY .

Proof

We begin by taking � to be a 1-secant line to Y . The restriction s|� vanishes

precisely at one point, so that we have an injection of bundles

0→O�(1)−→E|�
whose cokernel E|� → O�(c1 − 1) provides a section �̃ of P(E) over � verifying

τ(�̃) =−c1 + 2≥ 0. Since � is movable and c1 − 1≥ 1, then �̃ is movable and we

may assert that ρ≥−c1 + 2.

Consider a nonzero section t ∈ H0(Pn,E(β)); by Proposition 3.5 and

Remark 3.6, Δ ≥ 0 implies that ρ = 2β + c1 ≤ 0. Assume that ρ < ρY ; then t

must vanish on Y . It follows that

c2
(
E(β)

)
≥ [Y ] = c2(E) = c2

(
E(−c1)

)
.

Since β ≤−c1/2 we may then say that c2(E(β)) ≥ c2(E(−c1)) implies that β ≤
−c1, contradicting ρ≥−c1 + 2. �

COROLLARY 7.2

With the same notation as above, assume that c2(N (βY )) = 0; then E is decom-

posable.

Proof

If c2(N (βY )) = 0, then c2(E(βY )) = 0 and we may say that Δ≥ 0; in particular, E
is not stable and β ≤−c1/2. Since, moreover, c2(E(β))≥ 0, it follows that β ≤ βY .

On the other hand, Lemma 7.1 tells us that β = (ρ− c1)/2≥ (ρY − c1)/2≥ βY ,

so that β = βY and so c2(E(β)) = 0. It follows that E splits. �
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REMARK 7.3

On a Fano manifold of Picard number one the splitting of a vector bundle E
reduces to c2(E(β)) = 0 via Kodaira vanishing; Corollary 7.2 shows that the

same holds for the pair (Y,N ). Since this was the only use of assuming X to be

Fano in Section 4, this corollary implies, in particular, that the bounds obtained

in Section 4 work for the pair (Y,N ) as well.

REMARK 7.4

Let us observe that, being globally generated, N (−1) is nef; hence τY ≤ c1 − 2.

(It is well-known that, under our assumptions, N (−1) is ample, so that the

inequality is strict, in fact.)

Let us assume that Δ > 0. In [Ho, Corollary 7.3] it is shown that if E is inde-

composable, then c1 > 2(n+
√
n+ 1). One of the ingredients of the proof is the

fact that c2(E(β))≥ n+ 2; joining this with our results of Section 4 we are able

to find a lower bound for c1 of order 3/2.

PROPOSITION 7.5

If Δ> 0 and c1 ≤
√
(n2 − 4)(n− 3) +

√
Δ+3, then E is decomposable.

Proof

By Lemma 4.6 we know that ρ2Y ≤Δ+2ε
√
Δ+ ε2; hence

ε2 + 2ε
√
Δ− 4c2

(
N (βY )

)
≥ 0,

so we must have ε≥−
√
Δ+

√
Δ+4c2(N (βY )). We can rewrite this as

ε≥ 4c2(N (βY ))√
Δ+

√
Δ+4c2(N (βY ))

.

We have the following bounds:

ε >

{
ε1 =

√
c2(N (βY )) if Δ≤ c2(N (βY )),

ε2 =
c2(N (βY ))√

Δ
if Δ≥ c2(N (βY )).

Writing ε as

ε=
2
√
Δ

(1+ 2
√
Δ

τY −
√
Δ
)n−2 − 1

we see, taking different terms of the binomial expansion of the denominator, that

ε < δ1 =
2
√
Δ

(n− 2)( 2
√
Δ

(τY −
√
Δ)

)
=

τY −
√
Δ

n− 2
,

ε < δ2 =
2
√
Δ

(n−2)(n−3)
2 ( 4Δ

(τ−
√
Δ)2

)
=

(τY −
√
Δ)2

(n− 2)(n− 3)
√
Δ
.
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Now let us write the conditions δi > εi and Remark 7.4:

c1 − 2 > τY >
√
Δ+ (n− 2)

√
c2
(
N (βY )

)
,

c1 − 2 > τY >
√
Δ+

√
(n− 2)(n− 3)c2

(
N (βY )

)
.

Now we observe that, by Lemma 7.1 we have βY ≤ β; hence c2(N (βY )) ≥
c2(E(β)), and we use [Ho, Proposition 6.3] to get c2(E(β)) ≥ n + 2 and con-

clude. �

Finally let us consider separately the case in which Y is a numerical complete

intersection of type (a, b) ∈ Z2, a≤ b, that is, when Δ= (b− a)2 ≥ 0.

