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Abstract WegeneralizeTango’s theoremon theFrobeniusmap of the first cohomology

groups to higher-dimensional algebraic varieties in characteristic p > 0. As an applica-

tion we construct counterexamples to Kodaira vanishing in higher dimension and prove

the Ramanujam-type vanishing on surfaces which are not of general type when

p≥ 5.

Let X be a smooth complete algebraic variety over an algebraically closed field

of positive characteristic p > 0, and let D be an effective divisor on X . In this

article we study the kernel of the Frobenius map

(1) F ∗ :H1
(
X,OX(−D)

)
→H1

(
X,OX(−pD)

)
of the first cohomology groups of line bundles.

Tango [T1] described the kernel of F ∗ in terms of the exact differentials in the

case of curves. First we generalize this result to varieties of arbitrary dimension,

that is, we prove the following.

THEOREM 1

The kernel of the Frobenius map (1) is isomorphic to the vector space{
df ∈ΩQ(X)

∣∣ f ∈Q(X), (df)≥ pD
}
,

where Q(X) is the function field of X and (ω)≥ pD means that a rational dif-

ferential ω ∈ΩQ(X) belongs to Γ(X,ΩX(−pD)).

Using this description and generalizing Raynaud’s [Ra] method, we construct

pathological varieties of higher dimension which are similar to his surfaces.
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THEOREM 2

Let p be a prime number, and let n ≥ 2 be an integer. Then there exist an n-

dimensional smooth projective variety X of characteristic p and an ample line

bundle L such that

(a) H1(X,L−1) �= 0;

(b) the canonical divisor class KX is ample, and the intersection number

(ci(X) ·Kn−i
X ) is negative for every i≥ 2; and

(c) there is a finite cover G of X and a sequence of morphisms

G=Gn →Gn−1 → · · · →G2 →G1

such that Gi+1 →Gi is a P1-bundle for every i = 1, . . . , n− 1 and that G1 is a

nonsingular curve. The Euler characteristic e(X)(:= deg cn(X)) of X is equal to

e(G) = 2n−1e(G1).

Here ci(X) is the ith Chern class of X.

When p= 2,3, we obtain similar varieties X with quasi-elliptic fibrations X → Y .

In this case, the canonical classes KX are the pullbacks of ample divisor classes

on Y . By property (b) and Yau’s [Y1] and [Y2] inequality or by (a) and [DI], we

have the following.

COROLLARY

The algebraic variety X in Theorem 2 is not liftable to characteristic zero.

Throughout this article R.V. (Ramanujam vanishing) on an algebraic surface X

means the vanishing of H1(X,L−1) for all nef and big line bundles on X . Con-

versely to the above counterexample, using Theorem 1 and [LM], we prove the

following.

THEOREM 3

In the case where X is of dimension two, we have the following.

(a) Assume that X is not of general type and that the Iitaka fibration X →C

is not quasi-elliptic when the Kodaira dimension κ(X) is 1 and p = 2,3. Then

R.V. holds on X.

(b) If R.V. does not hold on X, then there exist a birational morphism X ′ →
X and a morphism g :X ′ →C onto a smooth algebraic curve C such that every

fiber F of g is connected and singular. Furthermore, the cotangent sheaf ΩF has

nonzero torsion.

Our counterexamples X in dimension two are sandwiched between two

P1-bundles, and the general fibers F in Theorem 3(b) are rational for them.

A curve of higher (geometric) genus appears as such a fiber F if we take a suf-

ficiently general separable cover π : X̃ →X with (degπ, p) = 1. Then R.V. does

not hold on X̃ either since L−1 is a direct summand of π∗π
∗L−1.
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CONVENTION

In the following we assume the characteristic p is positive, and by K.V. (Kodaira

vanishing) we mean the vanishing of the first cohomology group H1(X,L−1) for

all ample line bundles L on X.

1. Tango’s theorem

The feature of positive characteristic is the existence of the Frobenius morphisms

F :X →X and the Frobenius maps. Let L be a line bundle on X . The Frobenius

morphism induces the Frobenius map

(2) F ∗ :H1(X,L−1)→H1(X,L−p)

between the first cohomology groups. When X is normal and dimX ≥ 2, we have

the following.

LEMMA 1.1 (ENRIQUES–SEVERI–ZARISKI)

The vanishing H1(X,L−m) = 0 holds if L is ample and m is sufficiently large.

Therefore, by the sequence

H1(X,L−1)→H1(X,L−p)→H1(X,L−p2

)→ · · ·

of Frobenius maps, K.V. holds on X if and only if the following holds:

(*) F ∗ :H1(X,L−1)→H1(X,L−p) is injective for every ample line bundle

L on X .

1.1. Tango–Raynaud curve
The statement (*) makes sense even when dimX = 1. The following is funda-

mental for (*) in this case.

