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Abstract In thispaper,wewould like toproposea fundamentalquestionaboutahigher-

dimensional analogue of Dirichlet’s unit theorem. We also give a partial answer to the

question as an application of the arithmetic Hodge index theorem.
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0. Introduction

0.1. Classical Dirichlet’s unit theorem
Let K be a number field, and let OK be the ring of integers in K. Let K(C) be

the set of all embeddings K into C, and let ΞK and Ξ0
K be real vector spaces

given by

ΞK =
{
ξ ∈RK(C)

∣∣ ξσ = ξσ̄ for all σ ∈K(C)
}

and

Ξ0
K =

{
ξ ∈ ΞK

∣∣∣ ∑
σ∈K(C)

ξσ = 0
}
,

respectively. The classical Dirichlet’s unit theorem asserts that the unit group

O×
K of OK is a finitely generated abelian group of rank s= dimRΞ

0
K . The most

essential part of the proof of Dirichlet’s unit theorem is to show that Ξ0
K is

generated by the image of the map L :O×
K → ΞK given by L(u)σ = log |σ(u)| (u ∈

O×
K) over R; that is, for any ξ ∈ Ξ0

K , there are u1, . . . , ur ∈O×
K and a1, . . . , ar ∈R

such that

(0.1.1) ξσ = a1 log |σ(u1)|2 + · · ·+ ar log |σ(ur)|2

for all σ ∈K(C).

Kyoto Journal of Mathematics, Vol. 53, No. 1 (2013), 197–259

DOI 10.1215/21562261-1966116, © 2013 by Kyoto University

Received November 15, 2011. Revised August 22, 2012. Accepted August 24, 2012.

2010 Mathematics Subject Classification: Primary 14G40; Secondary 11G50, 37P30.

http://dx.doi.org/10.1215/21562261-1966116
http://www.ams.org/msc/


198 Atsushi Moriwaki

Let us consider this problem in the flavor of Arakelov theory. Let X =

Spec(OK), and let D̂iv(X)R be the real vector space consisting of pairs (D,ξ)

of D ∈ Div(X)R := Div(X)⊗Z R and ξ ∈ ΞK . An element of D̂iv(X)R is called

an arithmetic R-divisor on X . For D =
(∑

P aPP, ξ
)
∈ D̂iv(X)R, the arithmetic

degree d̂eg(D) of D is given by

d̂eg(D) :=
∑
P

aP log#(OK/P ) +
1

2

∑
σ

ξσ.

The arithmetic principal divisor (̂x) for x ∈K× is defined to be

(̂x) :=
(∑

P

ordP (x)P, ξ(x)
)
,

where ξ(x)σ =− log |σ(x)|2 for σ ∈K(C). As the map (̂ ) :K× → D̂iv(X)R given

by x �→ (̂x) is a group homomorphism, we have the natural extension

(̂ )R :K×
R := (K×,×)⊗Z R→ D̂iv(X)R,

that is,

̂(x⊗a1
1 · · ·x⊗ar

r ) = a1(̂x1) + · · ·+ ar (̂xr)

for x1, . . . , xr ∈K× and a1, . . . , ar ∈R. In particular, d̂eg((̂x)R) = 0 for all x ∈K×
R

by the product formula.

If we setDξ = (0, ξ) for ξ ∈ Ξ0
K , then assertion (0.1.1) is equivalent to showing

that

Dξ + (̂u)R = (0,0)

for some u ∈ (O×
K)R := (O×

K ,×)⊗Z R. For this purpose, it is actually sufficient to

show that

Dξ + (̂x)R ≥ (0,0)

for some x ∈ K×
R . Indeed, we choose x1, . . . , xr ∈ K× and a1, . . . , ar ∈ R such

that x= x⊗a1
1 · · ·x⊗ar

r and a1, . . . , ar are linearly independent over Q. Then, as

Dξ +(̂x)R ≥ (0,0) and d̂eg(Dξ +(̂x)R) = 0, we have Dξ +(̂x)R = (0,0), and hence∑r
i=1 ai ordP (xi) = 0 for all P . Therefore, ordP (xi) = 0 for all i and P , which

means that xi ∈O×
K for all i. In this way, the classical Dirichlet’s unit theorem

can be formulated in the following way.

THEOREM 0.1.2 (CF. PROPOSITION 3.4.5)

If d̂eg(D)≥ 0 for D ∈ D̂iv(X)R, then there exists x ∈K×
R such that D + (̂x)R ≥

(0,0).

This is an application of the compactness theorem (cf. Corollary 3.3.2) and the

arithmetic Riemann–Roch theorem on arithmetic curves, which indicates that the

theory of arithmetic R-divisors is not an artificial material but actually provides

realistic tools for arithmetic problems.
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In this paper, we would like to consider a higher-dimensional analogue of the

above theorem on arithmetic varieties.

0.2. Arithmetic Cartier divisors
Let X be an arithmetic variety; that is, X is a flat and quasi-projective integral

scheme over Z. We say X is generically smooth if the generic fiber XQ of X →
Spec(Z) is smooth over Q. We assume that X is projective, generically smooth,

normal, and d-dimensional (i.e., the Krull dimension of X is d, so that dimXQ =

d− 1).

We denote the group of Cartier divisors on X by Div(X). Let C be a class

of real-valued continuous functions. As examples of C, we can consider

C0 = the class of continuous functions,

C∞ = the class of C∞-functions,

C0 ∩PSH = the class of continuous plurisubharmonic functions,

which have good properties as in [21, Section 2.3]. Let K be either Z or Q or

R. A pair D = (D,g) is called an arithmetic K-Cartier divisor of C-type if the

following conditions are satisfied:

(i) D is a K-Cartier divisor on X , that is, D =
∑r

i=1 aiDi for some D1, . . . ,

Dr ∈Div(X) and a1, . . . , ar ∈K;

(ii) g :X(C)→ R ∪ {±∞} is a locally integrable function, and g ◦ F∞ = g

(a.e.), where F∞ :X(C)→X(C) is the complex conjugation map;

(iii) for any point x ∈X(C), there are an open neighborhood Ux of x and a

function ux on Ux such that ux belongs to the class C and

g = ux +

r∑
i=1

(−ai) log |fi|2 (a.e.)

on Ux, where fi is a local equation of Di over Ux for each i.

Let D̂ivC(X)K be the set of all arithmetic K-Cartier divisors of C-type. For sim-

plicity, D̂ivC(X)Z is denoted by D̂ivC(X). Note that there are natural surjective

homomorphisms

D̂ivC0(X)⊗Z R→ D̂ivC0(X)R and D̂ivC∞(X)⊗Z R→ D̂ivC∞(X)R

and that they are not isomorphisms, respectively (for details, see [21]).

Let Rat(X) be the function field of X . The group of arithmetic principal

divisors on X is denoted by P̂Div(X), that is,

P̂Div(X) :=
{
(̂φ) :=

(
(φ),− log |φ|2

)
∈ D̂ivC∞(X)

∣∣ φ ∈Rat(X)×
}
.

The homomorphism (̂ ) : Rat(X)× → D̂ivC∞(X) given by φ �→ (̂φ) has the natural

extension

(̂ )K : Rat(X)×K → D̂ivC∞(X)K,
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that is,

̂(φ⊗a1
1 · · ·φ⊗al

l ) = a1(̂φ1) + · · ·+ al(̂φl)

for φ1, . . . , φl ∈ Rat(X)× and a1, . . . , al ∈ K. For simplicity, (̂ )K is occasionally

denoted by (̂ ). We define P̂Div(X)K to be

P̂Div(X)K :=
{
(̂ϕ)K

∣∣ ϕ ∈Rat(X)×K
}
.

Note that

P̂Div(X)K = 〈P̂Div(X)〉K ⊆ D̂ivC∞(X)K.

An element of P̂Div(X)K is called an arithmetic K-principal divisor on X .

Let D = (D,g) and D
′
= (D′, g′) be arithmetic R-Cartier divisors of C0-type

on X . We define D =D
′
and D ≤D

′
to be

D =D
′ ⇐⇒D =D′ and g = g′ (a.e.)

and

D ≤D
′ ⇐⇒D ≤D′ and g ≤ g′ (a.e.).

Let C be a reduced and irreducible 1-dimensional closed subscheme of X .

The arithmetic degree d̂eg(D|C) of D along C is characterized by the following

properties (for details, see [21, Section 5.3]):

(i) d̂eg(D|C) is linear with respect to D;

(ii) if φ ∈Rat(X)×R , then d̂eg((̂φ)R|C) = 0;

(iii) if C �⊆ Supp(D) and C is vertical, then d̂eg(D|C) = log(p)deg(D|C),
where C is contained in the fiber over a prime p;

(iv) if C �⊆ Supp(D) and C is horizontal, then d̂eg(D|C) = d̂eg(D|C̃ , g|C̃),
where C̃ is the normalization of C and d̂eg on the right-hand side is the arithmetic

degree in the sense of Section 0.1. (Note that C̃ = Spec(OK) for some number

field K.)

The current ddc([g]) + δD on X(C) is denoted by c1(D). Note that c1(D) is

locally equal to ddc([ux]) by the Poincaré–Lelong formula. If D is of C∞-type,

then c1(D) is represented by a C∞-form. By abuse of notation, we also denote

the C∞-form by c1(D).

0.3. Arithmetic volume function
Let D = (D,g) be an arithmetic R-Cartier divisor of C0-type on X . We define

H0(X,D) and Ĥ0(X,D) to be

H0(X,D) :=
{
φ ∈Rat(X)×

∣∣D+ (φ)≥ 0
}
∪ {0}

and

Ĥ0(X,D) :=
{
φ ∈Rat(X)×

∣∣D+ (̂φ)≥ (0,0)
}
∪ {0},
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respectively. Note that H0(X,D) is a finitely generated Z-module and Ĥ0(X,D)

is a finite set. It is easy to see that |φ| exp(−g/2) is represented by a continuous

function ηφ,g for φ ∈H0(X,D) (cf. [21, Section 2.5] or Lemma 3.1.1), so that we

can define ‖φ‖g to be

‖φ‖g := max
{
ηφ,g(x)

∣∣ x ∈X(C)
}
.

Then

Ĥ0(X,D) =
{
φ ∈H0(X,D)

∣∣ ‖φ‖g ≤ 1
}
;

that is, Ĥ0(X,D) is the set of small sections.

The arithmetic volume v̂ol(D) of D is defined to be

v̂ol(D) := limsup
n→∞

log#Ĥ0(X,nD)

nd/d!
.

As fundamental properties of v̂ol, the following are known (for details, see [21]):

(1) v̂ol(D)<∞ (see [17], [18]);

(2) v̂ol(D) = limn→∞
log(#Ĥ0(X,nD))

(nd/d!)
(see [5], [18]);

(3) v̂ol(aD) = adv̂ol(D) for a ∈R≥0 (see [17], [18]);

(4) the function D̂ivC0(X)R → R given by D �→ v̂ol(D) is continuous in the

following sense: let D1, . . . ,Dr,A1, . . . ,As be arithmetic R-divisors of C0-type on

X ; for a compact subset B in Rr and a positive number ε, there are positive

numbers δ and δ′ such that∣∣∣v̂ol( r∑
i=1

aiDi +

s∑
j=1

δjAj + (0, φ)
)
− v̂ol

( r∑
i=1

aiDi

)∣∣∣≤ ε

for all a1, . . . , ar, δ1, . . . , δs ∈ R and φ ∈ C0(X) with (a1, . . . , ar) ∈B, |δ1|+ · · ·+
|δs| ≤ δ and ‖φ‖sup ≤ δ′ (see [17], [18]);

(5) if f : Y →X is a birational morphism of generically smooth, normal, and

projective arithmetic varieties, then v̂ol(f∗(D)) = v̂ol(D) (see [17]).

0.4. Positivity of arithmetic Cartier divisors
Let D = (D,g) be an arithmetic R-Cartier divisor of C0-type on X . Here we

would like to introduce several kinds of positivity of D, that is, the effectivity,

bigness, pseudoeffectivity, nefness, and relative nefness of D:

• D is effective
def⇐⇒ D ≥ (0,0).

• D is big
def⇐⇒ v̂ol(D)> 0.

• D is pseudoeffective
def⇐⇒ D +A is big for any big arithmetic R-divisor A of

C0-type.

• D is nef
def⇐⇒:

(1) d̂eg(D|C) ≥ 0 for all reduced and irreducible 1-dimensional closed sub-

schemes C of X ;

(2) c1(D) is a positive current.
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• D is relatively nef
def⇐⇒:

(1) d̂eg(D|C)≥ 0 for all reduced and irreducible 1-dimensional closed . . . . . . .vertical

subschemes C of X , where “vertical” means “not flat over Z”;

(2) c1(D) is a positive current.

The set of all nef arithmetic R-Cartier divisors of C0-type on X is denoted by

N̂efC0(X)R. Note that N̂efC0(X)R forms a cone in D̂ivC0(X)R.

0.5. Arithmetic intersection number in terms of the arithmetic volume
An arithmetic R-Cartier divisor D of C0-type on X is said to be integrable

if there exist nef arithmetic R-Cartier divisors D1 and D2 of C0-type such that

D =D1−D2. The subspace consisting of integrable arithmetic R-Cartier divisors

of C0-type onX is denoted by D̂iv
Nef

C0 (X)R. Note that D̂iv
Nef

C0 (X)R is the subspace

generated by N̂efC0(X)R in D̂ivC0(X)R.

By [21, Claim 6.4.2.2], if P is a nef arithmetic R-Cartier divisor of C∞-type,

then the arithmetic Hilbert–Samuel formula

(0.5.1) v̂ol(P ) = d̂eg(P
d
)

holds. Note that

d!X1 · · ·Xd =
∑

∅
=I⊆{1,...,d}
(−1)d−#(I)

(∑
i∈I

Xi

)d
in the polynomial ring Z[X1, . . . ,Xd]. Thus, for nef arithmetic R-Cartier divisors

P 1, . . . , P d of C∞-type, we have

d̂eg(P 1 · · ·P d) =
1

d!

∑
∅
=I⊆{1,...,d}

(−1)d−#(I)v̂ol
(∑

i∈I

P i

)
,

so that, for D1, . . . ,Dd ∈ N̂efC0(X)R, it is very natural to define d̂eg(D1 · · ·Dd)

to be

d̂eg(D1 · · ·Dd) :=
1

d!

∑
∅
=I⊆{1,...,d}

(−1)d−#(I)v̂ol
(∑

i∈I

Di

)
.

Using the regularity of quasi-plurisubharmonic functions and the continuity of

v̂ol, we can see that the above map d̂eg(· · · ) : N̂efC0(X)R× · · ·× N̂efC0(X)R →R

is R≥0-multilinear; that is,

d̂eg
(
D1 · · · (αDi + α′D

′
i) · · ·Dd

)
= α d̂eg(D1 · · ·Di · · ·Dd) + α′ d̂eg(D1 · · ·D

′
i · · ·Dd)

for α,α′ ∈R≥0 (for details, see [21, Claim 6.4.2.4]). Therefore, the map

d̂eg(· · · ) : N̂efC0(X)R × · · · × N̂efC0(X)R →R

extends uniquely to an R-multilinear map

d̂eg(· · · ) : D̂iv
Nef

C0 (X)R × · · · × D̂iv
Nef

C0 (X)R →R.
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In Section 2.1, we will see that the above arithmetic intersection number

d̂eg(D1 · · ·Dd) for integrable arithmetic R-Cartier divisors D1, . . . ,Dd of C0-

type on X coincides with one due to Zhang [24, Lemma 6.5], [25, Section 1] and

Maillot [13, Section 5].

0.6. Zariski decomposition
Let D = (D,g) be an arithmetic R-Cartier divisor of C0-type on X . Let us

consider the following set:

Υ(D) :=
{
M ∈ N̂efC0(X)R

∣∣M ≤D
}
.

If Υ(D) �= ∅ and Υ(D) has the greatest element P (i.e., P ∈ Υ(D) and M ≤ P

for all M ∈ Υ(D)), then D = P +N is called the Zariski decomposition of D,

where N :=D− P . This decomposition has the following properties.

(1) P is nef and N is effective.

(2) The natural map Ĥ0(X,nP )→ Ĥ0(X,nD) is bijective for every n≥ 0.

In particular, v̂ol(D) = v̂ol(P ) = d̂eg(P
d
).

In [21, Theorem 9.2.1], we prove that if X is a regular projective arithmetic

surface and Υ(D) �= ∅, then Υ(D) has the greatest element. Moreover, if we set⎧⎪⎪⎨⎪⎪⎩
X := Pn

Z =Proj(Z[T0, . . . , Tn]) (n≥ 2),

D := {T0 = 0},
g := log(1 + |T1/T0|2 + · · ·+ |Tn/T0|2)− ε (0< ε < log(n+ 1)),

then, in [20, Theorem 2.3, Theorem 5.6], we prove that D is big and f∗(D) does

not admit the Zariski decomposition for any birational morphism f : Y →X of

generically smooth, normal, and projective arithmetic varieties. More generally,

a criterion for the existence of the Zariski decomposition on arithmetic toric

varieties is known (for details, see [3]).

It is easy to see that if Υ(D) �= ∅, then D is pseudoeffective. The converse is

a very interesting question, and it is closely related to the fundamental question

in the next subsection.

0.7. Fundamental question
Let D = (D,g) be an arithmetic R-Cartier divisor of C0-type on X . In this paper,

we would like to propose the following fundamental question.

FUNDAMENTAL QUESTION

Are the following conditions (1) and (2) equivalent?

(1) D is pseudoeffective.

(2) D+ (̂ϕ)R is effective for some ϕ ∈Rat(X)×R .

Obviously (2) implies (1). Moreover, if Ĥ0(X,aD) �= {0} for some a ∈R>0, then

(2) holds. Indeed, as we can choose φ ∈ Rat(X)× with aD + (̂φ) ≥ 0, we have
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φ1/a ∈Rat(X)×R and D+ (̂φ1/a)R ≥ 0. In the geometric case, (1) does not neces-

sarily imply (2). For example, let ϑ be a divisor on a compact Riemann surface

M such that deg(ϑ) = 0 and the class of ϑ in Pic(M) is not a torsion element.

Then it is easy to see that ϑ is pseudoeffective and there is no element ψ of

Rat(M)× ⊗Z R such that ϑ+ (ψ)R is effective (cf. Remark 3.1.4). In this sense,

the above question is a purely arithmetic problem.

Note that Theorem 0.1.2 yields the answer in the case where d= 1 because

the pseudoeffectivity of D implies d̂eg(D)≥ 0. Moreover, as we remarked in Sec-

tion 0.6, if there is ϕ ∈Rat(X)×R such that D+(̂ϕ)R ≥ (0,0), then −(̂ϕ)R ∈Υ(D).

0.8. Partial answer to the fundamental question
One of the main purposes of this paper is to give the following partial answer to

the above fundamental question.

THEOREM 0.8.1

If D is pseudoeffective and D is numerically trivial on XQ, then there exists

ϕ ∈Rat(X)×R such that D+ (̂ϕ)R is effective.

Here we would like to give a sketch of the proof of the above theorem. For

simplicity, we restrict ourself to the case where X is regular and d= 2, that is,

X is a regular projective arithmetic surface. In this case, we can give a simpler

proof than the original one by using the recent result on the existence of relative

Zariski decomposition. Let D =Q+N be the relative Zariski decomposition of D

(for details, see [22, Section 1]). In particular, we have the following properties.

(i) N is effective and N is vertical.

(ii) Q is relatively nef.

(iii) If D is pseudoeffective, then Q is also pseudoeffective (cf. [22, Proposi-

tion A.1]). This part corresponds to Lemma 2.3.5 in the original proof discussed

in Sections 2 and 3.

Therefore, we may assume that D is relatively nef. By the Hodge index theorem

(cf. Theorem 2.2.3), we have d̂eg(D
2
)≤ 0. Here we assume that d̂eg(D

2
)< 0. Let

A be an ample arithmetic R-divisor of C∞-type on X . Then d̂eg(D+ εA ·D)< 0

for a sufficiently small positive number ε. As D + εA is ample, we can find a

positive number c such that D+ εA+ (0, c) is nef. In particular,

d̂eg
(
D+ εA+ (0, c) ·D

)
≥ 0

because D is pseudoeffective. On the other hand, as deg(DQ) = 0,

d̂eg
(
D+ εA+ (0, c) ·D

)
= d̂eg(D+ εA ·D) +

c

2
deg(DQ)

= d̂eg(D+ εA ·D)< 0.