REMARK 7.6

Observe that, by Corollary 7.2, a numerical complete intersection with βY =−a

or −b is a complete intersection.

COROLLARY 7.7

Assume that Y is a numerical complete intersection of type (a, b) with a≤ b. If

(n− 3)(b− 1)> (a− 2)(a− 1), then Y is a complete intersection.

Proof

We will show that E is decomposable. By Remark 7.4 we have τY < c1 − 2 =

a+ b− 2. Note that, by Proposition 3.5, Remark 3.6, and Remark 4.5, E splits if

and only if ρ= 2β+ c1 =−
√
Δ. Since β ∈ Z, using Lemma 4.6, this is equivalent

to ε < 2.

In the case Δ= 0 this gives τY < 2(n− 2), which is satisfied in our assump-

tions. In the case Δ> 0 we have

ε=
2
√
Δ(τY −

√
Δ)n−2

(τY +
√
Δ)n−2 − (τY −

√
Δ)n−2

<
2
√
Δ(c1 − 2−

√
Δ)n−2

(c1 − 2 +
√
Δ)n−2 − (c1 − 2−

√
Δ)n−2

.

It follows that

ε <
2(b− a)(a− 1)n−2

(b− 1)n−2 − (a− 1)n−2
.

The condition ε < 2 holds trivially when a= 1; hence we may assume that b >

a > 1 and a sufficient condition for the splitting is

1>
(b− a)(a− 1)n−2

(b− 1)n−2 − (a− 1)n−2
= (a− 1)

( b−1
a−1 )− 1

( b−1
a−1 )

n−2 − 1
;

that is,

( b−1
a−1 )

n−2 − 1

( b−1
a−1 )− 1

> (a− 1).

In particular, since (b− 1)/(a− 1) > 1, this condition holds whenever 1 + (n−
3)(b− 1)/(a− 1)> (a− 1), that is (n− 3)(b− 1)> (a− 2)(a− 1). �
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REMARK 7.8

Corollary 7.7 improves the known results about Hartshorne’s conjecture for codi-

mension two numerical complete intersections (cf. [EF, Corollary 2.3]).
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theorems on projective spaces and quadrics, Pacific J. Math. 163 (1994),

17–42. MR 1256175.
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pseudo-effective cone of a compact Kähler manifold and varieties of

negative Kodaira dimension, preprint, arXiv:math/0405285v1 [math.AG]

[Ca] J. S. Calcut, Rationality and the tangent function, preprint.

[D] O. Debarre, Higher-Dimensional Algebraic Geometry, Universitext,

Springer, New York 2001. MR 1841091.

[EF] Ph. Ellia and D. Franco, On codimension two subvarieties of P5 and P6,

J. Algebraic Geom. 11 (2002), 513–533. MR 1894936.

DOI 10.1090/S1056-3911-02-00320-X.

[Fl] H. Flenner, Restrictions of semistable bundles on projective varieties,

Comment. Math. Helv. 59 (1984), 635–650. MR 0780080.

DOI 10.1007/BF02566370.

http://www.ams.org/mathscinet-getitem?mr=1256175
http://www.ams.org/mathscinet-getitem?mr=1859022
http://dx.doi.org/10.1007/PL00005808
http://www.ams.org/mathscinet-getitem?mr=1346245
http://www.ams.org/mathscinet-getitem?mr=0429896
http://www.ams.org/mathscinet-getitem?mr=1678549
http://dx.doi.org/10.1007/s002080050272
http://www.ams.org/mathscinet-getitem?mr=2566998
http://dx.doi.org/10.1016/j.crma.2009.09.006
http://www.ams.org/mathscinet-getitem?mr=2283102
http://dx.doi.org/10.4171/JEMS/71
http://arxiv.org/abs/arXiv:math/0405285v1
http://www.ams.org/mathscinet-getitem?mr=1841091
http://www.ams.org/mathscinet-getitem?mr=1894936
http://dx.doi.org/10.1090/S1056-3911-02-00320-X
http://www.ams.org/mathscinet-getitem?mr=0780080
http://dx.doi.org/10.1007/BF02566370


196 Muñoz, Occhetta, and Solá Conde

[FHS] O. Forster, A. Hirschowitz, and M. Schneider, “Type de scindage généralisé
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Muñoz: Departamento de Matemática Aplicada, ESCET, Universidad Rey Juan
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