THEOREM 1.2 (TANGO [T1, LEMMA 12])

Let D be an effective divisor on a smooth algebraic curve X. Then the kernel

of the Frobenius map (1) is isomorphic to the space of exact differentials df of

rational functions f on X with (df)≥ pD.

The following example, which was found by Raynaud [Ra] in the case e = 1,

shows that (*) does not holds when dimX = 1.

EXAMPLE 1.3

Let P (Y ) be a polynomial of degree e in one variable Y , and let C ⊂ P2 be the

plane curve of degree pe defined by

(3) P (Y p)− Y = Zpe−1,

where (Y,Z) is a system of inhomogeneous coordinates of P2. It is easy to check

that C is smooth and has exactly one point ∞ on the line of infinity. By the
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relation

−dY =−Zpe−2dZ

between the differentials dY and dZ, ΩC is generated by dZ over C ∩ A2. In

other words, dZ has no poles or zeros over C ∩A2. Since degΩC = 2g(C)− 2 =

pe(pe− 3), we have (dZ) = pe(pe− 3)(∞). Therefore, by the above theorem of

Tango (Theorem 1.2), the Frobenius map (1) is not injective for the divisor

D = e(pe− 3)(∞).

A curve C of genus ≥ 2 is called a Tango–Raynaud curve if C satisfies the fol-

lowing mutually equivalent conditions:

(a) there exists a line bundle L on C such that Lp 	ΩC and that the Frobe-

nius map (2) is not injective, and

(b) there exists a rational function f on C such that df �= 0 and that the

divisor (df) is divisible by p.

The curve C in the Example 1.3 is a Tango–Raynaud curve.

1.2. Higher-dimensional generalization
Following [T1] we denote the cokernel of the natural (pth power) homomorphism

OX → F∗OX by BX . For a Cartier divisor D on X we have the exact sequence

(4) 0→OX(−D)→ F∗
(
OX(−pD)

)
→BX(−D)→ 0

and the associated long exact sequence

0 → H0
(
OX(−D)

) F∗
−→H0

(
OX(−pD)

)
→H0

(
BX(−D)

)
(5)

δ−→H1
(
OX(−D)

) F∗
−→H1

(
OX(−pD)

)
→ · · · .

If D is effective, then F ∗ :H0(OX(−D))→H0(OX(−pD)) is surjective. Hence

we have the following.

LEMMA 1.4

If D is effective, then the coboundary map δ of (5) induces the isomorphism

(6) Ker
[
F ∗ :H1

(
OX(−D)

)
→H1

(
OX(−pD)

)]
	H0

(
BX(−D)

)
.

Assume that X is normal, and consider the direct image of the derivation d :

OX →ΩX by F . By F∗d, BX is regarded as a subsheaf of F∗ΩX . Let ΩQ(X) be

the Q(X)-vector space of differentials. We denote the constant sheaf associated

with Q(X) or ΩQ(X) on X by the same symbol and consider the intersection

dQ(X)∩ΩX in the constant sheaf ΩQ(X). Then, more precisely, BX is contained

in F∗(dQ(X) ∩ ΩX). We also have BX(−D) ↪→ F∗(dQ(X) ∩ ΩX(−pD)). There-

fore, by the exact sequence (5), we have the following.
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PROPOSITION 1.5

If X is normal, then the kernel of the Frobenius map of H1(OX(−D)) is isomor-

phic to a subspace of the vector space{
df ∈ΩQ(X)

∣∣ f ∈Q(X), (df)≥ pD
}
.

COROLLARY

If X is normal and HomOX
(OX(pD),ΩX) = 0, then the Frobenius map of

H1(OX(−D)) is injective.

When X is smooth, BX = F∗(dQ(X)∩ΩX) holds, by the existence of a p-basis.

Hence BX(−D) = F∗(dQ(X)∩ΩX(−pD)) holds for a Cartier divisor D, and we

have Theorem 1.

1.3. Purely inseparable covering in an A1-bundle
When a vector bundle E on X is given, we have the relative Frobenius morphism

P(E)→ P(E(p)) over X . We denote this morphism by ϕ. We consider the special

case where E is an extension of two line bundles

(**) 0→OX(−D)→E →OX → 0.

Then E(p) is also an extension of line bundles

(***) 0→OX(−pD)→E(p) →OX → 0.

Let F∞ ⊂ P(E) be the section corresponding to the exact sequence (**). Then

P(E) \ F∞ is an A1-bundle, and P(E) is its compactification. Assume that the

extension class α of (**) belongs to the kernel of the Frobenius map (1). Then

(***) have a splitting, which yields a section G′ of P(E(p)) disjoint from F ′
∞ :=

ϕ(F∞).

DEFINITION 1.6

Let G=G(X,D,α) be the (scheme-theoretic) inverse image of G′ by the relative

Frobenius morphism ϕ. We denote the restriction of the projection ḡ : P(E)→X

to G by τ .