This is a contradiction, so that d̂eg(D
2
) = 0, and hence, by the equality condition

of the Hodge index theorem (cf. Remark 2.2.4), there are φ ∈ Rat(X)×R and
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a locally constant function λ on X(C) such that D = (̂φ)R + (0, λ). Let X →
Spec(OK) be the Stein factorization of X → Spec(Z), where K is a number field

and OK is the ring of integers in K. Let Xσ be the connected component of

X(C) corresponding to σ ∈K(C) (cf. Section 0.10(3)). We set λσ = λ|Xσ . As D

is pseudoeffective,

0≤ d̂eg(A ·D) =
deg(AQ)

2[K :Q]

∑
σ

λσ,

so that
∑

σ λσ ≥ 0. If we set

λ′
σ = λσ − 1

[K :Q]

∑
σ

λσ

for each σ and we consider a locally constant function λ′ :X(C)→ R given by

λ′|Xσ = λ′
σ , then λ′ ≤ λ onX(C) and

∑
σ λ

′
σ = 0. Thus, by the classical Dirichlet’s

unit theorem, there exists u ∈ (O×
K)R such that (0, λ′) = (̂u)R. Thus

D = (̂φ)R + (0, λ)≥ (̂φ)R + (0, λ′) = (̂φ)R + (̂u)R = (̂φ · u)R,

as required.

0.9. Further discussions
Theorem 0.8.1 treats only the case where D is scanty. For example, if D is ample,

the problem seems to be difficult to get a solution. For this purpose, we would

like introduce a notion of multiplicative generators of approximately smallest

sections.

Here we define Γ×
R (X,D) to be

Γ×
R (X,D) :=

{
ϕ ∈Rat(X)×R

∣∣D+ (ϕ)R ≥ 0
}
.

Let  : Rat(X)× → L1
loc(X(C)) be a homomorphism given by ϕ �→ log |ϕ|. It

extends to a linear map R : Rat(X)×R → L1
loc(X(C)). For ϕ ∈Rat(X)×R , we denote

exp(R(ϕ)) by |ϕ|. If ϕ ∈ Γ×
R (X,D), then |ϕ| exp(−g/2) is represented by a con-

tinuous function ηϕ,g (cf. Lemma 3.1.1), so that we define ‖ϕ‖g,sup to be

‖ϕ‖g,sup := max
{
ηϕ,g(x)

∣∣ x ∈X(C)
}
.

Let ϕ1, . . . , ϕl be elements of Rat(X)×R . We say ϕ1, . . . , ϕl are multiplicative

generators of approximately smallest sections for D if, for a given ε > 0, there is

n0 ∈ Z>0 such that, for any integer n with n≥ n0 and H0(X,nD) �= {0}, we can

find a1, . . . , al ∈R satisfying ϕ⊗a1
1 · · ·ϕ⊗al

l ∈ Γ×
R (X,nD) and

‖ϕ⊗a1
1 · · ·ϕ⊗al

l ‖ng,sup ≤ eεnmin
{
‖φ‖ng,sup

∣∣ φ ∈H0(X,nD) \ {0}
}
.

The advantage of the existence of multiplicative generators of approximately

smallest sections is the following theorem.

THEOREM 0.9.1 (CF. THEOREM 3.6.3)

If we admit the existence of multiplicative generators of approximately smallest
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sections, then we can find ϕ ∈ Γ×
R (X,D) such that

‖ϕ‖g,sup = inf
{
‖ψ‖g,sup

∣∣ ψ ∈ Γ×
R (X,D)

}
.

For the proof, we need the following compactness theorem.

THEOREM 0.9.2

Let H be an ample arithmetic R-Cartier divisor on X. Let Λ be a finite set, and

let {Dλ}λ∈Λ be a family of arithmetic R-Cartier divisors of C∞-type with the

following properties:

(i) d̂eg(H
d−1 ·Dλ) = 0 for all λ ∈ Λ.

(ii) For each λ ∈ Λ, there is an F∞-invariant locally constant function ρλ
on X(C) such that

c1(Dλ)∧ c1(H)∧d−2 = ρλc1(H)∧d−1.

(iii) {Dλ}λ∈Λ is linearly independent in D̂ivC∞(X)R.

Then the set {
aaa ∈RΛ

∣∣∣D+
∑
λ∈Λ

aaaλDλ ≥ 0
}

is convex and compact for D ∈ D̂ivC0(X)R.

As a consequence, we have the following partial answer to the fundamental ques-

tion.

THEOREM 0.9.3

If D is pseudoeffective, D is big on the generic fiber of X → Spec(Z), and D

possesses multiplicative generators of approximately smallest sections, then there

exists ϕ ∈Rat(X)×R such that D+ (̂ϕ)R ≥ 0.

Here we would like to pose the following question.

QUESTION 0.9.4

If D is big on the generic fiber of X → Spec(Z), then does D have multiplicative

generators of approximately smallest sections?

For example, if d = 0, then D has multiplicative generators of approximately

smallest sections (cf. Corollary 3.4.6). Moreover, if⎧⎪⎪⎨⎪⎪⎩
X := Pn

Z =Proj(Z[T0, . . . , Tn]) (n≥ 1),

D := {T0 = 0},
g := log(a0 + a1|T1/T0|2 + · · ·+ an|Tn/T0|2) (a0, a1, . . . , an ∈R>0),
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then D has also multiplicative generators of approximately smallest sections (cf.

Example 3.6.8). More generally, a toric arithmetic R-Cartier divisor on an arith-

metic toric variety has multiplicative generators of approximately smallest sec-

tions (for details, see [3]).

0.10. Conventions and terminology
We use basically the same notation as in [21]. Here we fix several conventions

and the terminology of this paper. Let K be either Q or R. Moreover, in the

following (3) and (4), X is a d-dimensional, generically smooth, normal, and

projective arithmetic variety.

1. Let M be a k-equidimensional complex manifold. The space of real-

valued continuous functions (resp., C∞-functions) on M is denoted by C0(M)

(resp., C∞(M)). Moreover, the space of currents of bidegree (p, q) is denoted by

Dp,q(M). Let Np,q(M) be the space of currents T of bidegree (p, q) such that

T (η) = 0 for all d-closed C∞ (k− p, k− q)-forms with compact support.

2. Let S be a normal and integral Noetherian scheme. We denote the group

of Cartier divisors (resp., Weil divisors) on S by Div(S) (resp., WDiv(S)). We

set

Div(S)K := Div(S)⊗Z K and WDiv(S)K :=WDiv(S)⊗Z K.

An element of Div(S)K (resp., WDiv(S)K) is called a K-Cartier divisor (resp.,

K-Weil divisor) on S. We denote the group of principal divisors on S by PDiv(S).

Let Rat(S)×K := Rat(S)× ⊗Z K, that is,

Rat(S)×K =
{
φ⊗a1
1 · · ·φ⊗al

l

∣∣ φ1, . . . , φl ∈Rat(S)× and a1, . . . , al ∈K
}
.

The homomorphism Rat(S)× →Div(S) given by φ �→ (φ) naturally extends to a

homomorphism

( )K : Rat(S)×K →Div(S)K,

that is, (φ⊗a1
1 · · ·φ⊗al

l ) = a1(φ1)+ · · ·+al(φl). By abuse of notation, we sometimes

denote ( )K by ( ). We define PDiv(S)K to be

PDiv(S)K :=
{
(ϕ)K

∣∣ ϕ ∈Rat(S)×K
}
.

Note that

PDiv(S)K := 〈PDiv(S)〉K ⊆Div(S)K.

An element of PDiv(S)K is called a K-principal divisor on S.

3. LetX
π−→ Spec(OK)→ Spec(Z) be the Stein factorization ofX → Spec(Z),

where K is a number field and OK is the ring of integers in K. We denote

by K(C) the set of all embeddings of K into C. For σ ∈ K(C), we set Xσ :=

X ×σ
Spec(OK) Spec(C), where ×σ

Spec(OK) means the fiber product over Spec(OK)

with respect to σ. Then {Xσ}σ∈K(C) gives rise to the set of all connected com-

ponents of X(C). For a locally constant function λ on X(C) and σ ∈ K(C),

the value of λ on the connected component Xσ is denoted by λσ . Clearly the

set of all locally constant real-valued functions on X(C) can be identified with



208 Atsushi Moriwaki

RK(C). The complex conjugation map X(C) → X(C) is denoted by F∞. Note

that F∞(Xσ) =Xσ̄ .

4. An arithmetic K-Weil divisor of C0-type (resp., C∞-type) on X is a pair

D = (D,g) consisting of a K-Weil divisor D on X and an F∞-invariant D-Green

function g of C0-type (resp., C∞-type). We denote the group of arithmetic

K-Weil divisors of C0-type (resp., of C∞-type) on X by ŴDivC0(X)K (resp.,

ŴDivC∞(X)K). It is easy to see that there is a unique multilinear form

α :
(
D̂ivC∞(X)K

)d−1 ×WDiv(X)K →R

such that α(D1, . . . ,Dd−1,Γ) = d̂eg(D1|Γ̃ · · ·Dd−1|Γ̃) for D1, . . . ,Dd−1 ∈
D̂ivC∞(X) and a prime divisor Γ with Γ �⊆ Supp(D1)∪ · · · ∪ Supp(Dd−1), where

Γ̃ is the normalization of Γ. We denote α(D1, . . . ,Dd−1,D) by d̂eg(D1 · · ·Dd−1 ·
(D,0)). Further, for D1, . . . ,Dd−1 ∈ D̂ivC∞(X)K and D = (D,g) ∈ ŴDivC0(X)K,

we define d̂eg(D1 · · ·Dd−1 ·D) to be

d̂eg(D1 · · ·Dd−1 ·D) := d̂eg
(
D1 · · ·Dd−1 · (D,0)

)
+

1

2

∫
X(C)

gc1(D1)∧ · · · ∧ c1(Dd−1).

5. For a set Λ, let RΛ be the set of all maps from Λ to R. The vector space

generated by Λ over R is denoted by R(Λ), that is,

R(Λ) =
{
aaa ∈RΛ

∣∣ aaa(λ) = 0 except finitely many λ ∈ Λ
}
.

For aaa ∈RΛ and λ ∈ Λ, we often denote aaa(λ) by aaaλ.

6. Let V be a vector space over R, and let 〈 , 〉 be an inner product on V .

For a finite subset {x1, . . . , xr} of V , we define vol({x1, . . . , xr}) to be the square

root of the Gramian of x1, . . . , xr with respect to 〈 , 〉, that is,

vol({x1, . . . , xr}) =

√√√√√√√det

⎛⎜⎜⎝
〈x1, x1〉 〈x1, x2〉 · · · 〈x1, xr〉
〈x2, x1〉 〈x2, x2〉 · · · 〈x2, xr〉
· · · · · · · · · · · ·

〈xr, x1〉 〈xr, x2〉 · · · 〈xr, xr〉

⎞⎟⎟⎠.

For convenience, we set vol(∅) = 1. Note that if V =Rn and 〈 , 〉 is the standard

inner product, then vol({x1, . . . , xr}) is the volume of the parallelotope given by

{a1x1 + · · ·+ arxr | 0≤ a1 ≤ 1, . . . ,0≤ ar ≤ 1}.

1. Preliminaries

In this section, we prepare several materials for later sections. In Section 1.1, we

consider elementary results on linear algebra. In Section 1.2, we introduce the

notion of proper currents and investigate several properties, which will be used to

see that the arithmetic intersection number treated in [21, Section 6.4] coincides

with the classical one due to Zhang and Maillot (cf. [24], [25], [13]). They will

be also used to establish the equality condition of the arithmetic Hodge index
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theorem in a general context. Section 1.3 is devoted to the proof of a variant of

Gromov’s inequality for R-Cartier divisors.

1.1. Lemmas of linear algebra
Here we would like to provide the following four lemmas of linear algebra.

LEMMA 1.1.1

Let M be a Z-module. Then we have the following.

(1) For x ∈M ⊗Z R, there are x1, . . . , xl ∈M and a1, . . . , al ∈ R such that

a1, . . . , al are linearly independent over Q and x= x1 ⊗ a1 + · · ·+ xl ⊗ al.

(2) Let x1, . . . , xl ∈ M and a1, . . . , al ∈ R such that a1, . . . , al are linearly

independent over Q. If x1 ⊗ a1 + · · ·+ xl ⊗ al = 0 in M ⊗Z R, then x1, . . . , xl are

torsion elements in M .

(3) If N is a submodule of M , then (M ⊗Z Q)∩ (N ⊗Z R) =N ⊗Z Q.

Proof

(1) As x ∈M⊗ZR, there are a
′
1, . . . , a

′
r ∈R and x′

1, . . . , x
′
r ∈M such that x= x′

1⊗
a′1+ · · ·+x′

r ⊗a′r. Let a1, . . . , al be a basis of 〈a′1, . . . , a′r〉Q over Q. Then there are

cij ∈Q such that a′i =
∑l

j=1 cijaj . Replacing aj by aj/n (n ∈ Z>0) if necessary,

we may assume that cij ∈ Z. If we set xj =
∑r

i=1 cijx
′
i, then x1, . . . , xl ∈ M ,

x= x1 ⊗ a1 + · · ·+ xs ⊗ as, and a1, . . . , as are linearly independent over Q.

(2) We set M ′ = Zx1 + · · ·+ Zxl. Then, since R is flat over Z, the natural

homomorphism M ′⊗R→M ⊗R is injective, and hence we may assume that M

is finitely generated. Let Mtor be the set of all torsion elements in M . Considering

M/Mtor, we may further assume that M is free. Note that the natural homomor-

phism Za1 ⊕ · · · ⊕Zal →R is injective. Thus M ⊗Z (Za1 ⊕ · · · ⊕Zal)→M ⊗Z R

is also injective because M is flat over Z. Namely,

(M ⊗Z Za1)⊕ · · · ⊕ (M ⊗Z Zal)→M ⊗Z R

is injective. Therefore, x1⊗ a1 = · · ·= xl ⊗ al = 0. Thus x1 = · · ·= xl = 0 because

the homomorphism M →M ⊗R given by x �→ x⊗ ai is also injective for each i.

(3) It actually follows from [19, Lemma 1.1.3]. For the reader’s convenience,

we continue its proof in an elementary way. Let us consider the following com-

mutative diagram:

0 −−−−→ N ⊗Z Q
ιQ−−−−→ M ⊗Z Q


Q−−−−→ (M/N)⊗Z Q −−−−→ 0⏐⏐ τN

⏐⏐ τM

⏐⏐ τM/N

0 −−−−→ N ⊗Z R
ιR−−−−→ M ⊗Z R


R−−−−→ (M/N)⊗Z R −−−−→ 0

Note that horizontal sequences are exact and vertical homomorphisms are injec-

tive. Therefore, we have

(M ⊗Z Q)∩ (N ⊗Z R) = Ker(�R ◦ τM ) = Ker(τM/N ◦ �Q) = Ker(�Q) =N ⊗Z Q.

�
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LEMMA 1.1.2

Let V be a finite-dimensional vector space over R, and let 〈 , 〉 be an inner product

on V . Let Σ be a nonempty finite subset of V , and let x ∈Σ. Let h be the distance

between x and 〈Σ\{x}〉R (note that 〈∅〉R = {0}). Then we have the following (for

the definition of vol(Σ), see Section 0.10(6)):

(1) vol(Σ) = vol(Σ \ {x})h;
(2) vol(Σ)≤ vol(Σ \ {x})

√
〈x,x〉; in the case where Σ \ {x} consists of lin-

early independent vectors, the equality holds if and only if x is orthogonal to

〈Σ \ {x}〉R;
(3) we assume that Σ\{x} consists of linearly independent vectors and x �= 0;

if θ is the angle between x and 〈Σ \ {x}〉R, then
vol(Σ)√

〈x,x〉vol(Σ \ {x})
= sin(θ).

Proof

(1) If #(Σ) = 1, then the assertion is obvious, so that we may set Σ = {x1, . . . , xn},
where x1 = x and n = #(Σ) ≥ 2. If x2, . . . , xn are linearly dependent, then

vol(Σ) = vol(Σ \ {x1}) = 0. Thus the assertion is also obvious for this case.

Moreover, if x1 ∈ 〈x2, . . . , xr〉R, then h= vol(Σ) = 0. Thus we may assume that

x1, x2, . . . , xn are linearly independent. Let {e1, e2, . . . , er} be an orthonormal

basis of 〈x1, x2, . . . , xr〉R such that {e2, . . . , er} yields an orthonormal basis of

〈x2, . . . , xr〉R. We set xi =
∑r

j=1 aijej . Then h= |a11| and ai1 = 0 for i= 2, . . . , r.

Further, if we set A= (aij)1≤i,j≤r and A′ = (aij)2≤i,j≤r, then vol(Σ) = |det(A)|
and vol(Σ \ {x1}) = |det(A′)|. Thus the assertion follows.

Proofs of (2) and (3) follow from (1). �

LEMMA 1.1.3

Let V be a vector space over R, and let 〈 , 〉 : V ×V →R be a negative semidefinite

symmetric bilinear form, that is, 〈v, v〉 ≤ 0, for all v ∈ V . For x ∈ V , the following

are equivalent:

(1) 〈x,x〉= 0,

(2) 〈x, y〉= 0 for all y ∈ V .

Proof

Clearly (2) implies (1). We assume 〈x,x〉= 0 and 〈x, y〉 �= 0 for some y ∈ V . First

of all,

0≥ 〈y+ tx, y+ tx〉= 〈y, y〉+ 2t〈x, y〉

for all t ∈R. Thus, if we set t=−〈y, y〉/〈x, y〉, then the above implies 〈y, y〉 ≥ 0,

and hence 〈y, y〉= 0. Therefore, if we set t= 〈x, y〉/2, then we have 〈x, y〉2 ≤ 0,

which is a contradiction because 〈x, y〉 �= 0. �
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LEMMA 1.1.4 (ZARISKI’S LEMMA FOR VECTOR SPACES)

Let K be either Q or R. Let V be a finite-dimensional vector space over K, and

let Q : V ×V →R be a symmetric bilinear form. We assume that there are e ∈ V

and generators e1, . . . , en of V with the following properties:

(i) e= a1e1 + · · ·+ anen for some a1, . . . , an ∈K>0;

(ii) Q(e, ei)≤ 0 for all i;

(iii) Q(ei, ej)≥ 0 for all i �= j;

(iv) if we set S = {(i, j) | i �= j and Q(ei, ej)> 0}, then, for any i �= j, there

is a sequence i1, . . . , il such that i1 = i, il = j, and (it, it+1) ∈ S for all 1≤ t < l.

Then we have the following.

(1) If Q(e, ei)< 0 for some i, then Q is negative definite, that is, Q(x,x)≤ 0

for all x ∈ V , and Q(x,x) = 0 if and only if x= 0.

(2) If Q(e, ei) = 0 for all i, then Q is negative semidefinite and its kernel is

Ke, that is, Q(x,x)≤ 0 for all x ∈ V , and Q(x,x) = 0 if and only if x ∈Ke.

Proof

Replacing ei by aiei, we may assume that a1 = · · ·= an = 1. If we set x= x1e1 +

· · ·+ xnen for some x1, . . . , xn ∈K, then we can show

Q(x,x) =
∑
i

x2
iQ(ei, e)−

∑
i<j

(xi − xj)
2Q(ei, ej).

Thus our assertions follow from easy observations. �

1.2. Proper currents and admissible continuous functions
Throughout this subsection, we fix a k-equidimensional complex manifold M .

A current of bidegree (l, l) on M is said to be proper if, for any x ∈M , there are

an open neighborhood Ux of x and d-closed positive currents T1, T2 of bidegree

(l, l) on Ux such that T = T1−T2 over Ux. We denote the space of proper currents

of bidegree (l, l) by Dl,l
pr(M). As a proper current is of order zero, for f ∈C0(M)

and T ∈Dl,l
pr(M), we define the wedge product ddc([f ])∧ T of ddc([f ]) and T to

be

ddc([f ])∧ T := ddc(fT ),

that is, (ddc([f ])∧T )(η) = T (fddc(η)) for a C∞-form η of bidegree (k− l−1, k−
l− 1). It is easy to see that the map

C0(M)×Dl,l
pr(M)→Dl+1,l+1(M)

given by (f,T ) �→ ddc([f ])∧ T is multilinear.

A continuous function f :M → R is said to be admissible if, for any point

x ∈M , there are an open neighborhood Ux of x and continuous plurisubharmonic

functions φ1, φ2 on Ux such that f = φ1 − φ2 over Ux. Note that ddc([f ]) is a

proper current of bidegree (1,1). The space of admissible continuous functions

on M is denoted by C0
ad(M). It is easy to see that C∞(M) ⊆ C0

ad(M) (cf. the

proof of (3) in Lemma 1.2.1). Moreover, let B1,1
ad (M) be the space of currents T
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of bidegree (1,1) such that T = ddc([ϕ]) locally for some admissible continuous

function ϕ on each local open neighborhood. As a d-closed positive C∞-form

of bidegree (1,1) can be locally written as ddc(C∞-function) (cf. [7, Chapter 3,

(1.18)]), any d-closed real C∞-form of bidegree (1,1) on M belongs to B1,1
ad (M).

An upper semicontinuous function f : M → R ∪ {−∞} is called a quasi-

plurisubharmonic function on M if f is locally a sum of a plurisubharmonic

function and a C∞-function. We denote the space of all continuous quasi-

plurisubharmonic functions on M by (C0 ∩ QPSH)(M). Clearly (C0 ∩
QPSH)(M)⊆C0

ad(M). The subspace generated by (C0 ∩QPSH)(M) in C0
ad(M)

is denoted by 〈(C0∩QPSH)(M)〉R. For a real continuous form α of bidegree (1,1),

we define C0
ad(M ;α) to be

C0
ad(M ;α) :=

{
f ∈C0

ad(M)
∣∣ ddc([f ]) + α≥ 0

}
.