By construction G is embedded in the A1-bundle P(E)\F∞. When α corresponds

to η = df ∈H0(BX(−D)) in the way of Theorem 1, that is, when α = δ(η), we

denote G by G(X,D,η) also. The morphism τ :G→X is flat, finite of degree p,

and ramifies everywhere. If X is normal, then the local equation of G in P(E) is

either irreducible or a pth power. Therefore, if X is normal and if η �= 0, then G

is a variety and its function field is a purely inseparable extension of Q(X). By

construction we have the following linear equivalence:

(7) G− pF∞ ∼−ḡ∗(pD).

Now we can state a criterion for G to be smooth.
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PROPOSITION 1.7

Assume that X is smooth. Then G = G(X,D,η) is smooth if and only if η ∈
H0(BX(−D)) is nowhere vanishing. If these equivalent conditions are satisfied,

then the natural sequence

(8) 0→ τ∗OX(pD)
×η−→ τ∗ΩX

τ∗
−→ΩG →ΩG/X → 0

is exact and ΩG/X is isomorphic to τ∗OX(D). In particular the image of τ∗ is

a vector bundle of rank n− 1.

Proof

Assume thatD is given by a system {gi}i∈I of local equations for an open covering

{Ui}i∈I of X . We may assume that η is represented by a 0 cochain {bi}i∈I which

satisfies

bi = gpi ci ∈ Γ
(
Ui,OX(−pD)

)
, bj − bi = apij ∈ Γ

(
Ui ∩Uj ,OX(−pD)

)
,

for some ci ∈ Γ(Ui,OX) and aij ∈ Γ(Ui,OX(−D)). Then {aij}i,j∈I is a 1-cocycle

which represents α = δ(η), and the vector bundle E in (**) is defined by the

1-cocycle
{( gig

−1
j 0

aijg
−1
j 1

)}
with coefficients in GL(2,OX). Since

(ci1)

(
gpi g

−p
j 0

apijg
−p
j 1

)
= (cj1)

holds, the 0 cocycle {(ci1)}i∈I defines a splitting OX → E(p) of the extension

(***).

On each open set Ui, G⊂ P(E)\F∞ is defined by the equation Sp
i = ci, where

Si is a fiber coordinate of Ui ×A1. On their intersection, Sp
i = ci (over Ui) and

Sp
j = cj (over Uj) are patched by the affine transformation gjSj = giSi + aij . Let

OX(pD)
×η−→ΩX be the the multiplication homomorphism by η. Since τ∗dci = 0,

we have the complex (8).

Let x be a point in Ui. If dci vanishes at x, then Sp
i = ci is singular at x.

Assume that dci is nonzero at x. Then G is smooth at τ−1(x). Moreover, the

cotangent space of X at x has a basis of the form {γ1, . . . , γn−1, dci}, and {τ∗γ1,
. . . , τ∗γn−1, dSi} is a basis of the cotangent space of G at τ−1(x). Therefore, the

kernel of τ∗ is spanned by dci and the cokernel by dSi. Hence (8) is exact, and

the image of τ∗ is a vector bundle of rank n− 1. Since gjdSj = gidSi holds in

ΩG/X , ΩG/X is isomorphic to τ∗OX(D). �

COROLLARY 1.8

We have τ∗KX ∼KG + (p− 1)τ∗D.

We define the Euler number e(X) of X by the top Chern number deg ctop(X).

COROLLARY 1.9

We have τ∗cn(X) ∼ pcn(G), where n = dimX. In particular, we have e(X) =

e(G).
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Proof

Let B be the image of τ∗. Then by the Proposition 1.7 we have cn(G)∼ τ∗(−D) ·
cn−1(B

∨) and τ∗cn(X)∼ τ∗(−pD) ·cn−1(B
∨). Hence τ∗cn(X) is rationally equiv-

alent to pcn(G). The second half of the corollary is obtained by taking the degree

of these two 0 cycles. �

If X is a Tango–Raynaud curve, then τ : G→X is nothing but the Frobenius

morphism of X .

REMARK 1.10

Purely inseparable coverings such as G(X,D,α) in Definition 1.6 have been stud-

ied by many authors, and by now they are more or less well known. It is worth-

while to mention that Kollár [K, Chapter II.6] proved the vanishing of H1 in

characteristic zero by this using this construction and mod p reduction.

The morphism G→X in Proposition 1.7 is a special case of a quotient by

1-foliation, and the exact sequence (8) is described in Ekedahl [E1].

2. Construction of counterexamples

By a Tango–Raynaud triple, or a TR triple for short, we mean a triple (X,D,f)

of a smooth variety X , a divisor D on X , and a rational function f ∈Q(X) with

(df) ≥ pD. In this section, we shall construct a new TR triple (X̃, D̃, f̃) from

(X,D,f) under a certain divisibility assumption.

2.1. New triple of higher dimension
Let (X,D,f) be a TR triple. We assume that D = kD′ for a divisor D′ and an

integer k ≥ 2 which is prime to p, and construct a new TR-triple (X̃, D̃, f̃) with

dim X̃ = dimX + 1.

Under the same setting as in the proof of Proposition 1.7, we choose and fix

a nonempty open subset U ⊂X among Ui’s, i ∈ I . We shrink U and replace f

with f ′ satisfying df ′ = df if necessary, so that f is regular over U . We take a

fiber coordinate S of P(E)→X over U such that the section of infinity F∞ is

defined by S =∞ and G=G(X,D,df) is defined by Sp− f = 0. Our new variety

X̃ is a model of the function field Q(X)(S, k
√
Sp − f). We construct it in two

steps. Let m be a positive integer such that p+m is divisible by k. By the linear

equivalence (7), we have

G+mF∞ ∼ k
(p+m

k
F∞ − ḡ∗(pD′)

)
,

that is, G + mF∞ is the zero locus of a global section of M−k, where M =

OP(−((p+m)/k)F∞+ g∗(pD′)). First in the usual way we take the global k-fold

cyclic covering

(9) Spec
(k−1⊕

i=0

M i
)
→ P(E)
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with algebra structure given by Mk 	 OP(E)(−G − mF∞) ↪→ OP(E). Then we

take the relative normalization of this covering over a neighborhood of F∞.

DEFINITION 2.1

We put

(10) X̃ = Spec
(k−1⊕

i=0

M i
(
[im/k]F∞

))
with a natural algebra structure induced by (9), where [ ] is the Gauss symbol.

The composite of this k-fold cyclic covering π : X̃ → P(E) and the structure

morphism P(E)→X is denoted by g : X̃ →X . Furthermore, we set

D̃ := (k− 1)F∞ + g∗D′ and f̃ = k
√
Sp − f ∈Q(X̃),

where the unique section of g lying over F∞ is denoted by the same symbol.

The complete linear system |mF∞| defines an embedding outside G for suffi-

ciently large m. Hence we have the following lemma.

LEMMA 2.2

If D is ample, so is D̃.

Now we assume further that η := df ∈H0(BX(−D)) is nowhere vanishing. Then

G is smooth by Proposition 1.7, and X̃ is smooth since the branch locus F∞ �G

is smooth. Since X̃ is defined by the equation T k = Sp − f on g−1(U), taking

the differential, we have kT k−1dT = −df . Hence dT has no zero along G. The

differential dT vanishes along the infinity section F∞ with order p(k− 1). There-

fore, dT defines a nonzero global section of ΩX̃(−p(k − 1)F∞ − ph∗D′). It is

easily checked that df̃ ∈H0(BX̃(−D̃)) is nowhere vanishing. Thus we have the

following.

PROPOSITION 2.3

If X is smooth and (X,D,f) is a TR triple with ample D and nowhere vanishing

η = df , then X̃ is smooth and (X̃, D̃, f̃) is also a TR triple with ample D̃ and

nowhere vanishing η̃ := df̃ .

Every fiber of g is a rational curve with the unique singular point at the inter-

section with π−1G. The singularity is the cusp of the form T k = Sp.

Let τ̃ : G̃ → X̃ be the everywhere ramified covering constructed from

(X̃, D̃, f̃) (see Definition 1.6). Since
p

√
f̃ = k

√
S − p

√
f , the composite g ◦ τ̃ factors
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through τ , and we have the commutative diagram

h

G̃ −→ G

τ̃ ↓ ↓ τ

X̃ −→ X

g

Moreover, this morphism h : G̃ → G is isomorphic to the P1-bundle P(OG ⊕
OG(τ

∗D′)) over G. Let U and V be the infinity and zero sections, respectively,

of the P1-bundle h. They are disjoint, and we have

(11) U − V ∼ h∗τ∗D′.

The pullbacks τ̃∗F∞ and τ̃∗G are U and pV , respectively. In particular, we have

(12) τ̃∗D̃ ∼ (k− 1)U + h∗τ∗D′ ∼ kU − V.

PROPOSITION 2.4

Assume that X is smooth and (X,D,f) is a TR triple with (df) = pD. Then G̃

is a P1-bundle over G, and the Euler number e(X̃) of X̃ is equal to 2e(X).

Proof

The first half is already shown above. This implies e(G̃) = e(P1)e(G) = 2e(G).

Hence the second half follows from Corollary 1.9. �

REMARK 2.5

The expression (10) of the cyclic covering π : X̃ → P(E) was not given in the

original [M1], though it is now standard (see, e.g., Hesnault and Viehweg [HV,

Section 3].