Note that C0
ad(M ;α)⊆ (C0 ∩QPSH)(M) (cf. the proof of (3) in Lemma 1.2.1).

Let us begin with the following lemma.

LEMMA 1.2.1

(1) If A ∈ B1,1
ad (X) and T ∈Dl,l

pr(X), then A ∧ T ∈Dl+1,l+1
pr (X). Moreover,

if A and T are positive, then A∧ T is also positive.

(2) For A1, . . . ,Ar ∈B1,1
ad (M) and T ∈Dl,l

pr(M), the wedge product

A1 ∧ · · · ∧Ar ∧ T

of currents A1, . . . ,Ar and T is defined inductively as an element of Dr+l,r+l
pr (M)

by using (1); that is,

A1 ∧ · · · ∧Ar ∧ T =A1 ∧ (A2 ∧ · · · ∧Ar ∧ T ).

Then the map B1,1
ad (M)r →Dr+l,r+l

pr (M) given by

(A1, . . . ,Ar) �→A1 ∧ · · · ∧Ar ∧ T

is multilinear and symmetric.

(3) Let α be a real continuous form of bidegree (1,1). Let {f1,n}∞n=1, . . . ,

{fr,n}∞n=1 be sequences in C0
ad(M ;α) such that {fi,n}∞n=1 converges locally uni-

formly to fi ∈C0
ad(M ;α) for each i. Then, for T ∈Dl,l

pr(M), a sequence{
f1,ndd

c([f2,n])∧ · · · ∧ ddc([fr,n])∧ T
}∞
n=1

converges weakly to

f1dd
c([f2])∧ · · · ∧ ddc([fr])∧ T.

Proof

(1) This is a local question, so that we may assume that there are continuous

plurisubharmonic functions φ1, φ2 and d-closed positive currents T1, T2 such that

A= ddc([φ1])− ddc([φ2]) and T = T1 − T2. Therefore,

A∧ T =
(
ddc([φ1])∧ T1 + ddc([φ2])∧ T2

)
−
(
ddc([φ1])∧ T2 + ddc([φ2])∧ T1

)
,

as required. The second assertion is obvious.
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(2) The multilinearity of B1,1
ad (M)r →Dr+l,r+l

pr (M) is obvious. For symmetry,

it is sufficient to see the following claim.

CLAIM 1.2.1.1

Let f and g be continuous plurisubharmonic functions on M , and let T be a

proper current on M . Then ddc([f ])∧ ddc([g])∧ T = ddc([g])∧ ddc([f ])∧ T .

Proof

If f is C∞, then, for a C∞-form η,(
ddc(f)∧ ddc([g])∧ T

)
(η) =

(
ddc([g])∧ T

)(
ddc(f)∧ η

)
= T

(
gddc(ddc(f)∧ η)

)
= T

(
gddc(f)∧ ddc(η)

)
=
(
ddc(f)∧ T

)(
gddc(η)

)
=
(
ddc([g])∧ ddc(f)∧ T

)
(η).

Otherwise, as the question is a local problem, we can find a sequence of C∞-

plurisubharmonic functions {fn} such that {fn} converges locally uniformly to f .

Then {ddc(fn) ∧ ddc([g]) ∧ T} and {ddc([g]) ∧ ddc(fn) ∧ T} converge weakly to

ddc([f ])∧ddc([g])∧T and ddc([g])∧ddc([f ])∧T , respectively (cf. [7, Corollary 3.6

in Chapter 3]), and hence the assertion follows. �

(3) This is also a local question. For x ∈M , let us consider a local coordinate

(z1, . . . , zk) over an open neighborhood Ux of x. As ddc(log(1+ |z1|2+ · · ·+ |zk|2))
is a positive form, shrinking Ux if necessary, we can find λ > 0 such that

λddc
(
log(1 + |z1|2 + · · ·+ |zk|2)

)
≥ α

over Ux. Thus, if we set ψ = λ log(1 + |z1|2 + · · · + |zk|2), then fi + ψ, gi + ψ,

fi,n+ψ, and gi,n+ψ are continuous and plurisubharmonic over Ux for all i and n.

Therefore, (3) is a consequence of the convergence theorem for plurisubharmonic

functions (cf. [7, Corollary 3.6 in Chapter 3]). �

Next we consider the following lemma.

LEMMA 1.2.2

We assume that M is compact.

(1) Let α be a positive continuous form of bidegree (1,1). If f ∈ (C0 ∩
QPSH)(M), then there is a positive number t0 such that f ∈ C0

ad(M ; tα) for

all t≥ t0.

(2) For f, g ∈ 〈(C0 ∩QPSH)(M)〉R and T ∈Dl,l
pr(M),

fddc([g])∧ T ≡ gddc([f ])∧ T mod N l+1,l+1(M)

(for the definition of N l+1,l+1(M), see Section 0.10(1)).
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(3) Let T be a d-closed positive current of bidegree (k− 1, k− 1). Then∫
M

fddc([f ])∧ T ≤ 0

for f ∈ 〈(C0 ∩QPSH)(M)〉R.

Proof

(1) For each point x ∈M , there are an open neighborhood Ux of x, a plurisub-

harmonic function px on Ux, and a C∞-function qx on Ux such that f = px + qx
over Ux. If we consider a smaller Ux, then we can write α and ddc(qx) as follows:

α=
√
−1

∑
ij

αij dzi ∧ dz̄j and ddc(qx) =
√
−1

∑
ij

βij dzi ∧ dz̄j ,

where (z1, . . . , zk) is a local coordinate on Ux. As (αij(x)) is a positive defi-

nite Hermitian matrix, we can find a positive number sx such that sx(βij(x)) +

(αij(x)) is positive. Note that sx(βij)+(αij) is continuous on Ux. Thus, shrinking

Ux if necessary, sx(βij) + (αij) is positive on Ux, and hence, for t≥ tx := 1/sx,

ddc(qx) + tα= (t− tx)α+ tx
(
sxdd

c(qx) + α
)
≥ 0

on Ux. Because of the compactness of X , there are finitely many x1, . . . , xr ∈X

with X = Ux1 ∪ · · · ∪Uxr . If we set t0 =max{tx1 , . . . , xxr}, then, for t≥ t0,

ddc([f ]) + tα= ddc([pxi ]) +
(
ddc(qxi) + tα

)
is positive over Uxi , as required.

(2) By our assumption, there are f1, f2, g1, g2 ∈ (C0 ∩QPSH)(M) such that

f = f1 − f2 and g = g1 − g2. Therefore, we may assume that f, g ∈ (C0 ∩
QPSH)(M). If f is C∞, then, for a d-closed C∞-form η of bidegree (k − l −
1, k− l− 1),(

fddc([g])∧ T
)
(η) = T

(
gddc(fη)

)
= T

(
gddc(f)∧ η

)
=
(
gddc(f)∧ T

)
(η).

Otherwise, by (1), we can take a positive C∞-form α of bidegree (1,1) with

f ∈ C0
ad(X;α). Thus, by [1] or [21, Lemma 4.2], we can find a sequence of C∞-

functions {fn} in C0
ad(M ;α) such that {fn} converges uniformly to f . Therefore,

by Lemma 1.2.1(3),

fndd
c([g])∧ T and gddc(fn)∧ T

converges weakly to fddc([g])∧T and gddc([f ])∧T , respectively. Thus (2) follows

from the case where f is C∞.

(3) First we assume f is C∞. Then, as

∂
(√−1

2π
f∂̄(f)

)
=

√
−1

2π
∂(f)∧ ∂̄(f) + fddc(f)

and T is ∂-closed, we have

0 = −(∂T )
(√−1

2π
f∂̄(f)

)
= T

(
∂
(√−1

2π
f∂̄(f)

))
= T

(√−1

2π
∂(f)∧ ∂̄(f)

)
+ T

(
fddc(f)

)
.
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Note that

T
(√−1

2π
∂(f)∧ ∂̄(f)

)
≥ 0.

Thus we have the assertion in the case where f is C∞.

In general, by using (1), we can find continuous functions g,h on M and a

positive C∞-form α such that g,h ∈ C0
ad(M ;α) and f = g − h. Thus, by [1] or

[21, Lemma 4.2], there are sequences {gn}∞n=1 and {hn}∞n=1 of C∞-functions on

M such that gn, hn ∈C0
ad(M ;α) for all n≥ 1 and

lim
n→∞

‖gn − g‖sup = lim
n→∞

‖hn − h‖sup = 0.

Then, by Lemma 1.2.1(3), a sequence {(gn − hn)dd
c(gn − hn) ∧ T} of currents

converges weakly to (g − h)ddc([g − h]) ∧ T = fddc([f ]) ∧ T . Thus, (3) follows

from the previous case. �

From now on, we assume that M is compact and Kähler. Let T be a d-closed

positive current of bidegree (k − 1, k − 1). For f, g ∈ C0
ad(M), we define IT (f, g)

to be

IT (f, g) :=

∫
M

fddc([g])∧ T,

which will be used to see the equality condition of the Hodge index theorem (cf.

Theorems 2.2.3, 2.2.5). Then we have the following proposition.

PROPOSITION 1.2.3

IT is a symmetric and negative semidefinite bilinear form on

〈(C0 ∩QPSH)(M)〉R;

that is, the following properties are satisfied:

(1) IT (af + bf ′, g) = aIT (f, g) + bIT (f
′, g) and IT (f, ag+ bg′) = aIT (f, g) +

bIT (f, g
′) hold for all f, f ′, g, g′ ∈C0

ad(M) and a, b ∈R;

(2) IT (f, g) = IT (g, f) for all f, g ∈ 〈(C0 ∩QPSH)(M)〉R;
(3) IT (f, f)≤ 0 for all f ∈ 〈(C0 ∩QPSH)(M)〉R.

Moreover, let A1, . . . ,Ak−1 ∈ B1,1
ad (M), and let ω be a Kähler form of M . We

assume that, for each i = 1, . . . , k − 1, there is εi ∈ R>0 with Ai ≥ εiω. If T =

A1 ∧ · · · ∧Ak−1, then

IT (f, f) = 0⇐⇒ f is a constant.

Proof

Assertion (1) is obvious. Then (2) follows from Lemma 1.2.2(2). Assertion (3) is

a consequence of Lemma 1.2.2(3). Finally we consider the last assertion. Clearly

if f is a constant, then IT (f, f) = 0. We set

T ′ = (ε−1
1 A1)∧ · · · ∧ (ε−1

k−1Ak−1) = (ε1 · · · εk−1)
−1T.
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Then, as ε−1
i Ai − ω is positive, by Lemma 1.2.1(1), there is a d-closed positive

current T ′′ of bidegree (k − 1, k − 1) such that T ′ = ωk−1 + T ′′. In particular,

by (3),

IT ′(f, f)≤ Iωk−1(f, f)≤ 0

for f ∈ 〈(C0 ∩ QPSH)(M)〉R. Note that we can define a Laplacian �ω by the

equation

−ddc(f)∧ ωk−1 =�ω(f)ω
k

(
f ∈C∞(M)

)
.

Let us see that �ω is elliptic. This is a local question. Let θ1, . . . , θk be a

local orthonormal frame of the holomorphic cotangent bundle Ω1
M with respect

to the metric arising from the Kähler form ω so that ω =
√
−1

∑
i θ1 ∧ θ̄j . If we

set ddc(f) =
√
−1

∑
i,j aijθi ∧ θ̄j , then

�ω(f) =−1

k

∑
i

aii.

On the other hand, we set dzs =
∑

i csiθi for s= 1, . . . , k, where (z1, . . . , zk) is a

local coordinate. Then

ddc(f) =

√
−1

2π

∑
s,t

∂2(f)

∂zs ∂z̄t
dzs ∧ dz̄t =

√
−1

2π

∑
s,t,i,j

∂2(f)

∂zs ∂z̄t
csic̄tjθi ∧ θ̄j ,

so that

�ω(f) =− 1

2kπ

∑
s,t

(∑
i

csic̄ti

) ∂2(f)

∂zs ∂z̄t
.

Thus it is sufficient to show that a matrix D =
(∑

i csic̄ti
)
1≤s,t≤k

is positive

definite. This is obvious because D = C · (the transpose of C̄) and det(C) �= 0,

where C = (csi)1≤s,i≤k.

Therefore,

IT (f, f) = 0 =⇒ IT ′(f, f) = 0 =⇒ Iωk−1(f, f) = 0

=⇒ Iωk−1(g, f) = 0 for all g ∈C∞(M) (∵ Lemma 1.1.3)

=⇒ ddc([f ])∧ ωk−1 = 0 as a current

=⇒ �ω([f ]) = 0

=⇒ f is harmonic (∵ the regularity of elliptic operators)

=⇒ f is a constant,

as required. �

1.3. A variant of Gromov’s inequality for R-Cartier divisors
In this subsection, we would like to consider a generalization of [17, Lemma 1.1.4]

to R-Cartier divisors.
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LEMMA 1.3.1

Let X be a d-dimensional compact Kähler manifold, and let ω be a Kähler form on

X. Let D1, . . . ,Dl be R-Cartier divisors on X. For each i= 1, . . . , l, let gi be a Di-

Green function of C∞-type. Let U be an open set of X such that U is not empty

on each connected component of X. Then there are constants C1, . . . ,Cl ≥ 1 such

that Ci depends only on gi and U and that

sup
x∈X

{
|s|m1g1+···+mlgl(x)

}
≤Cm1

1 · · ·Cml

l sup
x∈U

{
|s|m1g1+···+mlgl(x)

}
for all m1, . . . ,ml ∈ R≥0 and all s ∈ H0(X,m1D1 + · · · + mlDl). Moreover, if

Di = 0 and gi is a constant function, then Ci = 1.

Proof

Clearly we may assume that X is connected. Shrinking U if necessary, we may

identify U with {x ∈Cd | |x|< 1}. We set W = {x ∈Cd | |x|< 1/2}. In this proof,

we define a Laplacian �ω by the formula

−
√
−1

2π
∂∂̄(g)∧ ω∧(d−1) =�ω(g)ω

∧d.

Let ωi be a C∞-form of (1,1)-type given by ddc([gi]) + δDi = [ωi]. Let ai be a

C∞-function given by ωi ∧ ω∧(d−1) = aiω
∧d. We choose a C∞-function φi on X

such that ∫
X

aiω
∧d =

∫
X

φiω
∧d

and that φi is identically zero on X \W . Thus we can find a C∞-function Fi

with �ω(Fi) = ai − φi. Note that �ω(Fi) = ai on X \W .

Let s ∈H0(X,m1D1 + · · ·+mlDl). We set

f = |s|2m1g1+···+mlgl
exp

(
−(m1F1 + · · ·+mlFl)

)
.

Note that f is continuous over X and log(f) is C∞ over X \Zs, where

Zs = Supp
(
(s) +m1D1 + · · ·+mlDl

)
.

CLAIM 1.3.1.1

We have maxx∈X\W {f(x)}=maxx∈∂(W ){f(x)}.

If f is a constant over X \W , then our assertion is obvious, so that we assume

that f is not a constant over X \W . In particular, s �= 0. Since

−
√
−1

2π
∂∂̄
(
log(|s|2m1g1+···+mlgl

)
)
=m1ω1 + · · ·+mlωl over X \Zs,

we have �ω(log(f)) = 0 on X \ (W ∪ Zs). Let us choose x0 ∈X \W such that

the continuous function f over X \W takes the maximum value at x0. Note that

x0 ∈X \ (W ∪Zs).

For, if Zs = ∅, then our assertion is obvious. Otherwise, f is zero at any point

of Zs. Since log(f) is harmonic over X \ (W ∪ Zs), log(f) takes the maximum
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value at x0, and log(f) is not a constant, we have x0 ∈ ∂(W ) by virtue of the

maximum principle of harmonic functions. Thus the claim follows.

We set

bi = min
x∈X\W

{
exp(−Fi)

}
, Bi = max

x∈∂(W )

{
exp(−Fi)

}
, and Ci =Bi/bi.

Then

bm1
1 · · · bml

l |s|2m1g1+···+mlgl
≤ f

over X \W and

f ≤Bm1
1 · · ·Bml

l |s|2m1g1+···+mlgl

over ∂(W ). Hence

max
x∈X\W

{
|s|2m1g1+···+mlgl

}
≤ Cm1

1 · · ·Cml

l max
x∈∂(W )

{
|s|2m1g1+···+mlgl

}
≤ Cm1

1 · · ·Cml

l max
x∈W

{
|s|2m1g1+···+mlgl

}
,

which implies that

max
x∈X

{
|s|2m1g1+···+mlgl

}
≤Cm1

1 · · ·Cml

l max
x∈W

{
|s|2m1g1+···+mlgl

}
,

as required. The last assertion is obvious by our construction because Fi = 0 in

this case. �

2. Hodge index theorem for arithmetic R-Cartier divisors

In this section, we would like to observe the Hodge index theorem for arithmetic

R-Cartier divisors and apply it to the pseudoeffectivity of arithmetic divisors.

A negative definite quadric form over Q does not necessarily extend to a negative

definite quadric form over R. For example, the quadric form q(x, y) =−(x+
√
2y)2

on Q2 is negative definite, but it is not negative definite on R2. In this sense, the

equality condition of the Hodge index theorem for arithmetic R-Cartier divisors

is not an obvious generalization. In addition, the equality condition is crucial to

considering the pseudoeffectivity of R-Cartier divisors.

In Section 2.1, we compare the arithmetic intersection number in [21, Sec-

tion 6.4] with the classical one due to Zhang and Maillot (cf. [24], [25], [13]). Sec-

tion 2.2 is devoted to the Hodge index theorem for arithmetic R-Cartier divisors.

Especially its equality condition is treated carefully. In Section 2.3, we consider a

necessary condition for the pseudoeffectivity of arithmetic R-Cartier divisors as

an application of the equality condition of the arithmetic Hodge index theorem.

Throughout this section, X will be a d-dimensional, generically smooth, nor-

mal projective arithmetic variety. Moreover, let

X
π−→ Spec(OK)→ Spec(Z)

be the Stein factorization of X → Spec(Z), where K is a number field and OK is

the ring of integers in K.
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2.1. Generalized intersection pairing on arithmetic varieties

Let D̂iv
Nef

C0 (X)R be the subspace of D̂ivC0(X)R consisting of integrable arithmetic

R-Cartier divisors of C0-type on X ; that is, D̂iv
Nef

C0 (X)R is the subspace gener-

ated by N̂efC0(X)R. For D1, . . . ,Dd ∈ D̂iv
Nef

C0 (X)R, we can define the intersection

number d̂eg(D1 · · ·Dd) as follows: If D1, . . . ,Dd ∈ N̂efC0(X)R, then it is given by

d̂eg(D1 · · ·Dd) =
1

d!

∑
∅
=I⊆{1,...,d}

(−1)d−#(I)v̂ol
(∑

i∈I

Di

)
.

In general, we extend the above by multilinearity (for details, see [21, Sec-

tion 6.4]). Note that if D1, . . . ,Dd ∈ D̂ivC∞(X)R, then d̂eg(D1 · · ·Dd) coincides

with the usual arithmetic intersection number because the self-intersection num-

ber of a nef arithmetic R-Cartier divisor of C∞-type in the usual sense is equal

to its arithmetic volume (cf. [21, Claim 6.4.2.2]). The following proposition is the

main result of this subsection. Especially, (3) means that the above intersection

number coincides with other definitions (see [24, Lemma 6.5], [25, Section 1], [13,

Section 5]). In this sense, this subsection provides a quick introduction to the

generalized intersection pairing on arithmetic varieties.

Here we need to fix a notation. Let u1, . . . , up ∈ 〈(C0 ∩QPSH)(X(C))〉R and

B1, . . . ,Bp ∈ B1,1
ad (X(C)). Let I be a nonempty subset of {1, . . . , p} and J =

{1, . . . , p}\I . If we set I = {i1, . . . , ik} and J = {j1, . . . , jl}, then, by Lemma 1.2.1,

the class of

ui1dd
c([ui2 ])∧ · · · ∧ ddc([uik ])∧Bj1 ∧ · · · ∧Bjl

in Dp−1,p−1(X(C))/Np−1,p−1(X(C)) does not depend on the choice of i1, . . . , ik
and j1, . . . , jl, so that it is denoted by uddc(uI)∧BJ .

PROPOSITION 2.1.1

(1) If D = D
′
+ (0, η) for D,D

′ ∈ D̂iv
Nef

C0 (X)R and η ∈ C0(X), then η ∈
〈(C0 ∩QPSH)(X(C))〉R.