2.2. The canonical classes of G̃ and X̃

Let (X,D,f) be a TR triple with an ample divisor D and nowhere vanishing

(df) ∈H0(BX(−D)). We compute the canonical classes of G̃ and X̃ . Since G̃ is

a P1-bundle over G with two disjoint sections U and V , the relative cotangent

bundle ΩG̃/G is isomorphic to OG̃(−U − V ). Hence we have

(13) KG̃ ∼−U − V + h∗KG ∼−2U + h∗(KG + τ∗D′)

by (11). By Corollary 1.8 and (12), we have

τ∗KX ∼KG̃ + (p− 1)τ∗D̃

∼ −2U + h∗(KG + τ∗D′) + (p− 1)
{
(k− 1)U + h∗τ∗D′}(14)

∼ (pk− p− k− 1)U + h∗(KG + pτ∗D′).

We note that pk−p−k−1≥ 0 and the equality holds if and only if {p, k}= {2,3}.



524 Shigeru Mukai

In the following we denote by ∼Q the Q-linear (or Q-rational) equivalence of

Q-divisors (or Q-cycles). For the later use we put

(15) J :=KG +
1

k− 1
τ∗D and J̃ :=KG̃ +

1

k̃− 1
τ̃∗D̃

for an integer k̃. Since D′ ∼Q D/k, we have

J̃ ∼Q −U − V + h∗KG +
1

k̃− 1

{
(k− 1)U +

1

k
h∗τ∗D

}

∼Q

(k− 1

k̃− 1
− 2

)
U + h∗

{
KG +

(1
k
+

1

k(k̃− 1)

)
τ∗D

}
(16)

∼Q

(k− 1

k̃− 1
− 2

)
U + h∗

{
J +

1

k

( 1

k̃− 1
− 1

k− 1

)
τ∗D

}
by (13).

2.3. Chern numbers of X̃
For the same reason as (13), we have

c(G̃) ∼ (1 +U + V ) · h∗c(G),
(17)

ci(G̃) ∼ h∗ci(G) + (U + V ) · h∗ci−1(G).

Since U ∩ V = ∅, we have

U · V ∼ 0,

U2 ∼
(
(U − V ) + V

)
·U ∼ k−1h∗τ∗D ·U,(18)

V 2 ∼
(
U − (U − V )

)
· V ∼−k−1h∗τ∗D · V

by (11). More generally, we have

Um ∼ k−m+1h∗τ∗Dm−1 ·U and
(19)

V m ∼ (−k)−m+1h∗τ∗Dm−1 · V

for every integer m≥ 1.

PROPOSITION 2.6

Let λ and μ be nonnegative integers such that λ+ i+ μ= dim G̃. Then we have(
c1(G̃)λ · ci(G̃) · τ̃∗D̃μ

)
=

λ∑
α=0

(
λ

α

)(
c1(G)λ−α · ci(G) · τ∗Dμ+α−1

)(
k1−α + (−1)μk1−α−μ

)

+

λ∑
α=0

(
λ

α

)(
c1(G)λ−α · ci−1(G) · τ∗Dμ+α

)(
k−α + (−1)μk−α−μ

)
.
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Proof

By (12) and (17), we have(
c1(G̃)λ · ci(G̃) · τ̃∗D̃μ

)
=
(
c1(G̃)λ · h∗ci(G) · τ̃∗D̃μ

)
+
(
c1(G̃)λ · h∗ci−1(G̃) · (U + V ) · τ̃∗D̃μ

)
=

λ∑
α=0

(
λ

α

)(
h∗c1(G)λ−αh∗ci(G) · (U + V )α · (kU − V )μ

)

+

λ∑
α=0

(
λ

α

)(
h∗c1(G)λ−αh∗ci−1(G) · (U + V )α+1 · (kU − V )μ

)

=

λ∑
α=0

(
λ

α

)(
h∗c1(G)λ−α · h∗ci(G) ·

(
kμUα+μ + (−1)μV α+μ

))

+

λ∑
α=0

(
λ

α

)(
h∗c1(G)λ−α · h∗ci−1(G) ·

(
kμUα+μ+1 + (−1)μV α+μ+1

))

=

λ∑
α=0

(
λ

α

)(
h∗c1(G)λ−α · h∗ci(G) · h∗τ∗Dα+μ−1 ·

(
k1−αU + (−1)μk1−α−μV

))

+
λ∑

α=0

(
λ

α

)(
h∗c1(G)λ−α ·h∗ci−1(G) ·h∗τ∗Dα+μ ·

(
k−αU +(−1)μk−α−μV

))
.

Since both U and V are sections of h : G̃→G, we have (h∗Z ·U) = degZ for every

0 cycle Z on G. Therefore the proposition follows from the last expression. �

COROLLARY

The intersection number (c1(G̃)λ · ci(G̃) · τ̃∗D̃μ) is of degree ≤ 1 as a Laurent

polynomial in the variable k. Moreover, the coefficient of k is equal to (c1(G)λ ·
ci(G) · τ∗Dμ−1) if μ≥ 1 and 0 otherwise.