(2) Let D1, . . . ,Dd ∈ D̂iv
Nef

C0 (X)R, A1, . . . ,Ad ∈ D̂ivC∞(X)R and u1, . . . , ud ∈
C0(X) such that Di =Ai + (0, ui) for i= 1, . . . , d. Then the quantity

d̂eg(A1 · · ·Ad) +
1

2

∑
∅
=I⊆{1,...,d}

∫
X(C)

uddc(uI)∧ c1(AJ)

does not depend on the choice of A1, . . . ,Ad and u1, . . . , ud. If we denote the above

number by d̂eg
′
(D1 · · ·Dd), then the map(

D̂ivC0
ad
(X)R

)d →R

given by (D1, . . . ,Dd) �→ d̂eg
′
(D1 · · ·Dd) is symmetric and multilinear.

(3) We have d̂eg(D1 · · ·Dd) = d̂eg
′
(D1 · · ·Dd) for D1, . . . ,Dd ∈ D̂iv

Nef

C0 (X)R.
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(4) Let D1, . . . ,Dd,D
′
1, . . . ,D

′
d ∈ D̂iv

Nef

C0 (X)R, and η1, . . . , ηd ∈ C0(X) be

such that Di =D
′
i + (0, ηi) for i= 1, . . . , d. Then

d̂eg(D1 · · ·Dd) = d̂eg(D
′
1 · · ·D

′
d) +

1

2

∑
∅
=I⊆{1,...,d}

∫
X(C)

ηddc(ηI)∧ c1(D
′
J).

Proof

(1) We can find E,F ,E
′
, F

′ ∈ N̂efC0(X)R such that D =E−F and D
′
=E

′−F
′
.

Then, as E + F
′
=E

′
+ F + (0, η), the assertion of (1) is obvious if we compare

two local equations of the Green functions in E + F
′
and E

′
+ F .

(2) In order to proceed with arguments, we need several notations. Let

Ẑp(X)R be the set of all pairs (Z,T ) such that Z is a codimension p R-cycle on

X (i.e., Z = a1Z1+ · · ·+arZr for some a1, . . . , ar ∈R and codimension p integral

subschemes Z1, . . . ,Zr of X) and T is a real current of bidegree (p− 1, p− 1) on

X(C). Let R̂p(X)′R be the vector subspace generated by the following elements:

(a) ((f),−[log |f |2]), where f is a rational function on some integral closed

subscheme Y of codimension p− 1 and [log |f |2] is the current defined by

[log |f |2](γ) =
∫
Y (C)

(log |f |2)γ;

(b) (0, T ), where T is a real current in Np−1,p−1(X(C)) (for the definition

of Np−1,p−1(X(C)), see Section 0.1(1)).

We set

ĈH
p
(X)′R := Ẑp(X)R/R̂

p(X)′R.

Let A be an arithmetic R-Cartier divisor of C∞-type. Then we can define a

homomorphism

ĉ1(A)· : ĈH
p
(X)′R → ĈH

p+1
(X)′R

given by ĉ1(A) · (Z,T ) = ĉ1(A) · (Z,0) + (0, c1(A)∧ T ). Note that

ĉ1(A) · ĉ1(B)·= ĉ1(B) · ĉ1(A)·
for arithmetic R-Cartier divisors A and B of C∞-type.

CLAIM 2.1.1.1

The class of

Z(A1, . . . ,Ap, u1, . . . , up) := ĉ1(A1) · · · ĉ1(Ap) +
∑

∅
=I⊆{1,...,p}

(
0, uddc(uI)∧ c1(AJ)

)
in ĈH

p
(X)′R does not depend on the choice of A1, . . . ,Ap and u1, . . . , up for p=

1, . . . , d.

Proof

Let B1, . . . ,Bp be arithmetic R-Cartier divisors of C∞-type, and let v1, . . . , vp ∈
C0

ad(X) be such that Di = Bi + (0, vi) for i = 1, . . . , p. Then we can find C∞-
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function φ1, . . . , φp such that ui = vi + φi and Bi = Ai + (0, φi) for i = 1, . . . , p.

We need to see that

Z(A1, . . . ,Ap, u1, . . . , up) = Z(B1, . . . ,Bp, v1, . . . , vp)

in ĈH
p
(X)′R. We prove it by induction on p. If p= 1, then the assertion is obvious,

so that we assume p > 1. By the induction hypothesis, we have

Z(A2, . . . ,Ap, u2, . . . , up) = Z(B2, . . . ,Bp, v2, . . . , vp)

in ĈH
p−1

(X)′R, which implies

ĉ1(A1) ·Z(A2, . . . ,Ap, u2, . . . , up) =
(
ĉ1(B1)− ĉ1(0, φ1)

)
·Z(B2, . . . ,Bp, v2, . . . , vp)

in ĈH
p−1

(X)′R. The left-hand side is equal to

Z(A1, . . . ,Ap, u1, . . . , up)−
∑

1∈I⊆{1,...,p}

(
0, uddc(uI)∧ c1(AJ)

)
= Z(A1, . . . ,Ap, u1, . . . , up)−

∑
I′⊆{2,...,p}

(
0, u1dd

c(uI′)∧ c1(AJ ′)
)
,

where J ′ = {2, . . . , p} \ I ′. Moreover, the right-hand side is equal to

Z(B1, . . . ,Bp, v1, . . . , vp)−
∑

I′⊆{2,...,p}

(
0, v1dd

c(vI′)∧ c1(BJ ′)
)

− ĉ1(B2) · · · ĉ1(Bp) · ĉ1(0, φ1)

−
∑

∅
=I′⊆{2,...,p}
ĉ1(0, φ1) ·

(
0, vddc(vI′)∧ c1(BJ ′)

)
= Z(B1, . . . ,Bp, v1, . . . , vp)−

∑
I′⊆{2,...,p}

(
0, v1dd

c(vI′)∧ c1(BJ ′)
)

−
∑

I′⊆{2,...,p}

(
0, φ1dd

c(vI′)∧ c1(BJ ′)
)

= Z(B1, . . . ,Bp, v1, . . . , vp)−
∑

I′⊆{2,...,p}

(
0, u1dd

c(vI′)∧ c1(BJ ′)
)

in ĈH
p−1

(X)′R. Therefore, we can see that

Z(A1, . . . ,Ap, u1, . . . , up)−Z(B1, . . . ,Bp, v1, . . . , vp)

is equal to (
0, u1

∑
I′⊆{2,...,p}

(ddc(uI′)∧ c1(AJ ′)− ddc(vI′)∧ c1(BJ ′))
)
,

which is zero by the following Lemma 2.1.2. �

Applying the above claim to the case where p= d, the first assertion follows. The

second assertion can be easily checked by using its definition.
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(3) For this purpose, it is sufficient to show that d̂eg
′
(D

d
) = v̂ol(D) for D =

(D,g) ∈ N̂efC0(X)R. Let A be an ample arithmetic Cartier divisor of C∞-type.

We assume

d̂eg
′(
(D+ (1/n)A)d+1

)
= v̂ol

(
D+ (1/n)A

)
for all n > 0. Then, using the continuity of v̂ol, we can see d̂eg

′
(D

d
) = v̂ol(D).

Thus we may assume D is ample, so that there is a D-Green function h such

that α := c1(D,h) is positive. We set D
′
= (D,h) and φ = g − h. Then φ is

continuous and ddc([φ]) + α ≥ 0. Therefore, by [1] or [21, Lemma 4.2], we can

take a sequence of C∞-functions {φn} such that limn→∞ ‖φn − φ‖sup = 0, and

that φ ≤ φn and φn ∈ C0
ad(X;α) for all n. We set Dn =D

′
+ (0, φn). Then Dn

is a nef arithmetic R-Cartier divisor of C∞-type, and hence d̂eg
′
(D

d

n) = v̂ol(Dn)

for all n by [21, Claim 6.4.2.2]. As limn→∞ v̂ol(Dn) = v̂ol(D) by the continuity

of v̂ol, it is sufficient to see that

lim
n→∞

d̂eg
′
(D

d

n) = d̂eg
′
(D

d
).

Note that

d̂eg
′
(D

d

n) = d̂eg
′(
(D

′
+ (0, φn))

d
)

= d̂eg
′
(D

′d
) +

d∑
i=1

(
d

i

)∫
X(C)

φndd
c(φn)

i−1 ∧ αd−i.

In addition, by Lemma 1.2.1(3), {φndd
c(φn)

i−1 ∧ αd−i} converges weakly to

φddc([φ])i−1 ∧ αd−i

for each i. Thus we have the assertion.

By using the symmetry and multilinearity of d̂eg(D1 · · ·Dd), it is sufficient

to see that

d̂eg
(
(0, η1) ·D2 · · ·Dd

)
=

1

2

∑
I⊆{2,...,d}

∫
X(C)

η1dd
c(uI)∧ c1(DJ),

which is a straightforward calculation by using the definition in (2). �

LEMMA 2.1.2

Let V and W be vector spaces over R, and let f : V s → W be a symmetric

multilinear map. Let a1, . . . , as, b1, . . . , bs be elements of V . For a subset I of

{1, . . . , s}, we set I = {i1, . . . , ik} and J = {j1, . . . , jl}, where J = {1, . . . , s} \ I
and k+ l= s. Then

f(ai1 , . . . , aik , bj1 , . . . , bjl)

does not depend on the choice of i1, . . . , ik and j1, . . . , jl, so that it is denoted

by f(aI , bJ). Let a1, . . . , as, b1, . . . , bs, c1, . . . , cs, d1, . . . , ds be elements of V . We

assume that there are u1, . . . , us ∈ V such that ai = ci + ui and bi = di − ui for
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all i= 1, . . . , s. Then ∑
I⊆{1,...,s}

f(aI , bJ) =
∑

I⊆{1,...,s}
f(cI , dJ).

Proof

We prove the lemma by induction on s. If s= 1, then∑
I⊆{1,...,s}

f(aI , bJ) = f(a1) + f(b1) = f(c1 + u1) + f(d1 − u1)

= f(c1) + f(d1) =
∑

I⊆{1,...,s}
f(cI , dJ).

Thus we assume s > 1. By the hypothesis of induction, we have∑
I′⊆{2,...,s}

f(a1, aI′ , bJ ′) =
∑

I′⊆{2,...,s}
f(a1, cI′ , dJ ′)

and ∑
I′⊆{2,...,s}

f(b1, aI′ , bJ ′) =
∑

I′⊆{2,...,s}
f(b1, cI′ , dJ ′),

where J ′ = {2, . . . , s} \ I ′. The first equation and the second equation imply that∑
1∈I⊆{1,...,s}

f(aI , bJ) =
∑

1∈I⊆{1,...,s}
f(cI , dJ) +

∑
I′⊆{2,...,s}

f(u1, cI′ , dJ ′)

and ∑
1/∈I⊆{1,...,s}

f(aI , bJ) =
∑

1/∈I⊆{1,...,s}
f(cI , dJ)−

∑
I′⊆{2,...,s}

f(u1, cI′ , dJ ′),

respectively. Thus the lemma follows. �

2.2. Hodge index theorem for arithmetic R-Cartier divisors
First of all, let us fix notation. Let K be either Q or R. Let H be an ample K-

Cartier divisor on X . Let D be a K-Cartier divisor on X , and let E be a vertical

K-Weil divisor on X . We set E =
∑l

i=1 aiΓi, where a1, . . . , al ∈K and Γ1, . . . ,Γl

are vertical prime divisors. Then a quantity

l∑
i=1

ai deg
(
(H|Γi)

d−2 · (D|Γi)
)

is denoted by degH(D ·E). Note that if X is regular and D and E are vertical,

then degH(D ·E) = degH(E ·D). We say D is divisorially π-nef with respect to H

if degH(D · Γ)≥ 0 for all vertical prime divisors Γ on X . Moreover, D is said to

be divisorially π-numerically trivial with respect to H if D and −D is divisorially

π-nef with respect to H , that is, degH(D · Γ) = 0 for all vertical prime divisors

Γ on X .
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LEMMA 2.2.1

We assume that X is regular. Let P ∈ Spec(OK), and let π−1(P ) = a1Γ1 + · · ·+
anΓn be the irreducible decomposition as a cycle, that is, a1, . . . , an ∈ Z>0 and

Γ1, . . . ,Γn are prime divisors. Let us consider a linear map TP :Kn →Kn given

by ⎛⎜⎝x1

...

xn

⎞⎟⎠ �→

⎛⎜⎝degH(Γ1 · Γ1) · · · degH(Γ1 · Γn)
...

. . .
...

degH(Γn · Γ1) · · · degH(Γn · Γn)

⎞⎟⎠
⎛⎜⎝x1

...

xn

⎞⎟⎠ .

Then Ker(TP ) = 〈(a1, . . . , an)〉K and TP (K
n) = {(y1, . . . , yn) ∈ Kn | a1y1 + · · · +

anyn = 0}.

Proof

This is a consequence of Zariski’s lemma (cf. Lemma 1.1.4). �

LEMMA 2.2.2

We assume that X is regular. Let D be a K-Cartier divisor on X with deg(Hd−2
Q ·

DQ) = 0. Then there is a vertical effective K-Cartier divisor E such that D+E

is divisorially π-numerically trivial with respect to H .

Proof

We can choose P1, . . . , Pn ∈ Spec(OK) such that degH(D · Γ) = 0 for all vertical

prime divisors Γ with π(Γ) /∈ {P1, . . . , Pn}. We set π−1(Pk) =
∑nk

i=1 akiΓki for

each k = 1, . . . , n, where aki ∈ Z>0 and Γki is a vertical prime divisor over Pk.

Since
nk∑
j=1

akj degH(D · Γkj) = degH
(
D · π−1(Pk)

)
= 0,

by virtue of Lemma 2.2.1, we can find xki ∈K,

nk∑
i=1

xki degH(Γki · Γkj) =−degH(D · Γkj)

for all k. Moreover, replacing xki by xki + naki (n� 1), we may assume that

xki > 0. Here we set

E =

n∑
k=1

nk∑
i=1

xkiΓki.

Then D+E is divisorially π-numerically trivial. �

First let us consider the Hodge index theorem for R-Cartier divisors on an arith-

metic surface. It was actually treated in [2, Theorem 5.5]. Here we would like to

present a slightly different version.
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THEOREM 2.2.3

We assume d= 2. Let Div0(XQ)R be a vector subspace of Div(XQ)R given by

Div0(XQ)R :=
{
ϑ ∈Div(XQ)R

∣∣ deg(ϑ) = 0
}
.

Let D = (D,g) be an arithmetic R-Cartier divisor in D̂iv
Nef

C0 (X)R with DQ ∈
Div0(XQ)R. Then

d̂eg(D
2
)≤−2[K :Q]〈DQ,DQ〉NT,

where 〈 , 〉NT is the Néron–Tate pairing on Div0(XQ)R (cf. Remark 2.2.4). More-

over, the equality holds if and only if the following conditions (a), (b), and (c)

hold:

(a) D is divisorially π-numerically trivial;

(b) g is of C∞-type;

(c) c1(D) = 0.

Proof

Let μ :X ′ →X be a resolution of singularities of X (cf. [12]). Then, since the

arithmetic volume function is invariant under birational morphisms (cf. [17, The-

orem 4.3]), we can see d̂eg(D
2
) = d̂eg(μ∗(D)2). Thus we may assume that X is

regular.

Let g′ be an F∞-invariant D-Green function of C∞-type with c1(D,g′) = 0.

Let η be an F∞-invariant continuous function on X(C) with g = g′ + η. Then,

by (1) in Proposition 2.1.1, η ∈ 〈(C0 ∩QPSH)(X(C))〉R.
By Lemma 2.2.2, we can find an effective and vertical R-Cartier divisor E

such that D+E is divisorially π-numerically trivial. If we set D
′
= (D+E,g′),

then D
′
satisfies the above conditions (a), (b), and (c). Moreover, as D =D

′ −
(E,0) + (0, η),

d̂eg(D
2
) = d̂eg(D

′2
) + d̂eg

(
(E,0)2

)
+

1

2

∫
X(C)

ηddc(η).

Thus, by Proposition 1.2.3 and Zariski’s lemma (cf. Lemma 1.1.4), in order to

prove the assertions of the theorem, it is sufficient to see

d̂eg(D
2
) =−2[K :Q]〈DK ,DK〉NT

under the assumptions (a), (b), and (c).

By Lemma 1.1.1(1), we can choose D1, . . . ,Dl ∈ Div(X) and a1, . . . , al ∈ R

such that D = a1D1 + · · ·+ alDl and a1, . . . , al are linearly independent over Q.

Let C be a 1-dimensional vertical closed integral subscheme. Since

0 = deg(D|C) = a1 deg(D1|C) + · · ·+ an deg(Dn|C),

we have deg(Di|C) = 0 for all i, and hence Di is divisorially π-numerically trivial

for every i, so that we can also choose a Di-Green function hi of C
∞-type such

that D = a1D1 + · · · + alDl and c1(Di) = 0 for all i, where Di = (Di, hi) for
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i= 1, . . . , l. We need to show

d̂eg
(
(a1D1 + · · ·+ alDl)

2
)
=−2[K :Q]〈a1D1 + · · ·+ alDl, a1D1 + · · ·+ alDl〉NT.

Note that it holds for a1, . . . , al ∈ Q by Faltings [8] and Hriljac [10]. Moreover,

each side is continuous with respect to a1, . . . , al. Thus the equality follows in

general. �

REMARK 2.2.4

(1) Let Div0(XQ) be the group of divisors ϑ on XQ with deg(ϑ) = 0. By using (1)

in Lemma 1.1.1, we can see Div0(XQ)⊗Z R=Div0(XQ)R. Let

〈 , 〉NT : Div0(XQ)×Div0(XQ)→R

be the Néron–Tate height pairing on Div0(XQ), which extends to

Div0(XQ)R ×Div0(XQ)R →R

in the natural way. By abuse of notation, the above bilinear map is also denoted

by 〈 , 〉NT. By virtue of [9, Proposition B.5.3], we can see that

PDiv(XQ)R =
{
ϑ ∈Div0(XQ)R

∣∣ 〈ϑ,ϑ〉NT = 0
}
.

(2) Let D = (D,g) be an integrable arithmetic R-Cartier divisor of C0-type

on X . If DQ ∈Div0(XQ)R and d̂eg(D
2
) = 0, there are ϕ ∈Rat(X)×R and an F∞-

invariant locally constant function η on X(C) such that D = (̂ϕ)R+(0, η). Indeed,

by Theorem 2.2.3 and the above (1), D is divisorially π-numerically trivial, g is of

C∞-type, c1(D) = 0 andDQ ∈ PDiv(XQ)R. Therefore, there exist ϕ ∈Rat(X)×R , a

vertical R-Cartier divisor E, and an F∞-invariant continuous function η on X(C)

such that D = (̂ϕ)R+(E,η). As D and (ϕ)R are divisorially π-numerically trivial,

by using Zariski’s lemma, we can find ϑ ∈ D̂iv(Spec(OK))R such that E = π∗(ϑ).

Note that the class group of OK is finite, so that ϑ ∈ PDiv(Spec(OK))R, and

hence E ∈ PDiv(X)R. Therefore, we may assume that E = 0. Thus

0 = d̂eg(D
2
) =

1

2

∫
X(C)

ηddc(η),

which implies that η is locally constant by Proposition 1.2.3.

Finally let us consider the Hodge index theorem on a higher-dimensional arith-

metic variety. The proof is almost the same as that in [16], but we need a careful

treatment at the final step.

THEOREM 2.2.5

Let D = (D,g) be an arithmetic R-Cartier divisor in D̂iv
Nef

C0 (X)R, and let H =

(H,h) be an ample arithmetic Q-Cartier divisor on X. If deg(DQ ·Hd−2
Q ) = 0,

then

d̂eg(D
2 ·Hd−2

)≤ 0.

Moreover, if the equality holds, then DQ ∈ PDiv(XQ)R.
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Proof

By Lemma 1.1.1(1), we can choose D1, . . . ,Dl ∈Div(X) and a1, . . . , al ∈ R such

that a1, . . . , al are linearly independent over Q and D = a1D1 + · · ·+ alDl. Since

0 = deg(DQ ·Hd−2
Q ) =

l∑
i=1

ai deg(DiQ ·Hd−2
Q )

and deg(DiQ ·Hd−2
Q ) ∈ Q for all i, we have deg(DiQ ·Hd−2

Q ) = 0 for all i. Let

us also choose an F∞-invariant Di-Green function gi of C∞-type such that

c1(Di, gi) ∧ c1(H)d−2 = 0. If we set g′ = a1g1 + · · · + algl, then, by Proposi-

tion 2.1.1(1), there is η ∈ 〈(C0∩QPSH)(X(C))〉R such that g = g′+η. By Propo-

sition 2.1.1(4),

d̂eg(D
2 ·Hd−2

) = d̂eg
(
(D,g′)2 ·Hd−2)

+
1

2

∫
X(C)

ηddc(η)c1(H)d−2

because c1(D,g′)∧ c1(H)d−2 = 0. Therefore, by Proposition 1.2.3,

d̂eg(D
2 ·Hd−2

)≤ d̂eg
(
(D,g′)2 ·Hd−2)

,

and the equality holds if and only if η is a constant. Thus we may assume that

η is a constant, that is, g = g′ by replacing gl by gl + η/al.

By virtue of [16, Theorem 1.1],

d̂eg
(
(α1(D1, g1) + · · ·+ αl(Dl, gl))

2 ·Hd−2)≤ 0

for all α1, . . . , αl ∈Q, and hence d̂eg(D
2 ·Hd−2

)≤ 0.

We need to check the equality condition. We prove it by induction on d.

If d = 2, then the assertion follows from Theorem 2.2.3 and Remark 2.2.4. We

assume that d > 2 and d̂eg(D
2 · Hd−2

) = 0. By using the arithmetic Bertini’s

theorem (cf. [15]), we can find m ∈ Z>0 and f ∈ Rat(X)× with the following

properties.

(i) If we set H
′
= (H ′, h′) = mH + (̂f), then (H ′, h′) ∈ D̂ivC∞(X), H ′ is

effective, h′ > 0, and H ′ is smooth over Q.

(ii) If H ′ = Y ′+ c1F1+ · · ·+ crFr is the irreducible decomposition such that

Y ′ is horizontal and Fi’s are vertical, then the Fi’s are connected components of

smooth fibers over Z.

(iii) D and H ′ have no common irreducible component.

Let Y be the normalization of Y ′. Then

0 =md−2 d̂eg(D
2 ·Hd−2

) = d̂eg(D
2 ·H ′d−2

)

= d̂eg(D|2Y ·H ′|d−3
Y ) +

∑
ci deg(D|2Fi

·H ′|d−3
Fi

) +
1

2

∫
X(C)

h′c1(D)2c1(H
′
)d−3.

Therefore, by using [16, Lemma 1.1.2], we can see that d̂eg(D|2Y ·H ′|d−3
Y ) = 0 and

c1(D) = 0. In particular, by the induction hypothesis, DQ|Y ∈ P̂Div(YQ)R. Let C
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be a closed and integral curve of XQ. Then, since

0 =

∫
C(C)

c1(D) = deg(DQ ·C) =
∑

ai deg(DiQ ·C)

and a1, . . . , al are linearly independent over Q, we have deg(DiQ · C) = 0 for

all i. Therefore, if we set Li = OXQ
(Di), then Li is numerically trivial, and

hence (Li)C is also numerically trivial on X(C). This means that (Li)C comes

from a representation ρi : π1(X(C))→C×. Let ι be the natural homomorphism

ι : π1(Y (C))→ π1(X(C)), and let

ρ′i = ρi ◦ ι : π1

(
Y (C)

) ι−→ π1

(
X(C)

) ρi−→C×.

Then ρ′i yields (Li)C|Y (C). Let

ρ : π1

(
X(C)

)
→C× ⊗Z R and ρ′ : π1(Y (C))→C× ⊗Z R

be homomorphisms given by ρ= ρ⊗a1
1 · · ·ρ⊗al

l and ρ′ = ρ′1
⊗a1 · · ·ρ′l

⊗al . Since(
(L1)C|Y (C)

)⊗a1 ⊗ · · · ⊗
(
(Ll)C|Y (C)

)⊗al = 1

in Pic(YQ)⊗ R, we have ρ′ = 1. Note that ι is surjective (cf. [14, Theorem 7.4]

and the homotopy exact sequence). Thus ρ = 1 because ρ′ = ρ ◦ ι. Therefore,

by Lemma 1.1.1(2), the image of ρi is finite for all i. This means that there

is a positive integer n such that (Li)
⊗n
C � OX(C) for all i. If we fix σ ∈ K(C),

then

dimK H0(XQ,L
⊗n
i ) = dimCH

0
(
XQ ×σ

Spec(K) Spec(C),L
⊗n
i ⊗σ

K C
)
= 1,

and hence L⊗n
i � OXQ

because deg(Li ·Hd−2
Q ) = 0. Therefore,

L⊗a1
1 ⊗ · · · ⊗L⊗al

l = (L⊗n
1 )⊗a1/n ⊗ · · · ⊗ (L⊗n

l )⊗al/n = 1

in Pic(XQ)R. Thus DQ ∈ PDiv(XQ)R. �

REMARK 2.2.6

There is a typo in [16, Lemma 1.1.2]. The form ω should be real, that is, ω̄ = ω.

2.3. Hodge index theorem and pseudoeffectivity
In this subsection, let us observe the pseudoeffectivity of arithmetic R-Cartier

divisors as an application of the Hodge index theorem. Let us begin with the

following lemma.

LEMMA 2.3.1

We assume that X is regular. Let D = (D,g) be an arithmetic R-Cartier divi-

sor of C0-type. If D is semiample on XQ (i.e., there are semiample divisors

A1, . . . ,Ar on XQ and a1, . . . , ar ∈R>0 such that DQ = a1A1 + · · ·+ arAr), then

there are ϕ1, . . . , ϕl ∈Rat(X)×R and c ∈R such that D+ (̂ϕi)R + (0, c)≥ 0 for all

i and
l⋂

i=1

Supp
(
D+ (ϕi)R

)
= ∅
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on XQ (for the definition of Rat(X)×R and arithmetic R-principal divisors, see

Section 0.2 in the introduction and Section 0.10(2)).

Proof

Let us consider the assertion of the lemma for D = (D,g):

There exist ϕ1, . . . , ϕl ∈Rat(X)×R and c ∈R such that

D+ (̂ϕi)R + (0, c)≥ 0 for all i and
⋂l

i=1 Supp
(
D+ (ϕi)R

)
= ∅ on XQ.

(∗)

CLAIM 2.3.1.1

(1) If D is a Q-Cartier divisor and D is semiample on XQ (i.e., nD is

base-point free on XQ for some n > 0), then (∗) holds for D.

(2) If D is vertical, then (∗) holds for D.

(3) If a ∈R>0 and (∗) holds for D, then so does for aD.

(4) If (∗) holds for D and D
′
, so does for D+D

′
.

Proof

(1) Since D is a semiample Q-Cartier divisor on XQ, there are a positive integer

n and φ1, . . . , φl ∈H0(X,nD) \ {0} such that
⋂l

i=1 Supp(nD+ (φi)) = ∅ on XQ.

Since D+(φ
1/n
i )R is effective, we can find c ∈R such that D+

̂
(φ

1/n
i )

R
+(0, c)≥ 0

for all i.

(2) We choose x ∈OK \ {0} such that D+ (x)≥ 0, and hence there is c ∈R

such that D+ (̂x) + (0, c)≥ 0.

(3) Let ϕ1, . . . , ϕl ∈Rat(X)×R , and let c ∈R be such that D+(̂ϕi)R+(0, c)≥ 0

for all i and
⋂l

i=1 Supp(D+(ϕi)R) = ∅ on XQ. Then aD+ (̂ϕa
i )R+(0, ac)≥ 0 for

all i and
⋂l

i=1 Supp(aD+ (ϕa
i )R) = ∅ on XQ.

(4) By our assumption, there exist ϕ1, . . . , ϕl, ϕ
′
1, . . . , ϕ

′
l′ ∈ Rat(X)×R and

c, c′ ∈R such that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
D+ (̂ϕi)R + (0, c)≥ 0 for all i,⋂l

i=1 Supp(D+ (ϕi)R) = ∅ on XQ,

D
′
+ (̂ϕ′

j)R + (0, c′)≥ 0 for all j,⋂l′

j=1 Supp(D
′ + (ϕ′

j)R) = ∅ on XQ.

Then D+D
′
+ (̂ϕiϕ′

j)R + (0, c+ c′)≥ 0 for all i, j and⋂
i,j

Supp
(
D+D′ + (ϕiϕ

′
j)R

)
= ∅

on XQ because⋂
i,j

Supp
(
D+D′ + (ϕiϕ

′
j)R

)
⊆
⋂
i,j

(
Supp(D+ (ϕi)R)∪ Supp(D′ + (ϕ′

j)R)
)
.
�
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Let us go back to the proof of the lemma. Since X is regular and D is semiample

onXQ, there are arithmetic Q-Cartier divisorsD1, . . . ,Dr of C
0-type, a1, . . . , ar ∈

R>0, a vertical R-Cartier divisor E, and an F∞-invariant continuous function η

onX(C) such that Di’s are semiample onXQ and D = a1D1+ · · ·+arDr+(E,η).

Thus the assertion follows from the above claim. �

Let us fix an ample arithmetic Q-Cartier divisor H on X . For arithmetic R-

Cartier divisors D1 and D2 of C∞-type on X , we denote d̂eg(H
d−2 ·D1 ·D2) by

d̂egH(D1 ·D2). Let us consider the following lemma, which is a useful criterion

of pseudoeffectivity.

LEMMA 2.3.2

We assume that X is regular. Let D = (D,g) be an arithmetic R-Cartier divisor

of C∞-type on X with the following properties:

(1) D is nef on XQ and deg(DQ ·Hd−2
Q ) = 0;

(2) c1(D) is semipositive;

(3) D is divisorially π-nef with respect to H ;

(4) d̂egH(D
2
)< 0.

Then D is not pseudoeffective.

Proof

First we claim the following.

CLAIM 2.3.2.1

There is an arithmetic R-Cartier divisor L= (L,h) of C∞-type with the following

properties:

(a) L is ample on XQ;

(b) c1(L) is positive;

(c) L is divisorially π-nef with respect to H ;

(d) d̂egH(L ·D)< 0.

Proof

Since d̂egH(D
2
)< 0, we have

d̂egH(D+ εH ·D)< 0

for a sufficiently small positive number ε. Thus, if we set L =D + εH , then L

satisfies all properties (a)–(d). �

Let us go back to the proof of the lemma. Since L is ample onXQ, by Lemma 2.3.1,

there are ϕ1, . . . , ϕl ∈Rat(X)×R and c ∈R such that L+ (̂ϕi)R+(0, c)≥ 0 for all i

and
⋂l

i=1 Supp(L+(ϕi)R) = ∅ on XQ. Let Γ be a horizontal prime divisor. Then
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we can find i such that Γ �⊆ Supp(L+ (ϕi)R). Thus

d̂egH
(
(L+ (0, c)) · (Γ,0)

)
= d̂egH

(
(L+ (̂ϕi)R + (0, c)) · (Γ,0)

)
= d̂eg

(
H|d−2

Γ · (L+ (̂ϕi)R + (0, c))|Γ
)
≥ 0.

Furthermore, the above inequality also holds for a vertical prime divisor Γ because

L is divisorially π-nef with respect to H . Therefore, if G= (G,k) is an effective

arithmetic R-Cartier divisor of C0-type, then

d̂egH
(
(L+(0, c)) ·G

)
= d̂egH

(
(L+(0, c)) · (G,0)

)
+

1

2

∫
X(C)

kc1(H)d−2c1(L)≥ 0.

In particular, if D is pseudoeffective, then

d̂egH
(
(L+ (0, c)) ·D

)
≥ 0.

On the other hand, as deg(DQ ·Hd−2
Q ) = 0,

d̂egH
(
(L+ (0, c)) ·D

)
= d̂egH(L ·D) +

c

2
deg(DQ ·Hd−2

Q )

= d̂egH(L ·D)< 0.

This is a contradiction. �

As consequence of the Hodge index theorem and the above lemma, we have the

following theorem on pseudoeffectivity.

THEOREM 2.3.3

We assume that X is regular and d ≥ 2. Let D = (D,g) be an arithmetic R-

Cartier divisor of C0-type. If D is pseudoeffective and D is numerically trivial

on XQ, then DQ ∈ PDiv(XQ)R.

Proof

We assume that DQ /∈ PDiv(XQ)R. Since D is numerically trivial on XQ, by

Lemma 2.2.2, we can find an effective vertical R-Cartier divisor E such that

D+E is divisorially π-numerically trivial with respect to H . Moreover, we can

find an F∞-invariant D-Green function g0 of C∞-type with c1(D,g0) = 0. Then

there is an F∞-invariant continuous function η on X(C) such that g + η = g0.

Replacing g0 by g0 + c (c ∈R), we may assume that η ≥ 0. By the Hodge index

theorem,

d̂egH
(
(D+E,g0)

2
)
< 0.

Thus (D+E,g0) is not pseudoeffective by Lemma 2.3.2, and hence

D = (D+E,g0)− (E,η)

is also not pseudoeffective. This is a contradiction. �

Finally let us consider the following lemmas on pseudoeffectivity.
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LEMMA 2.3.4

For D ∈ D̂ivC0(X)R and z ∈ P̂Div(X)R, if D is pseudoeffective, then D + z is

also pseudoeffective.

Proof

Let A be an ample arithmetic R-Cartier divisor on X . Since D is pseudoeffective,

D+ (1/2)A is big. Moreover, z + (1/2)A is ample because z is nef. Therefore,

(D+ z) +A=
(
D+ (1/2)A

)
+
(
z + (1/2)A

)
is big, as required. �

LEMMA 2.3.5

Let D be a vertical R-Cartier divisor on X, and let η be an F∞-invariant contin-

uous function on X(C). Let λ be an element of RK(C) given by λσ = infx∈Xσ η(x)

for all σ ∈K(C). We can view λ as a locally constant function on X(C), that is,

λ|Xσ = λσ. If (D,η) is pseudoeffective, then (D,λ) is also pseudoeffective.

Proof

Let us begin with the following claim.

CLAIM 2.3.5.1

We may assume that λ is a constant function.

Proof

We set λ′ = (1/[K : Q])
∑

σ∈K(C) λσ and ξσ = λ′ − λσ for each σ ∈K(C). Then∑
σ∈K(C) ξσ = 0 and ξσ = ξσ̄ for all σ ∈K(C). Thus, by Dirichlet’s unit theorem

(cf. Corollary 3.4.7), there are a1, . . . , as ∈R and u1, . . . , us ∈O×
K such that

ξσ = a1 log |σ(u1)|+ · · ·+ as log |σ(us)|

for all σ ∈K(C). If we set

(D,η′) = (D,η)− π∗((a1/2)(̂u1) + · · ·+ (as/2)(̂us)
)
,

then infx∈Xσ η
′(x) = λ′ for all σ ∈K(C). Moreover, by Lemma 2.3.4, (D,η′) is

pseudoeffective. If the lemma holds for η′, then (D,λ′) is pseudoeffective, and

hence

(D,λ) = (D,λ′) + π∗((a1/2)(̂u1) + · · ·+ (as/2)(̂us)
)

is also pseudoeffective by Lemma 2.3.4. �

For a given positive number ε, we set

Uσ =
{
x ∈Xσ

∣∣ η(x)< λσ + (ε/2)
}

and U =
∐

σ∈K(C)Uσ . Let A= (A,h) be an ample arithmetic Cartier divisor on

X . Then, by Lemma 1.3.1, there is a constant C ≥ 1 depending only on ε and h
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such that

(2.3.5.2) sup
x∈X(C)

{
|s|2t+bh(x)

}
≤Cb sup

x∈U

{
|s|2t+bh(x)

}
for all s ∈H0(X(C), bA), b ∈ R≥0, and all constant functions t on X(C). Let n

be an arbitrary positive integer with n≥ (2 log(C))/ε. Since (D,η) + (1/n)A is

big, there are a positive integer m and s ∈H0(X,mD+(m/n)A) \ {0} such that

|s|mη+(m/n)h ≤ 1, which implies that

|s|2(m/n)h ≤ exp(mη).

Therefore, |s|2(m/n)h ≤ exp
(
m(λ+ (ε/2))

)
over U ; that is,

sup
x∈U

{
|s|2m(λ+(ε/2))+(m/n)h

}
≤ 1.

Thus, by the estimation (2.3.5.2), we have

C−(m/n) sup
x∈X(C)

{
|s|2m(λ+(ε/2))+(m/n)h

}
≤ 1.

Since log(C)/n≤ ε/2,

sup
x∈X(C)

{
|s|2m(λ+ε)+(m/n)h

}
≤ sup

x∈X(C)

{
|s|2(m/n) log(C)+m(λ+(ε/2))+(m/n)h

}
= C−(m/n) sup

x∈X(C)

{
|s|2m(λ+(ε/2))+(m/n)h

}
≤ 1,

which yields Ĥ0
(
X,m((1/n)A + (D,λ + ε))

)
�= {0}. Thus (D,λ + ε) + (1/n)A

is big if n� 1. As a consequence, (D,λ+ ε) is pseudoeffective for any positive

number ε, and hence (D,λ) is also pseudoeffective. �

3. Dirichlet’s unit theorem on arithmetic varieties

In this section, we propose the fundamental question of this paper, which is a

higher-dimensional analogue of Dirichlet’s unit theorem on arithmetic varieties.

In Section 3.4, we give the proof of the fundamental question on arithmetic curves

by using the arithmetic Riemann–Roch theorem and the compactness theorem

in Section 3.3. By the observations in Section 3.3, we can realize why the funda-

mental question is related to the classical Dirichlet’s unit theorem. We can also

recognize that the theory of arithmetic R-divisors is not an artificial material.

In Section 3.5, we consider a partial answer to the fundamental question, that

is, Dirichlet’s unit theorem under the assumption of the numerical triviality of

divisors on the generic fiber. Many results in the previous sections will be used for

the partial answer. Especially the equality condition of the Hodge index theorem

is crucial for our proof. In Section 3.6, we introduce the notion of multiplica-

tive generators of approximately smallest sections for further discussions of the

fundamental question. It gives rise to many examples in which Dirichlet’s unit

theorem holds. Section 3.2 is devoted to the technical results on the continuity

of norms.
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Let us fix notation throughout this section. Let X be a d-dimensional, gener-

ically smooth, normal, and projective arithmetic variety. Let

X
π−→ Spec(OK)→ Spec(Z)

be the Stein factorization of X → Spec(Z), where K is a number field and OK is

the ring of integers in K.

3.1. Fundamental question
Let K be either Q or R. As in Section 0.10(2), we set

Rat(X)×K := Rat(X)× ⊗Z K,

whose element is called a K-rational function on X . Note that the zero function

is not a K-rational function. Let

( )K : Rat(X)×K →Div(X)K and (̂ )K : Rat(X)×K → D̂ivC∞(X)K

be the natural extensions of the homomorphisms

Rat(X)× →Div(X) and Rat(X)× → D̂ivC∞(X)

given by φ �→ (φ) and φ �→ (̂φ), respectively. Note that

PDiv(X)K =
{
(ϕ)K

∣∣ ϕ ∈Rat(X)×K
}

and

P̂Div(X)K =
{
(̂ϕ)K

∣∣ ϕ ∈Rat(X)×K
}

(cf. Sections 0.2 and 0.10(2)). Let D = (D,g) be an arithmetic R-Cartier divisor

of C0-type. We define Γ×(X,D), Γ̂×(X,D), Γ×
K (X,D), and Γ̂×

K (X,D) to be⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Γ×(X,D) := {φ ∈Rat(X)× |D+ (φ)≥ 0}=H0(X,D) \ {0},
Γ̂×(X,D) := {φ ∈Rat(X)× |D+ (̂φ)≥ 0}= Ĥ0(X,D) \ {0},
Γ×
K (X,D) := {ϕ ∈Rat(X)×K |D+ (ϕ)K ≥ 0},

Γ̂×
K (X,D) := {ϕ ∈Rat(X)×K |D+ (̂ϕ)K ≥ 0}.

Let us consider a homomorphism

 : Rat(X)× → L1
loc

(
X(C)

)
given by φ �→ log |φ|. It extends to a linear map

K : Rat(X)×K → L1
loc

(
X(C)

)
.

For ϕ ∈Rat(X)×K , we denote exp(K(ϕ)) by |ϕ|. First let us consider the following
lemma.

LEMMA 3.1.1

(1) If ϕ ∈ Γ×
K (X,D), then |ϕ| exp(−g/2) is represented by a continuous func-

tion ηϕ,g on X(C), so that we define ‖ϕ‖g,sup to be

‖ϕ‖g,sup := max
{
ηϕ,g(x)

∣∣ x ∈X(C)
}
.
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(2) Γ̂×
K (X,D) = {ϕ ∈ Γ×

K (X,D) | ‖ϕ‖g,sup ≤ 1}.
(3) We have the following formulae in Rat(X)×Q or Rat(X)×R :⎧⎪⎪⎨⎪⎪⎩
Γ×
Q (X,D) =

⋃
n>0 Γ

×(X,nD)1/n, Γ̂×
Q (X,D) =

⋃
n>0 Γ̂

×(X,nD)1/n,

Γ×
Q (X,αD) = Γ×

Q (X,D)α, Γ̂×
Q (X,αD) = Γ̂×

Q (X,D)α (α ∈Q>0),

Γ×
R (X,aD) = Γ×

R (X,D)a, Γ̂×
R (X,aD) = Γ̂×

R (X,D)a (a ∈R>0).