2.4. Proof of Theorem 2
Now we are ready to construct an n-dimensional TR triple (Xn,Dn, dfn). We

define two sequences {ki}1≤i≤n−1 and {ei}1≤i≤n−1 of positive integers induc-

tively by the rule

ki = 1+ ciei−1 and ei = ei−1ki

for 2≤ i≤ n− 1, where {ci}i is a nondecreasing sequence of integers ci ≥ 2 such

that ki’s are not divisible by p. (The simplest choice is ci := p for every i.) We

start with an arbitrary positive integer k1 ≥ 2 prime to p and e1 := k1.

The first TR triple (X1,D1, df1) consists of a Tango–Raynaud curve X1,

a divisor D1, and an exact differential df1 with (df1) = pD1 such that D1 is

divisible by en−1. Then we apply the construction in Section 2.1 by taking a

kn−1-fold covering of the P1-bundle P(E1) over X1 and putting (X2,D2, df2) =
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(X̃1, D̃1, df̃1). This is a TR triple of dimension 2. We repeat this process n− 1

times. We note that the divisor D2 = (kn−1 − 1)F∞ +D1/kn−1 is divisible by

en−2. In particular, D2 is divisible by kn−2. Hence, taking a kn−2-fold covering

of P(E2) over X2, we obtain (X3,D3, df3) = (X̃2, D̃2, df̃2), which is a TR triple of

dimension 3 such that D3 is divisible by en−3, and so on. In the final (n−1)st step

we take the k1-fold covering of P(En−1) since Dn−1 is divisible by e1 = k1. We

obtain a new TR triple (Xn,Dn, dfn), which is an n-dimensional counterexample

to Kodaira’s vanishing by Proposition 2.3.

The first half of Theorem 2(b) is a consequence of the following.

PROPOSITION 2.7

The canonical class KXn is ample if {p, k1} �= {2,3} and is the pullback of an

ample divisor on Xn−1 if {p, k1}= {2,3}.

Proof

Since τn :Gn →Xn is finite, it suffices to show that KGn−1 +(p/k1)τ
∗
n−1Dn−1 is

ample by (14). We put

Ji :=KGi +
1

kn−i − 1
τ∗i Di

for every 1≤ i≤ n− 1 after (15). Since p/k1 ≥ 1/(k1 − 1), it suffices to show the

following.

CLAIM 1

Ji is ample.

We prove it by induction on i. In the case i= 1, both KG1 and D1 are ample.

Hence J1 is ample. Assume that i≥ 2. We have

kn−i+1 − 1

kn−i − 1
=

cn−i+1en−i

cn−ien−i−1
≥ kn−i ≥ 2

if n− i ≥ 2, and (k2 − 1)/(k1 − 1) = c2k1/(k1 − 1) > 2. By the formula (16), Ji
is ample since so is Ji−1 and since kn−i+1 > kn−i. This finishes the proof of

Proposition 2.7. �

Now we consider the sequence of the morphisms

Gn
hn−1−→ Gn−1

hn−2−→ · · · h2−→G2
h1−→G1,

in order to investigate the asymptotic behavior of certain Chern numbers of Xn

as k1, . . . , kn−1 go to ∞, where Gj := G̃j−1 for j = 2, . . . , n. Since G1 is a curve,

we have −deg c1(G1) = deg τ∗1D1 = 2g − 2, where g is the genus of the Tango–

Raynaud curve G1 	X1. Applying Proposition 2.6 (or its corollary) successively

to the above morphisms hi, we have the following.
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PROPOSITION 2.8

The intersection number (c1(Gn)
λ · ci(Gn) · τ∗nDμ

n) is a Laurent polynomial in the

variables k1, . . . , kn−1 whose coefficients are integers independent of X1 and D1.

The degree of the Laurent polynomial is at most 1 with respect to every variable.

Moreover, the coefficient of k1 · · ·kn−1 is equal to⎧⎪⎪⎨
⎪⎪⎩
2g− 2 if (λ, i, μ) = (0,0, n),

−(2g− 2) if (λ, i, μ) = (1,0, n− 1), (0,1, n− 1), and

0 otherwise.

Furthermore we have the following proposition.

PROPOSITION 2.9

The intersection number (Kn−i
Xn

· ci(Xn)) is a Laurent polynomial in the variables

k1, . . . , kn−1, and the degree is at most 1 with respect to each variable. If i≥ 2,

then the coefficient of the highest monomial k1 · · ·kn−1 in the Laurent expression

of (Kn−i
Xn

· ci(Xn)) is equal to −p−n(p− 1)n−i(n− i)(2g− 2).