Proof

(1) We set D = a1D1 + · · · + anDn and ϕ = ϕx1
1 · · ·ϕxl

l , where D1, . . . ,Dn are

prime divisors, ϕ1, . . . , ϕl ∈Rat(X)×, and a1, . . . , an, x1, . . . , xl ∈K. Let f1, . . . , fn
be local equations of D1, . . . ,Dn around P ∈X(C). Then there is a local con-

tinuous function h such that g = −
∑n

i=1 ai log |fi|2 + h (a.e.) around P . Here

let us see that |ϕ1|x1 · · · |ϕl|xl |f1|a1 · · · |fn|an is continuous around P . We set

fi = uit
αi1
1 · · · tαir

r and ϕj = vjt
βj1

1 · · · tβjr
r , where αik, βjk ∈ Z, u1, . . . , un, v1, . . . , vl

are units of OX(C),P and t1, . . . , tr are prime elements of OX(C),P . Then

|ϕ1|x1 · · · |ϕl|xl |f1|a1 · · · |fn|an

= |u1|a1 · · · |un|an |v1|x1 · · · |vl|xl |t1|
∑

i aiαi1+
∑

j xjβj1 · · · |tr|
∑

i aiαir+
∑

j xjβjr .

On the other hand, as

D+ (ϕ)K =
(∑

i

aiαi1 +
∑
j

xjβj1

)
(t1) + · · ·+

(∑
i

aiαir +
∑
j

xjβjr

)
(tr)≥ 0

around P , we have

(3.1.1.1)
∑
i

aiαi1 +
∑
j

xjβj1 ≥ 0, . . . ,
∑
i

aiαir +
∑
j

xjβjr ≥ 0.

Thus the assertion follows. Therefore, |ϕ1|x1 · · · |ϕl|xl |f1|a1 · · · |fn|an exp(−h/2) is

also continuous around P , and hence we obtain (1) because

|ϕ| exp(−g/2) = |ϕ1|x1 · · · |ϕl|xl |f1|a1 · · · |fn|an exp(−h/2) (a.e.).

(2) We use the same notation as in (1). Note that

D+ (̂ϕ)K =
(
D+ (ϕ)K, g+

n∑
i=1

xi(− log |ϕi|2)
)
.

Moreover,

g+

n∑
i=1

xi(− log |ϕi|2) =− log
(
|ϕ1|2x1 · · · |ϕl|2xl |f1|2a1 · · · |fn|2an exp(−h)

)
(a.e.)

locally. Thus ‖ϕ‖g,sup ≤ 1 if and only if g +
∑n

i=1 xi(− log |ϕi|2) ≥ 0 (a.e.), and

hence (2) follows.

(3) For ϕ ∈Rat(X)×R and a ∈R>0, D+(ϕ)R ≥ 0 (resp., D+ (̂ϕ)R ≥ 0) if and

only if aD + (ϕa)R ≥ 0 (resp., aD + (̂ϕa)R ≥ 0). Thus the assertions in (3) are

obvious. �
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REMARK 3.1.2

We assume d= 1, that is, X = Spec(OK). For P ∈ Spec(OK)\{0} and σ ∈K(C),

the homomorphisms ordP :K× → Z and | · |σ :K× → R× given by φ �→ ordP (φ)

and φ �→ |σ(φ)| naturally extend to homomorphisms K× ⊗Z R→ R and K× ⊗Z

R→R×, respectively. By abuse of notation, we denote them by ordP and | · |σ ,
respectively. Clearly, for ϕ ∈K×⊗ZR, |ϕ|σ is the value of |ϕ| at σ. Moreover, by

using the product formula on K×, we can see

(3.1.2.1)
∏

σ∈K(C)

|ϕ|σ =
∏

P∈Spec(OK)\{0}
#(OK/P )ordP (ϕ)

for ϕ ∈K× ⊗Z R.

Finally we would like to propose the fundamental question as in Section 0.7 of

the introduction.

FUNDAMENTAL QUESTION

Let D be an arithmetic R-Cartier divisor of C0-type. Are the following equiva-

lent?

(1) D is pseudoeffective.

(2) We have Γ̂×
R (X,D) �= ∅.

Clearly (2) implies (1). Indeed, let ϕ be an element of Γ̂×
R (X,D). Let A be an

ample R-Cartier divisor on X . Since −(̂ϕ)R is a nef R-Cartier divisor of C∞-

type, A− (̂ϕ)R is ample, and hence D+A is big because D+A≥A− (̂ϕ)R. The

observations in Section 3.4 show that the fundamental question is nothing more

than a generalization of Dirichlet’s unit theorem. Moreover, the above question

does not hold in the geometric case as indicated in the following remark.

REMARK 3.1.4

Let C be a smooth algebraic curve over an algebraically closed field. For ϑ ∈
Div(C)Q with deg(ϑ) = 0, the following are equivalent:

(1) ϑ ∈ PDiv(C)Q;

(2) there is ϕ ∈Rat(C)×R such that ϑ+ (ϕ)R ≥ 0.

Indeed, (1) =⇒ (2) is obvious. Conversely we assume (2). If we set θ = ϑ+(ϕ)R,

then θ is effective and deg(θ) = 0, and hence θ = 0. Thus ϑ= (ϕ−1)R. Therefore,

by (3) in Lemma 1.1.1, ϑ ∈ PDiv(C)Q.

The above observation shows that if ϑ is a divisor on C such that deg(ϑ) = 0

and ϑ is not a torsion element in Pic(C), then there is no ϕ ∈ Rat(C)×R with

ϑ+ (ϕ)R ≥ 0.
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3.2. Continuity of norms
Let us fix p ∈ R≥1 and an F∞-invariant continuous volume form Ω on X with∫
X(C)

Ω = 1. For ϕ ∈ Γ×
R (X,D), we define the Lp-norm of ϕ with respect to g

to be

‖ϕ‖g,Lp :=
(∫

X(C)

(
|ϕ| exp(−g/2)

)p
Ω
)1/p

.

In this subsection, we consider the following proposition.

PROPOSITION 3.2.1

Let ϕ1, . . . , ϕl ∈Rat(X)×R . If we set

Φ=
{
(x1, . . . , xl) ∈Rl

∣∣ ϕx1
1 · · ·ϕxl

l ∈ Γ×
R (X,D)

}
,

then the map υp : Φ → R given by (x1, . . . , xl) �→ ‖ϕx1
1 · · ·ϕxl

l ‖g,Lp is uniformly

continuous on K ∩ Φ for any compact set K of Rl. Moreover, the map υsup :

Φ→R given by (x1, . . . , xl) �→ ‖ϕx1
1 · · ·ϕxl

l ‖g,sup is also uniformly continuous on

K ∩Φ for any compact set K of Rl.

Proof

In order to obtain the first assertion, we may clearly assume that ϕ1, . . . , ϕl ∈
Rat(X)×. Let us begin with the following claim.

CLAIM 3.2.1.1

There is a constant M such that

|ϕ1|x1 · · · |ϕl|xl exp(−g/2)≤M (a.e.)

on X(C) for all (x1, . . . , xl) ∈K ∩Φ.

Proof

Since X(C) is compact, it is sufficient to see that the above assertion holds locally.

We set D = a1D1 + · · ·+ anDn, where a1, . . . , an ∈ R and D1, . . . ,Dn are prime

divisors. Let us fix P ∈X(C), and let f1, . . . , fn be local equations of D1, . . . ,Dn

around P , respectively. Let g =
∑

i(−ai) log |fi|2+h (a.e.) be the local expression

of g with respect to f1, . . . , fr, where h is a continuous function around P . We set

fi = uit
αi1
1 · · · tαir

r and φj = vjt
βj1

1 · · · tβjr
r , where αik, βjk ∈ Z, u1, . . . , un, v1, . . . , vl

are units of OX(C),P and t1, . . . , tr are prime elements of OX(C),P . Then

|φ1|x1 · · · |φl|xl exp(−g/2)

= |u1|a1 · · · |un|an |v1|x1 · · · |vl|xl |t1|
∑

i aiαi1+
∑

j xjβj1 · · · |tr|
∑

i aiαir+
∑

j xjβjr

× exp(−h/2) (a.e.).

Note that
∑

i aiαik +
∑

j xjβjk (k = 1, . . . , r) are bounded nonnegative numbers

(cf. (3.1.1.1) in the proof of Lemma 3.1.1). Thus the claim follows. �
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By the above claim, we obtain∣∣‖ϕx1
1 · · ·ϕxl

l ‖pg,Lp − ‖ϕy1

1 · · ·ϕyl

l ‖pg,Lp

∣∣
≤
∫
X(C)

∣∣1− |ϕ1|p(y1−x1) · · · |ϕl|p(yl−xl)
∣∣(|ϕ1|x1 · · · |ϕl|xl exp(−g/2)

)p
Ω

≤
∫
X(C)

∣∣1− |ϕ1|p(y1−x1) · · · |ϕl|p(yl−xl)
∣∣MpΩ

for (x1, . . . , xl), (y1, . . . , yl) ∈Φ. Thus the first assertion follows from the following

Lemma 3.2.2.

For the second assertion, note that limp→∞ ‖ϕx1
1 · · ·ϕxl

l ‖g,Lp = ‖ϕx1
1 · · ·

ϕxl

l ‖g,sup for (x1, . . . , xl) ∈ Φ (cf. [11, proof of Corollary 19.9]). Thus it follows

from the first assertion. �

LEMMA 3.2.2

Let M be a d-equidimensional complex manifold, and let ω be a continuous (d, d)-

form on M such that ω = νΩ, where Ω is a volume form on M and ν is a non-

negative real-valued continuous function on M . Let ϕ1, . . . , ϕd be meromorphic

functions such that ϕi’s are nonzero on each connected component of M . Then

lim
(x1,...,xl)→(0,...,0)

∫
M

∣∣1− |ϕ1|x1 · · · |ϕl|xl
∣∣ω = 0.

Proof

Clearly we may assume thatM is connected. Let μ :M ′ →M be a proper bimero-

morphic morphism of compact complex manifolds such that the principal divisors

(μ∗(ϕ1)), . . . , (μ
∗(ϕl)) are normal crossing. Note that there are a volume form Ω′

on M ′ and a nonnegative real-valued continuous function ν′ on M ′ such that

μ∗(ω) = ν′Ω′. Moreover,∫
M ′

∣∣1− |μ∗(ϕ1)|x1 · · · |μ∗(ϕl)|xl
∣∣μ∗(ω) =

∫
M

∣∣1− |ϕ1|x1 · · · |ϕl|xl
∣∣ω.

Thus we may assume that the principal divisors (ϕ1), . . . , (ϕl) are normal cross-

ing. Here let us consider the following claim.

CLAIM 3.2.2.1

Let ϕ1, . . . , ϕl be meromorphic functions on

Δd =
{
(z1, . . . , zd) ∈Cd

∣∣ |z1|< 1, . . . , |zd|< 1
}

such that ϕi = zc1i1 · · ·zcdid ·ui (i= 1, . . . , l), where cji ∈ Z and the ui’s are nowhere

vanishing holomorphic functions on {(z1, . . . , zd) ∈Cd | |z1|< 1+ δ, . . . , |zd|< 1+

δ} for some δ ∈R>0. Then

lim
(x1,...,xl)→(0,...,0)

∫
Δd

∣∣1− |ϕ1|x1 · · · |ϕl|xl
∣∣(√−1

2

)d
dz1 ∧ dz̄1 ∧ · · · ∧ dzd ∧ dz̄d = 0.
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Proof

If we set yj =
∑l

i=1 cjixi, then

|ϕ1|x1 · · · |ϕl|xl = |z1|y1 · · · |zd|yd |u1|x1 · · · |ul|xl .

Thus, if we put zi = ri exp(
√
−1θi), then∫

Δd

∣∣1− |ϕ1|x1 · · · |ϕl|xl
∣∣(√−1

2

)d
dz1 ∧ dz̄1 ∧ · · · ∧ dzd ∧ dz̄d

=

∫
([0,1]×[0,2π])d

∣∣r1 · · · rd
− r1+y1

1 · · · r1+yd

d |u1|x1 · · · |ul|xl
∣∣dr1 ∧ dθ1 ∧ · · · ∧ drd ∧ dθd.

Note that r1+y1

1 · · · r1+yd

d |u1|x1 · · · |ul|xl → r1 · · · rd uniformly, as (x1, . . . , xl) →
(0, . . . ,0), on ([0,1]× [0,2π])d. Thus the claim follows. �

Let us choose a covering {Uj}Nj=1 of M with the following properties.

(a) For each j, there is a local parameter (w1, . . . ,wd) of Uj such that Uj

can be identified with Δd in terms of (w1, . . . ,wd).

(b) We have Supp((φi))∩Uj ⊆ {w1 · · ·wd = 0} for all i and j.

Let {ρj}Nj=1 be a partition of unity subordinate to the covering {Uj}Nj=1. Then∫
M

∣∣1− |ϕ1|x1 · · · |ϕl|xl
∣∣ω =

N∑
j=1

∫
M

∣∣1− |ϕ1|x1 · · · |ϕl|xl
∣∣ρjω.

Note that there is a positive constant Cj such that

ρjω ≤Cj

(√−1

2

)d
dw1 ∧ dw̄1 ∧ · · · ∧ dwd ∧ dw̄d.

Thus the lemma follows from the above claim. �

3.3. Compactness theorem
Let H be an ample arithmetic R-Cartier divisor on X . Let Γ be a prime divisor

on X , and let gΓ be an F∞-invariant Γ-Green function of C0-type such that∫
Xσ

gΓc1(H)d−1 =−2 d̂eg(H
d−1 · (Γ,0))

[K :Q]

for each σ ∈K(C). We set Γ = (Γ, gΓ). Note that

Γ ∈ ŴDivC0(X)R and d̂eg(H
d−1 · Γ) = 0

(see Section 0.10(4)). Moreover, let C0
0 (X) be the space of F∞-invariant real-

valued continuous functions η on X(C) with
∫
X(C)

ηc1(H)d−1 = 0.

The following theorem will provide a useful tool to find an element of

Γ̂×
R (X,D).
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THEOREM 3.3.1

Let X(1) be the set of all prime divisors on X. For an arithmetic R-Weil divisor

D of C0-type (cf. Section 0.10(4)), we set

Υ(D) =
{
(aaa, η) ∈R(X(1))⊕C0

0 (X)
∣∣∣D+

∑
Γ

aaaΓΓ+ (0, η)≥ 0
}
,

where R(X(1)) is the vector space generated by X(1) over R (cf. Section 0.10(5)).

Then Υ(D) has the following boundedness.

(1) For each Γ ∈X(1), {aaaΓ}(aaa,η)∈Υ(D) is bounded.

(2) For each σ ∈K(C),{∫
Xσ

ηc1(H)d−1
}
(aaa,η)∈Υ(D)

is bounded.

Proof

We set D =
(∑

Γ dΓΓ, g
)
. Here we claim the following.

CLAIM 3.3.1.1

(1) For all (aaa, η) ∈Υ(D) and Γ ∈X(1),

−dΓ ≤ aaaΓ ≤
1
2

∫
X(C)

gc1(H)∧d−1 +
∑

Γ′∈X(1)\{Γ} dΓ′ d̂eg(H
d−1 · (Γ′,0))

d̂eg(H
d−1 · (Γ,0))

.

(2) For all (aaa, η) ∈Υ(D) and σ ∈K(C),

−2 d̂eg(H
d−1 · (D,0))

[K :Q]
−
∫
Xσ

gc1(H)d−1 ≤
∫
Xσ

ηc1(H)d−1.

Proof

(1) The first inequality is obvious because −dΓ ≤ aaaΓ for (aaa, η) ∈ Υ(D) and Γ ∈
X(1). Moreover, for Γ′ ∈X(1),

0 = d̂eg(H
d−1 · Γ′

)

= d̂eg
(
H

d−1 · (Γ′,0)
)
+

1

2

∫
X(C)

gΓ′c1(H)∧d−1.

Thus, as
∑

Γ′ aaaΓ′gΓ′ + η+ g ≥ 0, we have∑
Γ′

aaaΓ′ d̂eg
(
H

d−1 · (Γ′,0)
)

≤
∑
Γ′

aaaΓ′ d̂eg
(
H

d−1 · (Γ′,0)
)
+

1

2

∫
X(C)

(∑
Γ′

aaaΓ′gΓ′ + η+ g
)
c1(H)∧d−1

=
∑
Γ′

aaaΓ′

(
d̂eg(H

d−1 · (Γ′,0)) +
1

2

∫
X(C)

gΓ′c1(H)∧d−1
)
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+
1

2

∫
X(C)

ηc1(H)∧d−1 +
1

2

∫
X(C)

gc1(H)∧d−1

=
1

2

∫
X(C)

gc1(H)∧d−1,

and hence

aaaΓ d̂eg
(
H

d−1 · (Γ,0)
)

=
∑

Γ′∈X(1)

aaaΓ′ d̂eg
(
H

d−1 · (Γ′,0)
)
+

∑
Γ′∈X(1)\{Γ}

(−aaaΓ′) d̂eg
(
H

d−1 · (Γ′,0)
)

≤ 1

2

∫
X(C)

gc1(H)∧d−1 +
∑
Γ′ 
=Γ

dΓ′ d̂eg
(
H

d−1 · (Γ′,0)
)

for all Γ, which shows the second inequality.

(2) Since
∑

ΓaaaΓΓ+D ≥ 0, we obtain

0 ≤ d̂eg

(
H

d−1 ·
(∑

Γ

aaaΓΓ+D,0
))

=
∑
Γ

aaaΓ d̂eg
(
H

d−1 · (Γ,0)
)
+ d̂eg

(
H

d−1 · (D,0)
)
.

Therefore, as ∫
Xσ

gΓc1(H)d−1 =
−2 d̂eg(H

d−1
(Γ,0))

[K :Q]
,

0≤
∫
Xσ

(∑
Γ

aaaΓgΓ + η+ g
)
c1(H)d−1

=
−2

∑
ΓaaaΓ d̂eg(H

d−1
(Γ,0))

[K :Q]
+

∫
Xσ

ηc1(H)d−1 +

∫
Xσ

gc1(H)d−1

≤ 2 d̂eg(H
d−1 · (D,0))

[K :Q]
+

∫
Xσ

ηc1(H)d−1 +

∫
Xσ

gc1(H)d−1,

as required. �

By Claim 3.3.1.1(1), {aaaΓ}(aaa,η)∈Υ(D) is bounded for each Γ. Further, by (2), there

is a constant M such that ∫
Xσ

ηc1(H)d−1 ≥M

for all (aaa, η) ∈Υ(D) and σ ∈K(C), and hence

M ≤
∫
Xσ

ηc1(H)d−1 =
∑

σ′∈K(C)\{σ}
−
∫
Xσ′

ηc1(H)d−1 ≤
(
#(K(C))− 1

)
(−M),

as desired. �
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COROLLARY 3.3.2

Let Λ be a finite set, and let {Dλ}λ∈Λ be a family of arithmetic R-Weil divisors

of C∞-type with the following properties:

(a) d̂eg(H
d−1 ·Dλ) = 0 for λ ∈ Λ;

(b) for each λ ∈ Λ, there is an F∞-invariant locally constant function ρλ
such that

c1(Dλ)∧ c1(H)∧d−2 = ρλc1(H)∧d−1;

(c) {Dλ}λ∈Λ is linearly independent in ŴDivC∞(X)R.

Then, for D ∈ ŴDivC0(X)R, the set{
aaa ∈R(Λ)

∣∣∣D+
∑
λ∈Λ

aaaλDλ ≥ 0
}

is convex and compact.

Proof

The convexity of the above set is obvious, so we need to show compactness. We

pose more conditions on the Γ-Green function gΓ; that is, we further assume that

gΓ is of C∞-type and c1(Γ)∧c1(H)∧d−2 = νΓc1(H)∧d−1 for some locally constant

function νΓ on X(C). Note that this is actually possible. We set

ΞX :=
{
ξ :X(C)→R

∣∣∣ ξ is locally constant, F∞-invariant and
∑

σ∈K(C)

ξσ = 0
}
.

Then there are αλΓ ∈R and ξλ ∈ ΞX such that

Dλ =
∑
Γ

αλΓΓ+ (0, ξλ)

for each λ. Therefore,∑
λ

aaaλDλ =
∑
Γ

(∑
λ

aaaλαλΓ

)
Γ+

∑
λ

aaaλξλ.

Let us consider a linear map

T :R(Λ)→R(X(1))⊕ΞX

given by T (aaa) = (T1(aaa), T2(aaa)), where

T1(aaa)Γ =
∑
λ

aaaλαλΓ (Γ ∈X(1)) and T2(aaa) =
∑
λ

aaaλξλ.

Then T is injective. Indeed, if T (aaa) = 0, then∑
λ

aaaλαλΓ = 0 (∀Γ) and
∑
λ

aaaλξλ = 0.

Thus
∑

λaaaλDλ = 0, and hence aaa= 0. Since Λ is finite, we can find a finite subset

Λ′ of X(1) such that the image of T is contained in R(Λ′)⊕ ΞX . Moreover, by
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Theorem 3.3.1, Υ(D)∩ (R(Λ′)⊕ΞX) is compact. Thus{
aaa ∈R(Λ)

∣∣∣D+
∑
λ∈Λ

aaaλDλ ≥ 0
}
= T−1

(
Υ(D)∩ (R(Λ′)⊕ΞX)

)
is also compact. �

COROLLARY 3.3.3

Let ϕ1, . . . , ϕl be R-rational functions on X (i.e., ϕ1, . . . , ϕl ∈Rat(X)×R ), and let

D = (D,g) be an arithmetic R-Cartier divisor of C0-type on X. If

Φ=
{
(a1, . . . , al) ∈Rl

∣∣ ϕa1
1 · · ·ϕal

l ∈ Γ×
R (X,D)

}
�= ∅,

then there exists (b1, . . . , bl) ∈Φ such that

‖ϕb1
1 · · ·ϕbl

l ‖g,sup = inf
(a1,...,al)∈Φ

{
‖ϕa1

1 · · ·ϕal

l ‖g,sup
}
.

Proof

Clearly we may assume that ϕ1, . . . , ϕl are linearly independent in Rat(X)×R .

Replacing g by g+ λ (λ ∈R) if necessary, we may further assume that{
(a1, . . . , al) ∈Rl

∣∣ ϕa1
1 · · ·ϕal

l ∈ Γ̂×
R (X,D)

}
�= ∅.

We denote the above set by Φ̂. As

Φ̂ =
{
(a1, . . . , al) ∈Φ

∣∣ ‖ϕa1
1 · · ·ϕal

l ‖g,sup ≤ 1
}
,

we have

inf
(a1,...,al)∈Φ

{
‖ϕa1

1 · · ·ϕal

l ‖g,sup
}
= inf

(a1,...,al)∈Φ̂

{
‖ϕa1

1 · · ·ϕal

l ‖g,sup
}
.

On the other hand, Φ̂ is compact by Corollary 3.3.2. Thus the assertion of the

corollary follows from Proposition 3.2.1. �

3.4. Dirichlet’s unit theorem on arithmetic curves
We assume d = 1, that is, X = Spec(OK). In this subsection, we would like to

give a proof of Dirichlet’s unit theorem in the flavor of Arakelov theory (cf. [23]).

Of course, the contents of this subsection are nothing new, but it provides the

background of this paper and a usage of the compactness theorem (cf. Corol-

lary 3.3.2). The referees point out that Chambert and Loir give a similar proof

based on a certain kind of compactness in [4, Section 1.4, D]. Let us begin with

the following weak version of Dirichlet’s unit theorem, which is much easier than

Dirichlet’s unit theorem.

LEMMA 3.4.1

O×
K is a finitely generated abelian group.

Proof

This is a standard fact. Indeed, let us consider a homomorphism L :O×
K →RK(C)

given by L(x)σ = log |σ(x)| for σ ∈K(C). It is easy to see that, for any bounded
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set B in RK(C), the set {x ∈O×
K | L(x) ∈B} is a finite set. Thus the assertion of

the lemma is obvious. �

We denote the set of all maximal ideals of OK by MK . For an R-Cartier divisor

E =
∑

P∈MK
ePP on X , we define deg(E) and Supp(E) to be

deg(E) =
∑

P∈MK

eP log
(
#(OK/P )

)
and Supp(E) :=

{
P ∈MK

∣∣ eP �= 0
}
.

LEMMA 3.4.2

For a constant C, the set {E ∈Div(X) |E ≥ 0 and deg(E)≤C} is finite.

Proof

This is obvious. �

LEMMA 3.4.3

If we set K×
Σ =

{
x ∈K× | Supp((x))⊆Σ

}
for a finite subset Σ of MK , then K×

Σ

is a finitely generated subgroup of K×.

Proof

Let us consider a homomorphism α : K×
Σ → ZΣ given by α(x)P = ordP (x) for

P ∈Σ. Then Ker(α) =O×
K , and the image of α is a finitely generated. Thus the

lemma follows from the above weak version of Dirichlet’s unit theorem. �

LEMMA 3.4.4

We set CK = log((2/π)r2
√

|dK/Q|), where r2 is the number of complex embed-

dings of K into C and dK/Q is the discriminant of K over Q. If d̂eg(D)≥ CK

for D ∈ D̂iv(X), then there is x ∈K× such that D+ (̂x)≥ 0.

Proof

This is a consequence of Minkowski’s theorem and the arithmetic Riemann–Roch

theorem on arithmetic curves. �

The following proposition is a core part of Dirichlet’s unit theorem in terms

of Arakelov theory and can be proved by using the arithmetic Riemann–Roch

theorem and the compactness theorem (cf. Corollaries 3.3.2, 3.3.3). As a corollary,

it actually implies Dirichlet’s unit theorem itself (cf. Corollary 3.4.7).

PROPOSITION 3.4.5

Let D = (D,g) be an arithmetic R-Cartier divisor on X. Then the following are

equivalent:

(i) d̂eg(D) = 0,

(ii) D ∈ P̂Div(X)R,

(iii) d̂eg(D) = 0 and Γ̂×
R (X,D) �= ∅.
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Proof

(iii) =⇒ (ii). By our assumption, D + z ≥ 0 for some z ∈ P̂Div(X)R. If we set

E =D + z, then E is effective and d̂eg(E) = d̂eg(D) + d̂eg(z) = 0. Thus E = 0,

and hence D =−z ∈ P̂Div(X)R.

(ii) =⇒ (i). This is obvious.

(i) =⇒ (iii). First of all, we can find α1, . . . , αl ∈R>0 andD1, . . . ,Dl ∈ D̂iv(X)

such that D = α1D1 + · · · + αlDl and deg(Di) = 0 for all i. If we can choose

ψi ∈ Γ̂×
R (X,Di) for all i, then ψα1

1 · · ·ψαl

l ∈ Γ̂×
R (X,D). Thus we may assume that

D ∈ D̂iv(X) in order to show (i) =⇒ (iii). For a positive integer n, we set

Dn =D+
(
0,

2CK

n[K :Q]

)
.

Since d̂eg(nDn) = CK , by Lemma 3.4.4, there is xn ∈ K× such that nDn +

(̂xn)≥ 0. In particular, nD+ (xn)≥ 0 and

deg
(
nD+ (xn)

)
≤ d̂eg

(
nDn + (̂xn)

)
=CK .

Thus, by Lemma 3.4.2, there is a finite subset Σ′ of MK such that

Supp
(
nD+ (xn)

)
⊆Σ′

for all n≥ 1. Note that Supp((xn))⊆ Supp((xn)+nD)∪Supp(D). Therefore, we

can find a finite subset Σ ofMK such that xn ∈K×
Σ for all n≥ 1. By Lemma 3.4.3,

we can take a basis ϕ1, . . . , ϕs of K×
Σ ⊗Z R over R. Then, by Corollary 3.3.3, if

we set

Φ =
{
(a1, . . . , as) ∈Rs

∣∣ ϕa1
1 · · ·ϕas

s ∈ Γ×
R (X,D)

}
,

there exists (c1, . . . , cs) ∈Φ such that

‖ϕc1
1 · · ·ϕcs

s ‖g,sup = inf
(a1,...,as)∈Φ

{
‖ϕa1

1 · · ·ϕas
s ‖g,sup

}
;

that is, if we set ψ = ϕc1
1 · · ·ϕcs

s , then ‖ψ‖g,sup = infϕ∈Γ×
R (X,D)∩(K×

Σ ⊗ZR)
{‖ϕ‖g,sup}.

On the other hand, as Dn +
̂
(x

1/n
n )R ≥ 0, we have x

1/n
n ∈ Γ×

R (X,D)∩ (K×
Σ ⊗Z R)

and ‖x1/n
n ‖g,sup ≤ exp(CK/n[K : Q]), so that ‖ψ‖g,sup ≤ exp(CK/n[K : Q]) for

all n > 0, and hence ‖ψ‖g,sup ≤ 1, as required. �

As corollaries, we have the following. The second one is nothing more than a

form of Dirichlet’s unit theorem.

COROLLARY 3.4.6

Let D = (D,g) be an arithmetic R-Cartier divisor on X. Then there exists ψ ∈
Γ×
R (X,D) such that

‖ψ‖g,sup = inf
{
‖φ‖g,sup

∣∣ φ ∈ Γ×
R (X,D)

}
.

Proof

Clearly if the assertion holds for D, then it does also for D+ (0, c) for all c ∈R.

Thus we may assume that d̂eg(D) = 0. We set D =
∑

P∈MK
dPP . Then, for
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φ ∈ Γ×
R (X,D), by using the product formula (3.1.2.1) in Remark 3.1.2,∏

σ∈K(C)

|φ|σ exp(−gσ/2) =
∏

P∈X(1)

#(OK/P )ordP (φ)+dP ≥ 1,

and hence ‖φ‖g,sup ≥ 1. On the other hand, by Proposition 3.4.5, there is ψ ∈
Γ×
R (X,D) with ‖ψ‖g,sup ≤ 1, as required. �

COROLLARY 3.4.7 (DIRICHLET’S UNIT THEOREM)

Let ξ be an element of RK(C) such that∑
σ∈K(C)

ξσ = 0 and ξσ = ξσ̄
(
∀σ ∈K(C)

)
.

Then there are u1, . . . , us ∈O×
K and a1, . . . , as ∈R such that

ξσ = a1 log |u1|σ + · · ·+ as log |us|σ
for all σ ∈K(C), that is, (0, ξ) + (a1/2)(̂u1) + · · ·+ (as/2)(̂us) = 0.

Proof

Since d̂eg((0, ξ)) = 0, by virtue of Proposition 3.4.5 and Lemma 1.1.1(1), there are

a′1, . . . , a
′
s ∈ R and u1, . . . , us ∈K× such that a′1, . . . , a

′
s are linearly independent

over Q and (0, ξ) = a′1(̂u1) + · · ·+ a′s(̂us). We set (uj) =
∑l

k=1αjkPk for each j,

where αjk ∈ Z and P1, . . . , Pl are distinct maximal ideals of OK . Then

0 = a′1(u1) + · · ·+ a′s(us) =
( s∑
j=1

a′jαj1

)
P1 + · · ·+

( s∑
j=1

a′jαjl

)
Pl.

Thus
∑s

j=1 a
′
jαjk = 0 for all k, and hence αjk = 0 for all j, k, which means that

u1, . . . , us ∈O×
K . Therefore, if we set aj =−2a′j , then the corollary follows. �

REMARK 3.4.8

Similarly, the finiteness of Div(X)/PDiv(X) is also a consequence of Lem-

mas 3.4.2 and 3.4.4 (cf. [23]). Indeed, if we set

Θ =
{
E ∈Div(X)

∣∣E ≥ 0 and deg(E)≤CK

}
,

then Θ is a finite set by Lemma 3.4.2. Thus it is sufficient to show that, for

D ∈Div(X), there is x ∈K× such that D+ (x) ∈Θ. Since

d̂eg
(
D,

2(CK − deg(D))

[K :Q]

)
=CK ,

by Lemma 3.4.4, there is x ∈ K× such that
(
D, 2(CK−deg(D))

[K:Q]

)
+ (̂x) ≥ 0, that

is, D+ (x)≥ 0 and log |x|σ ≤ CK−deg(D)
[K:Q] for all σ ∈K(C). By using the product

formula,

deg
(
D+ (x)

)
= deg(D) +

∑
σ

log |x|σ ≤ deg(D) +
∑
σ

CK − deg(D)

[K :Q]
=CK .

Therefore, D+ (x) ∈Θ, as required.
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3.5. Dirichlet’s unit theorem on higher-dimensional arithmetic varieties
In this subsection, we will give a partial answer to the fundamental question as an

application of the Hodge index theorem. First we consider the case where d= 1.

PROPOSITION 3.5.1

We assume d= 1, that is, X = Spec(OK). For an arithmetic R-Cartier divisor

D on X, the following are equivalent:

(i) D is pseudoeffective;

(ii) deg(D)≥ 0;

(iii) Γ̂×
R (X,D) �= ∅.

Proof

(i) =⇒ (ii). Let A be an ample arithmetic Cartier divisor on X . Then D+ εA is

big for any ε > 0; that is, d̂eg(D+ εA)> 0. Therefore, d̂eg(D)≥ 0.

(ii) =⇒ (iii). If d̂eg(D) > 0, then the assertion is obvious because Ĥ0(X,

nD) �= {0} for n� 1, so that we assume d̂eg(D) = 0. Then D ∈ P̂Div(X)R by

Proposition 3.4.5.

(iii) =⇒ (i). This is obvious. �

To proceed with further arguments, we need the following lemma.

LEMMA 3.5.2

We assume that X is regular. Let us fix an ample Q-Cartier divisor H on X.

Let P1, . . . , Pl ∈ Spec(OK), and let FP1 , . . . , FPl
be prime divisors on X such that

FPi ⊆ π−1(Pi) for all i. If A is an ample Q-Cartier divisor on X, then there is

an effective Q-Cartier divisor M on X with the following properties:

(a) Supp(M)⊆ π−1(P1)∪ · · · ∪ π−1(Pl);

(b) A−M is divisorially π-nef with respect to H , that is, degH(A−M ·Γ)≥ 0

for all vertical prime divisors Γ on X (cf. Section 2.2);

(c) degH(A−M · F ) = 0 for all closed integral integral curve F on X with

F ⊆ π−1(P1)∪ · · · ∪ π−1(Pl) and F �= FPi (∀i).

Proof

Let us begin with the following claim.

CLAIM 3.5.2.1

Let π−1(Pk) = a1F1 + · · · + anFn be the irreducible decomposition as a cycle,

where ai ∈ Z>0. Renumbering F1, . . . , Fn, we may assume FPk
= F1. Then there

are x1, . . . , xn ∈Q>0 such that if we set Mk = x1F1+ · · ·+xnFn, then degH(A−
Mk · F1)> 0 and degH(A−Mk · Fi) = 0 for i= 2, . . . , n.

Proof

By Lemma 2.2.1, there are x1, . . . , xn ∈Q such that
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⎛⎜⎝degH(F2 · F1) degH(F2 · F2) · · · degH(F2 · Fn)
...

...
. . .

...

degH(Fn · F1) degH(Fn · F2) · · · degH(Fn · Fn)

⎞⎟⎠
⎛⎜⎝x1

...

xn

⎞⎟⎠

=

⎛⎜⎝degH(A · F2)
...

degH(A · Fn)

⎞⎟⎠ .

Replacing xi by xi + tai, we may assume that xi > 0 for all i. We set Mk =

x1F1 + · · · + xnFn. Then degH(A − Mk · Fi) = 0 for all i = 2, . . . , n. Here we

assume that degH(A−Mk · F1)≤ 0. Then

0< degH(A · F1)≤ degH(Mk · F1),

and hence

degH(Mk ·Mk) =

n∑
i=1

xi degH(Mk · Fi)

= x1 degH(Mk · F1) +

n∑
i=2

xi degH(A · Fi)> 0.

This contradicts Zariski’s lemma (cf. Lemma 1.1.4). �

Let M1, . . . ,Mn be effective Q-Cartier divisors as in the above claim. If we set

M =M1 + · · ·+Ml,

then M is our desired Q-Cartier divisor. �

The following theorem is a partial answer to the fundamental question.

THEOREM 3.5.3

Let D be a pseudoeffective arithmetic R-Cartier divisor of C0-type. If d≥ 2 and

D is numerically trivial on XQ, then Γ̂×
R (X,D) �= ∅.

Proof

Let us begin with the following claim.

CLAIM 3.5.3.1

We may assume that X is regular.

Proof

By [6, Theorem 8.2], there is a generically finite morphism μ : Y →X of projective

arithmetic varieties such that Y is regular. Clearly we have the following:{
D is pseudoeffective =⇒ μ∗(D) is pseudoeffective,

D is numerically trivial on XQ =⇒ μ∗(D) is numerically trivial on YQ
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because v̂ol(μ∗(L))≥ v̂ol(L) for any arithmetic R-Cartier divisor L of C0-type on

X . Let D̂ivCur(X)R be the vector space over R consisting of pairs (D,T ), where

D is an R-Cartier divisor D and T is an F∞-invariant (0,0)-current of real type.

We can assign an ordering ≥ to D̂ivCur(X)R in the following way:

(D1, T1)≥ (D2, T2)⇐⇒D1 ≥D1 and T1 ≥ T2.

In the same way, we can define D̂ivCur(Y )R and the ordering on D̂ivCur(Y )R. Let

μ∗ : D̂ivCur(Y )R → D̂ivCur(X)R

be a homomorphism given by μ∗(D,T ) = (μ∗(D), μ∗(T )). Let

N : Rat(Y )× →Rat(X)×

be the norm map. Then it is easy to see the following:⎧⎪⎪⎨⎪⎪⎩
μ∗(ψ̂) = ̂(N(ψ)) for ψ ∈Rat(Y )×,

μ∗(μ
∗(D)) = deg(Y →X)D for D ∈ D̂ivC0(X)R,

(D1, T1)≥ (D2, T2) =⇒ μ∗(D1, T1)≥ μ∗(D2, T2).

The first equation yields a homomorphism

μ∗ : P̂Div(Y )R → P̂Div(X)R.

Thus the claim follows from the above formulae. �

First of all, by Theorem 2.3.3, DQ ∈ PDiv(XQ)R. Thus there are z ∈ P̂Div(X)R,

a vertical R-Cartier divisor E, and an F∞-invariant continuous function η on

X(C) such that D = z + (E,η).

CLAIM 3.5.3.2

We may assume the following.

(a) E is effective.

(b) There are P1, . . . , Pl ∈ Spec(OK) such that Supp(E) ⊆ π−1(P1) ∪ · · · ∪
π−1(Pl).

(c) For each i= 1, . . . , l, there is a closed integral curve FPi on X such that

FPi ⊆ π−1(Pi) and FPi �⊆ Supp(E).

Proof

Clearly we can choose P1, . . . , Pl ∈ Spec(OK) and β1, . . . , βl ∈ R such that if we

set E′ =E+β1π
−1(P1)+ · · ·+βlπ

−1(Pl), then E′ satisfy the above (a), (b), and

(c). Moreover, since the class group of OK is finite (cf. Remark 3.4.8), there are

ni ∈ Z>0 and fi ∈OK such that niPi = fiOK . Thus β1π
−1(P1)+ · · ·+βlπ

−1(Pl) ∈
PDiv(X)R, and hence the claim follows. �

Note that (E,η) is pseudoeffective by Lemma 2.3.4. By Lemma 2.3.5, there is

a locally constant function λ on X(C) such that (E,η) ≥ (E,λ) and (E,λ) is

pseudoeffective. Let us fix an ample arithmetic Cartier divisor H = (H,h) on X .



250 Atsushi Moriwaki

Then, by Lemma 3.5.2, there is an effective vertical Q-Cartier divisor M such

that

degH(H −M ·E) = 0 and degH(H −M · Γ)≥ 0

for all vertical prime divisors Γ.

CLAIM 3.5.3.3

There is a constant c such that if we set h′ = h+ c, then

d̂eg
(
(H −M,h′) ·Hd−2 · (Γ,0)

)
≥ 0

for all horizontal prime divisors Γ on X.

Proof

Note that d̂eg((H,h) ·Hd−2 · (Γ,0))≥ 0. Thus it is sufficient to find a constant c

such that

d̂eg
(
(M,−c) ·Hd−2 · (Γ,0)

)
≤ 0

for all horizontal prime divisors Γ on X . We choose Q1, . . . ,Qm ∈ Spec(OK) and

α1, . . . , αm ∈ R>0 such that M ≤
∑m

i=1αiπ
−1(Qi). We also choose a constant c

such that

c[K :Q]≥
m∑
i=1

αi log#(OK/Qi).

Then

d̂eg
(
(M,−c) ·Hd−2 · (Γ,0)

)
≤ d̂eg

(( m∑
i=1

αiπ
−1(Qi),−c

)
·Hd−2 · (Γ,0)

)

≤
m∑
i=1

αi

deg(Hd−2
Q · ΓQ)

[K :Q]
log#(OK/Qi)− cdeg(Hd−2

Q · ΓQ)≤ 0.
�

Let L= (L,k) be an effective R-Cartier divisor of C0-type. Then, since

d̂eg
(
(H −M,h′) ·Hd−2 · (L,0)

)
≥ 0

by the above claim, we have

d̂eg
(
(H −M,h′) ·Hd−2 · (L,k)

)
≥ d̂eg

(
(H −M,h′) ·Hd−2 · (0, k)

)
=

1

2

∫
X(C)

kc1(H)d−1 ≥ 0.

In particular,

d̂eg
(
(H −M,h′) ·Hd−2 · (E,λ)

)
≥ 0
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because (E,λ) is pseudoeffective. Note that

d̂eg
(
(H −M,h′) ·Hd−2 · (E,λ)

)
=

1

2

( ∑
σ∈K(C)

λσ

)∫
X(C)

c1(H)d−1.

Therefore,
∑

σ∈K(C) λσ ≥ 0, and hence, by Proposition 3.5.1, there are u1, . . . ,

us ∈K× and γ1, . . . , γs ∈R such that γ1(̂u1) + · · ·+ γs(̂us)≤ (0, λ). Thus

D = z + (E,η)≥ z + (0, λ)≥ z + γ1(̂u1) + · · ·+ γs(̂us). �

COROLLARY 3.5.4

If d = 2, D is pseudoeffective and deg(DQ) = 0, then the Zariski decomposition

of D exists.