Proof

By (17), τ∗nci(Xn) is rationally equivalent to

ci(Gn) + (1− p)
i∑

j=1

ci−j(Gn) · τ∗nDj
n

∼ (1− p)τ∗nD
i
n + (1− p)c1(Gn)τ

∗
nD

i−1
n + (lower terms in Dn).

Since τ∗nc1(Xn)∼ (1− p)τ∗nDn + c1(Gn), we have

pn
(
c1(Xn)

n−i · ci(Xn)
)

=
(
τ∗nc1(Xn)

n−i · τ∗nci(Xn)
)

= (1− p)n−i+1(τ∗nD
n
n) + (1− p)n−i(n− i)

(
c1(Gn) · τ∗nDn−1

n

)
+ (1− p)n−i+1

(
c1(Gn) · τ∗nDn−1

n

)
+ (lower terms in Dn).

Hence our assertion follows from Proposition 2.8. �

By the proposition, (Kn−i
X · ci(Xn)) is negative for sufficiently large choices of

k1, . . . , kn−1 for i≥ 2. This shows Theorem 2(b). Theorem 2(c) is a direct conse-

quence of Proposition 2.4.

2.5. Properties of (X2,D2, df2)

Here we remark a few properties of 2-dimensional counterexample (X,D,df) :=

(X2,D2, df2), which is a k-fold covering of a P1-bundle over a Tango–Raynaud

curve C. By Proposition 1.7, the cokernel of the multiplication map by df is

locally free. In our case, the cokernel is a line bundle. Hence we have the exact



528 Shigeru Mukai

sequence

(20) 0→OX(pD)
×df−→ΩX −→OX(KX − pD)→ 0.

PROPOSITION 2.10

(a) The complete linear system |p(pD−KX)| is nonempty.

(b) If k ≡−1(p), then X has a nonzero vector field, that is, H0(TX) �= 0.

(c) When {p, k} �= {2,3}, the canonical class KX is ample and K.V. holds

for KX , that is, H1(OX(−KX)) = 0.

Proof

First we compute the canonical class KX more rigorously than in Section 2.2.

Since KP(E)/C =−2F∞ +D1 and since the k-fold cyclic covering π :X → P(E)

has branch locus G� F∞, we have

KX/C = π∗KP(E)/C + (k− 1)G+ (k− 1)F∞ ∼−(k+ 1)F∞ + (k− 1)G+ g∗D1.

The rational function Sp − f gives the linear equivalence G ∼ p(F∞ −D1) on

P(E), which is (7). Hence its kth root k
√
Sp − f ∈ Q(X) gives the equivalence

G∼ p(F∞ −D1/k) on X . Therefore, we have

(21) KX ∼KX/C + pD ∼ (pk− p− k− 1)F∞ + (p+ k)D1/k

and pD−KX ∼ (k+ 1)F∞ −D1. Now we are ready to prove our assertions.

(a) The linear system |p(pD−KX)| is nonempty since p(pD−KX) is linearly

equivalent to (k+ 1)G+ pD1/k.

(b) Put k = ap− 1 for a nonnegative integer a. Then we have pD −KX ∼
apF∞ −D1 ∼ aG+D1/k. Since TX contains OX(pD−KX) as a line subbundle,

we have H0(TX) �= 0.

(c) KX is ample by Proposition 2.7. Since p(pk−p−k−1)> k−1, we have

Hom(OX(pmKX),OX(D)) = 0 for everym≥ 1. Hence we have Hom(OX(pmKX),

ΩX) = 0 by (20) and (a). Therefore, we have H1(OX(−KX)) = 0 by the corollary

of Proposition 1.5 and Lemma 1.1. �

By (a) of the proposition the cotangent bundle ΩX is not slope stable with respect

to any ample line bundle. Since any positive-dimensional algebraic group does

not act on a surface of general type, the group scheme AutX is not reduced

by (b). See [Ru] and [La] for alternative treatment of (generalized) Raynaud’s

surface from this viewpoint. We refer to [E2] and [SB] for the pluricanonical maps

of surfaces of general type in positive characteristic.

3. Surfaces on which R.V. does not hold

In this section we prove Theorem 3. By virtue of the following result, R.V. on

a (smooth complete) surface X is equivalent to the injectivity of the Frobenius

map (2) for all nef and big line bundle L.
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PROPOSITION 3.1 (SZPIRO [Sz, PROPOSITION 2.1], LEWIN-MÉNÉGAUX [LM, PROPOSITION 2])

H1(X,L−m) = 0 holds for m� 0 if L is nef and big.

The following is inspired by a similar statement [T2, Corollary 8]. This is not

absolutely necessary for our proof but makes it more transparent.

PROPOSITION 3.2

Let X ′ be the blowup of a surface X at a point. The R.V. holds on X ′ if and

only if so does on X.