3.6. Multiplicative generators of approximately smallest sections
In this subsection, we define a notion of multiplicative generators of approxi-

mately smallest sections and observe its properties. It is a sufficient condition to

guarantee the fundamental question (cf. Corollary 3.6.4). Let D be an arithmetic

R-Cartier divisor of C0-type on X . Let us begin with its definition.

DEFINITION 3.6.1

We assume that Γ×
Q (X,D) �= ∅. Let ϕ1, . . . , ϕl be R-rational functions on X (i.e.,

ϕ1, . . . , ϕl ∈Rat(X)×R ). We say ϕ1, . . . , ϕl are multiplicative generators of approx-

imately smallest sections for D if, for a given ε > 0, there is n0 ∈ Z>0 such that,

for any integer n with n ≥ n0 and Γ×(X,nD) �= ∅, we can find a1, . . . , al ∈ R

satisfying ϕa1
1 · · ·ϕal

l ∈ Γ×
R (X,nD) and

‖ϕa1
1 · · ·ϕal

l ‖ng,sup ≤ eεnmin
{
‖φ‖ng,sup

∣∣ φ ∈ Γ×(X,nD)
}
.

First let us see the following proposition.

PROPOSITION 3.6.2

We assume that Γ×
Q (X,D) �= ∅. Let ϕ1, . . . , ϕl be R-rational functions on X. Then

the following are equivalent:

(1) ϕ1, . . . , ϕl are multiplicative generators of approximately smallest sec-

tions for D;

(2) there are x1, . . . , xl ∈R such that ϕx1
1 · · ·ϕxl

l ∈ Γ×
R (X,D) and

‖ϕx1
1 · · ·ϕxl

l ‖g,sup ≤ inf
{
‖f‖g,sup

∣∣ f ∈ Γ×
Q (X,D)

}
.

Note that if we set ψ = ϕx1
1 · · ·ϕxl

l in (2), then ψ forms a multiplicative generator

of approximately smallest sections for D.

Proof

It is obvious that (2) implies (1), so we assume (1). Let m be a positive integer

with Γ×(X,mD) �= ∅. Here, let us check the following claim.
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CLAIM 3.6.2.1

We have that limn→∞(min{‖h‖nmg,sup | h ∈ Γ×(X,nmD)})1/nm exists and

lim
n→∞

(
min

{
‖h‖nmg,sup

∣∣ h ∈ Γ×(X,nmD)
})1/nm

= inf
{
‖f‖g,sup

∣∣ f ∈ Γ×
Q (X,D)

}
.

Proof

If we set

an =min
{
‖h‖nmg,sup

∣∣ h ∈ Γ×(X,nmD)
}
,

then an+n′ ≤ anan′ for all n,n′ > 0. Thus it is easy to see that limn→∞ a
1/n
n =

infn>0{a1/nn }, which means

lim
n→∞

(
min

{
‖h‖nmg,sup

∣∣ h ∈ Γ×(X,nmD)
})1/nm

= inf
n>0

{
min{‖h1/nm‖g,sup | h ∈ Γ×(X,nmD)}

}
.

On the other hand, by Lemma 3.1.1(3),

Γ×
Q (X,D) = Γ×

Q (X,mD)1/m =
⋃
n>0

Γ×(X,nmD)1/nm,

and hence the claim follows. �

By Corollary 3.3.3, there exist x1, . . . , xl ∈R such that if we set

Φ =
{
(a1, . . . , al) ∈Rl

∣∣ ϕa1
1 · · ·ϕal

l ∈ Γ×
R (X,D)

}
,

then (x1, . . . , xl) ∈Φ and

‖ϕx1
1 · · ·ϕxl

l ‖g,sup = inf
(a1,...,al)∈Φ

{
‖ϕa1

1 · · ·ϕal

l ‖g,sup
}
.

On the other hand, by definition, for a given ε > 0, there is n0 ∈ Z>0 such that, for

any integer n≥ n0, we can find c1, . . . , cl ∈R satisfying ϕc1
1 · · ·ϕcl

l ∈ Γ×
R (X,nmD)

and

‖ϕc1
1 · · ·ϕcl

l ‖nmg,sup ≤ eεnmmin
{
‖h‖nmg,sup

∣∣ h ∈ Γ×(X,nmD)
}
.

Thus, as (c1/nm, . . . , cl/nm) ∈Φ,

‖ϕx1
1 · · ·ϕxl

l ‖g,sup ≤ ‖ϕc1/nm
1 · · ·ϕcl/nm

l ‖g,sup

≤ eε
(
min

{
‖h‖nmg,sup

∣∣ h ∈ Γ×(X,nmD)
})1/nm

for n≥ n0. Therefore, by Claim 3.6.2.1,

‖ϕx1
1 · · ·ϕxl

l ‖g,sup ≤ eε lim
n→∞

(
min

{
‖h‖nmg,sup

∣∣ h ∈ Γ×(X,nmD)
})1/nm

= eε inf
{
‖f‖g,sup

∣∣ f ∈ Γ×
Q (X,D)

}
.

Thus (2) follows because ε is arbitrary. �

By Corollary 3.4.6, if d= 1, then we can find ψ ∈ Γ×
R (X,D) such that

‖ψ‖g,sup = inf
{
‖φ‖g,sup

∣∣ φ ∈ Γ×
R (X,D)

}
.



Toward Dirichlet’s unit theorem on arithmetic varieties 253

Note that the above ψ yields a multiplicative generator of approximately smallest

sections. The same assertion holds if we assume the existence of multiplicative

generators of approximately smallest sections.

THEOREM 3.6.3

We assume that Γ×
Q (X,D) �= ∅. If D has multiplicative generators of approxi-

mately smallest sections, then there exists ψ ∈ Γ×
R (X,D) such that

‖ψ‖g,sup = inf
{
‖φ‖g,sup

∣∣ φ ∈ Γ×
R (X,D)

}
.

Proof

By Proposition 3.6.2, it is sufficient to see the following inequality:

(3.6.3.1) inf
{
‖f‖g,sup

∣∣ f ∈ Γ×
Q (X,D)

}
≤ inf

{
‖φ‖g,sup

∣∣ φ ∈ Γ×
R (X,D)

}
.

Let η ∈ Γ×
Q (X,D), D′ =D+ (η), and let g′ = g− log |η|2. Then⎧⎪⎪⎨⎪⎪⎩

Γ×
Q (X,D′) = {f/η | f ∈ Γ×

Q (X,D)},
Γ×
R (X,D′) = {φ/η | φ ∈ Γ×

R (X,D)},
‖φ/η‖g′,sup = ‖φ‖g,sup for φ ∈ Γ×

R (X,D),

and hence{
inf{‖f ′‖g′,sup | f ′ ∈ Γ×

Q (X,D′)}= inf{‖f‖g,sup | f ∈ Γ×
Q (X,D)},

inf{‖φ′‖g′,sup | φ′ ∈ Γ×
R (X,D′)}= inf{‖φ‖g,sup | φ ∈ Γ×

R (X,D)}.
Therefore, in order to see (3.6.3.1), we may assume that D is effective; that is, if

we set D =
∑

dΓΓ, then dΓ ≥ 0 for all Γ.

Let φ be an arbitrary element of Γ×
R (X,D). Then we can find f1, . . . ,

fr ∈ Rat(X)×Q and a1, . . . , ar ∈ R such that φ = fa1
1 · · ·far

r and a1, . . . , ar are

linearly independent over Q. Let S be the set of codimension one points of⋃r
i=1 Supp((fi)).

CLAIM 3.6.3.2

If ε is a positive number, then ordΓ(φ
1/(1+ε)) + dΓ > 0 for all Γ ∈ S.

Proof

It is sufficient to show that ordΓ(φ) + (1 + ε)dΓ > 0 for all Γ ∈ S. First of all,

note that ordΓ(φ) + dΓ ≥ 0. If either ordΓ(φ)> 0 or dΓ > 0, then the assertion is

obvious, so that we assume ordΓ(φ)≤ 0 and dΓ = 0. Then

ordΓ(φ) = a1 ordΓ(f1) + · · ·+ ar ordΓ(fr) = 0,

which yields ordΓ(f1) = · · ·= ordΓ(fr) = 0. This is a contradiction because Γ ∈ S.

�

As φ1/(1+ε) = f
a1/(1+ε)
1 · · ·far/(1+ε)

1 , by Claim 3.6.3.2, we can find δ > 0 such that

fx1
1 · · ·fxr

r ∈ Γ×
R (X,D) for all (x1, . . . , xr) ∈Rr with

|x1 − a1/(1 + ε)|+ · · ·+ |xr − ar/(1 + ε)| ≤ δ.
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We choose a sequence {tttn = (tn1, . . . , tnr)}∞n=1 of Qr such that

|tn1 − a1/(1 + ε)|+ · · ·+ |tnr − ar/(1 + ε)| ≤ δ

and limn→∞ tttn = (a1/(1 + ε), . . . , ar/(1 + ε)). Then

inf
{
‖f‖g,sup

∣∣ f ∈ Γ×
Q (X,D)

}
≤ ‖f tn1

1 · · ·f tnr
r ‖g,sup

because f tn1
1 · · ·f tnr

r ∈ Γ×
Q (X,D). Thus, by using Proposition 3.2.1, we obtain

inf
{
‖f‖g,sup

∣∣ f ∈ Γ×
Q (X,D)

}
≤ ‖φ1/(1+ε)‖g,sup,

which implies inf{‖f‖g,sup | f ∈ Γ×
Q (X,D)} ≤ ‖φ‖g,sup by Proposition 3.2.1 again.

Therefore, we have (3.6.3.1). �

As a corollary, we have the following.

COROLLARY 3.6.4

We assume the following:

(1) Γ̂×
Q (X,D+ (0, ε)) �= ∅ for any ε > 0;

(2) D has multiplicative generators of approximately smallest sections.

Then Γ̂×
R (X,D) �= ∅.

Proof

By the above theorem, there exists ψ ∈ Γ×
R (X,D) such that

‖ψ‖g,sup = inf
{
‖φ‖g,sup

∣∣ φ ∈ Γ×
R (X,D)

}
.

Since Γ̂×
Q (X,D+ (0, ε)) �= ∅, we can find φ ∈ Γ×

Q (X,D) with ‖φ‖g,sup ≤ eε/2, and

hence ‖ψ‖g,sup ≤ eε/2. Therefore, ‖ψ‖g,sup ≤ 1, as required. �

REMARK 3.6.5

(1) We assume that D ∈ Div(X)Q. Then Γ×
Q (X,D) is dense in Γ×

R (X,D); that

is, for fa1
1 · · ·far

r ∈ Γ×
R (X,D) with a1, . . . , ar ∈R and f1, . . . , fr ∈Rat(X)×Q , there

is a sequence {(a1n, . . . , arn)}∞n=1 in Qr such that fa1n
1 · · ·farn

r ∈ Γ×
Q (X,D) and

limn→∞(a1n, . . . , arn) = (a1, . . . , ar). In particular, Γ×
Q (X,D) �= ∅ if and only if

Γ×
R (X,D) �= ∅. This fact can be checked as follows. Clearly we may assume

that a1, . . . , ar are linearly independent over Q. Let S be the set of codimension

one points of
⋃

i Supp((fi)) and D =
∑

Γ dΓΓ (dΓ ∈ Q). If (Qa1 + · · ·+ Qar) ∩
Q = {0}, then it is easy to see that ordΓ(f

a1
1 · · ·far

r ) + dΓ > 0 for all Γ ∈ S.

Thus the assertion follows. If (Qa1 + · · ·+Qar) ∩Q = Q, then we may assume

that a1 ∈ Q and (Qa2 + · · · + Qar) ∩ Q = {0}. Thus, as before, we can find a

sequence {(a2n, . . . , arn)}∞n=1 in Qr−1 such that fa2n
2 · · ·farn

r ∈ Γ×
Q (X, (fa1

1 ) +D)

and limn→∞(a2n, . . . , arn) = (a2, . . . , ar), as required.

(2) The assertion of (1) does not hold in general. For example, let

P1
Z = Proj(Z[T0, T1]) and a ∈ R>0 \ Q. Then Γ×

R (X,a(T1/T0)) �= ∅ and Γ×
Q (X,

a(T1/T0)) = ∅. Indeed, za ∈ Γ×
R (X,a(T1/T0)), where z = T0/T1. Moreover, if
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Γ×
Q (X,a(T1/T0)) �= ∅, then there are n ∈ Z>0 and f ∈Q(z) such that (f)≥ na(z).

In particular, f ∈ Q[z], so that we can set f(z) =
∑t

i=s ciz
i, where 0 ≤ s ≤ t,

cs �= 0 and ct �= 0. Note that ord0(f) = s and ord∞(f) =−t. Thus na≤ s≤ t≤ na,

and hence na= s= t. This is a contraction because a ∈R>0 \Q.

Finally let us consider a sufficient condition for multiplicative generators of

approximately smallest sections. Let us fix an F∞-invariant continuous volume

form Ω on X with
∫
X(C)

Ω= 1. We assume that Γ×
Q (X,D) �= ∅. The natural inner

product 〈 , 〉nD on H0(X,nD)⊗R is given by

〈ϕ,ψ〉nD :=

∫
X(C)

ϕψ̄ exp(−ng)Ω
(
ϕ,ψ ∈H0(X,nD)

)
.

For ϕ1, . . . , ϕl ∈H0(X,D) and A = (a1, . . . , al) ∈ Zl
≥0, ϕ

a1
1 · · ·ϕal

l is denoted by

ϕϕϕA for simplicity. Note that ϕϕϕA ∈H0(X, |A|D), where |A|= a1 + · · ·+ al.

DEFINITION 3.6.6

We say ϕ1, . . . , ϕl ∈H0(X,D) \ {0} is a well-posed generator for D if, for n�
1, there is a subset Σn of {A = (a1, . . . , al) ∈ Zl

≥0 | a1 + · · · + al = n} with the

following properties:

(1) {ϕϕϕA |A ∈Σn} forms a basis of H0(X,nD)⊗Q over Q.

(2) Let 〈ϕϕϕA | A ∈ Σn〉Z be the Z-submodule generated by {ϕϕϕA | A ∈ Σn} in

H0(X,nD), that is, 〈ϕϕϕA |A ∈Σn〉Z =
∑

A∈Σn
ZϕϕϕA. Then

limsup
n→∞

(
#(H0(X,nD)/〈ϕϕϕA |A ∈Σn〉Z)

)1/n
= 1.

(3) For a finite subset {ψ1, . . . , ψr} of H0(X,nD)R, the square root of the

Gramian of ψ1, . . . , ψr with respect to 〈 , 〉nD is denoted by vol({ψ1, . . . , ψr}) (for
details, see Section 0.10(6)). Then

lim inf
n→∞

min

{( vol({ϕϕϕB |B ∈Σn})√
〈ϕϕϕA,ϕϕϕA〉nD vol({ϕϕϕB |B ∈Σn \ {A}})

)1/n ∣∣∣∣A ∈Σn

}
= 1.

PROPOSITION 3.6.7

We assume that D is of C∞-type. If ϕ1, . . . , ϕl ∈H0(X,D) \ {0} are well-posed

generators for D, then ϕ1, . . . , ϕl are multiplicative generators of approximately

smallest sections for D.

Proof

For a given ε > 0, we set ε′ = ε/6. First of all, there is a positive integer n0 such

that

rn =#
(
H0(X,nD)/〈ϕϕϕA |A ∈Σn〉Z

)
≤ enε

′

and

vol({ϕϕϕB |B ∈Σn})√
〈ϕϕϕA,ϕϕϕA〉vol({ϕϕϕB |B ∈Σn \ {A}})

≥ e−nε′
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for all n≥ n0 and A ∈Σn. Let WA be the subspace generated by {ϕϕϕB}B∈Σn\{A}
over R. If θA is the angle between ϕϕϕA and WA, then, by Lemma 1.1.2,

sin(θA) =
vol({ϕϕϕB |B ∈Σn})√

〈ϕϕϕA,ϕϕϕA〉vol({ϕϕϕB |B ∈Σn \ {A}})
,

and hence

cos(θA) =

√
1− sin2(θA)

≤
√
1− e−2nε′ ≤ 1− (1/2)e−2nε′

for all A ∈ Σn because
√
1− x≤ 1− (1/2)x for x ∈ [0,1]. Let y ∈WA, and let θ

be the angle between ϕϕϕA and y. Then, as θA ≤min{θ,π− θ},

|〈ϕϕϕA, y〉| ≤ cos(θA)
√

〈ϕϕϕA,ϕϕϕA〉
√
〈y, y〉

≤
(
1− (1/2)e−2nε′

)√
〈ϕϕϕA,ϕϕϕA〉

√
〈y, y〉.

Let φ ∈ Γ×(X,nD). Then we can find aA ∈ Q (A ∈ Σn) such that φ =∑
A∈Σn

aAϕϕϕ
A. Note that rnaA ∈ Z for all A ∈ Σn. Let us choose A0 ∈ Σn such

that aA0 �= 0. We set y =
∑

A∈Σn\{A0} aAϕϕϕ
A. Then φ = aA0ϕϕϕ

A0 + y. Since

enε
′ |aA0 | ≥ |rnaA0 | ≥ 1,

〈φ,φ〉 = a2A0
〈ϕϕϕA0 ,ϕϕϕA0〉+ 2aA0〈ϕϕϕA0 , y〉+ 〈y, y〉

≥ a2A0
〈ϕϕϕA0 ,ϕϕϕA0〉+ 〈y, y〉 − 2|aA0 | · |〈ϕϕϕA0 , y〉|

≥ a2A0
〈ϕϕϕA0 ,ϕϕϕA0〉+ 〈y, y〉 − 2|aA0 |

√
〈ϕϕϕA0 ,ϕϕϕA0〉

√
〈y, y〉

(
1− (1/2)e−2nε′

)
=
(
1− (1/2)e−2nε′

)
(|aA0 |

√
〈ϕϕϕA0 ,ϕϕϕA0〉 −

√
〈y, y〉)2

+ (1/2)e−2nε′(a2A0
〈ϕϕϕA0 ,ϕϕϕA0〉+ 〈y, y〉)

≥ (1/2)e−2nε′a2A0
〈ϕϕϕA0 ,ϕϕϕA0〉= (1/2)e−4nε′(enε

′
aA0)

2〈ϕϕϕA0 ,ϕϕϕA0〉

≥ (1/2)e−4nε′〈ϕϕϕA0 ,ϕϕϕA0〉.

On the other hand, by Gromov’s inequality (cf. [21, Proposition 3.1.1]), choosing

a larger n0 if necessarily, ‖ψ‖2sup ≤ enε
′〈ψ,ψ〉 for all n≥ n0 and ψ ∈H0(X,nD).

Moreover, we may also assume that 2 ≤ enε
′
for all n ≥ n0. Thus, as ‖φ‖2sup ≥

〈φ,φ〉,

enε‖φ‖2sup = e6nε
′‖φ‖2sup ≥ 2e5nε

′‖φ‖2sup ≥ 2e5nε
′〈φ,φ〉

≥ 2e5nε
′(
(1/2)e−4nε′〈ϕϕϕA0 ,ϕϕϕA0〉

)
= enε

′〈ϕϕϕA0 ,ϕϕϕA0〉 ≥ ‖ϕϕϕA0‖2sup,

as required. �

EXAMPLE 3.6.8

Let Pd
Z =Proj(Z[T0, T1, . . . , Td]), Hi = {Ti = 0}, and zi = Ti/T0 for i= 0,1, . . . , d.

Let D = (H0, g) be an arithmetic Cartier divisor of C∞-type on Pd
Z. Moreover, let
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Ω be an F∞-invariant continuous volume form on Pd(C). We assume that there

are continuous functions a and b on Rd
≥0 such that g(z1, . . . , zd) = a(|z1|, . . . , |zd|)

and

Ω=
(√−1

2π

)d
b(|z1|, . . . , |zd|)dz1 ∧ dz̄1 ∧ · · · ∧ dzd ∧ dz̄d.

Arithmetic Cartier divisors considered in [20] satisfy the above condition.

Here let us see that 1, z1, . . . , zd are well-posed generators for D. We set

Σn =
{
(a1, . . . , ad) ∈ Zd

≥0

∣∣ a1 + · · ·+ ad ≤ n
}
.

Then {zzzA}A∈Σn forms a free basis of H0(Pd
Z, nH0). Moreover, if we set

zi = ri exp(2π
√
−1θi) (i= 1, . . . , d),

then

〈zzzA,zzzA′〉ng =
∫
Rd

≥0×[0,1]d

( d∏
i=1

2r
Ai+A′

i+1
i exp(2π

√
−1(Ai −A′

i))
)

× exp
(
−na(r1, . . . , rd)

)
b(r1, . . . , rd)dr1 · · ·drd dθ1 · · ·dθd,

which implies 〈zzzA,zzzA′〉ng = 0 for A,A′ ∈Σn with A �=A′, and hence

vol({zzzB |B ∈Σn}) =
√
〈zzzA,zzzA〉vol

({
zzzB

∣∣B ∈Σn \ {A}
})

for all A ∈Σn.

Acknowledgments. I express my thanks to the referees for giving me several com-

ments and remarks.
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