Proof

Let x ∈X be the center of the blowup π :X ′ →X . If L is a nef and big line bundle

on X , then so is the pullback π∗L. If R.V. holds on X ′, then H1(X ′, π∗L−1)

vanishes. Since H1(X,L−1) is isomorphic to H1(X ′, π∗L−1), R.V. holds also

on X .

Conversely assume that R.V. holds on X , and let D′ be a nef and big divisor

on X ′. Then D := π∗D
′ is also nef and big. By Theorem 1, the vector space {df ∈

ΩQ(X) | f ∈Q(X), (df)≥ pD} is zero. The space {df ∈ΩQ(X′) | f ∈Q(X ′), (df)≥
pD′} is also zero since (df)≥ pD is a divisorial condition. Therefore, R.V. holds

on X ′. �

We first prove (b). Let X be a surface on which R.V. does not hold. By Propo-

sition 1.5, there exist a rational function f and a nef and big divisor D with

(df) ≥ pD. The function f gives a rational map from X to the projective line

P1. By taking suitable blowups X ′ → X and the Stein factorization, we have

the morphism g :X ′ → C with g∗OX′ =OC . C is smooth since so is X . Every

fiber of g is connected. Let L be the image of the multiplication homomorphism

OX′(pD)−→ ΩX′ by df . The relative cotangent sheaf ΩX′/C = ΩX′/g∗ΩC con-

tains T := L/[L ∩ g∗ΩC ] as a subsheaf. On a nonempty subset of C, ΩC con-

tains df as its global section. Hence, L ∩ g∗ΩC �= 0 and T is a torsion sheaf.

There exists an effective divisor A with SuppA= SuppT which is linearly equiv-

alent to c1(L)− c1(L ∩ g∗ΩC); c1(L) = pD is a nef and big divisor on X ′, and

c1(L ∩ g∗ΩC) ≤ g∗KC holds. Hence A contains a component G different from

fibers of g. Then for every fibers B of g, ΩB has nonzero torsion at the intersec-

tion B ∩G. In particular, B is singular at B ∩G.

Now we prove (a). By Proposition 3.2, we may assume that X is a (relatively)

minimal model.

PROPOSITION 3.3

If X is a ruled surface or an elliptic surface, then R.V. holds on X.

Proof

Let h :X →C be a P1-bundle or an elliptic fibration of X . Then there exists an

exact sequence
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0→ h∗ΩC →ΩX →ΩX/C → 0

of torsion-free sheaves on X . Let L be a nef and big line bundle on X . The

degree of L, h∗ΩC , and ΩX/C restricted to general fibers of h are positive, zero

and nonpositive, respectively. Therefore, we have HomOX
(L,h∗ΩC) = HomOX

(L,

ΩX/C) = 0. By the exact sequence, we have HomOX
(L,ΩX) = 0. Hence R.V. holds

on X . (This argument is taken from [T2, Corollary 6].) �

CASE 1

If κ(X) = −∞, then we can take a P1-bundle as a relatively minimal model.

Hence R.V. holds by the proposition.

CASE 2

If κ(X) = 1, then the minimal model X is an elliptic surface by our assumption.

Hence R.V. holds by the proposition.

CASE 3

Assume that κ(X) = 0. By the classification of Bombieri and Mumford [BM2],

X and the second Betti number B2(X) satisfy one of the following:

(a) B2(X) = 6 and X is an abelian surface;

(b) B2(X) = 22 and X is a K3 surface;

(c) B2(X) = 10 andX is either a classical, singular or supersingular Enriques

surface; the last two types occur only when p= 2;

(d) B2(X) = 6 and X is either hyperelliptic or quasi-hyperelliptic. The latter

appears only when p= 2,3.

In the case (a), R.V. holds by the corollary of Proposition 1.5 since ΩX 	O⊕2
X .

In the case (d), R.V. holds by Proposition 3.3 since X has an elliptic fibration

also (over P1) by [BM2, Theorem 3]. Our proof of Theorem 3 is completed by

the following proposition.

PROPOSITION 3.4

R.V. holds on a K3 and an Enriques surfaces.

Proof

It suffices to show injectivity of (1) for all nef and big divisor D on X . Assume the

contrary. Then, by Lemma 1.4, H0(BX(−D)) is nonzero. By the multiplication

map

(22) H0
(
OX(D)

)
×H0

(
BX(−D)

)
−→H0(BX),

and by the Riemann–Roch inequality

(23) dimH0
(
OX(D)

)
≥ 1

2
(D2) + χ(OX)≥ 2,
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we have

dimKer
[
F ∗ :H1(OX)→H1(OX)

]
= dimH0(BX)≥ 2.

This is a contradiction since H1(OX) is at most 1-dimensional by [BM2] and

[BM1, Lemma 1]. �
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