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Abstract We give sharp bounds on the vanishing of the cohomology of a tensor prod-

uct of vector bundles on Pn in terms of the vanishing of the cohomology of the factors.

For this purposewe introduce regularity indices generalizing theCastelnuovo–Mumford

regularity.

As an application we give a sufficient condition for a vector bundle to have an unob-

structed deformation theory that depends only on the cohomology table of the bundle.

We construct complete families of bundles with such cohomology tables.

1. Introduction

If we know which cohomology groups of (all twists of) two vector bundles F ,G
on Pn are zero and nonzero, what can we say about the cohomology of twists of

F⊗G? For example, one might naively suppose that if HiF(a) �= 0 and HjG(b) �=
0, and if i+ j ≤ n, then at least for some sheaves with the given vanishing pattern

one might have Hi+jF ⊗G(a+ b) �= 0.

In this paper we will give sharp bounds on which cohomology groups of twists

of F ⊗ G vanish, and we will see that they are much more restrictive than the

naive idea above would suggest (see Example 1.3).

We were led to these bounds by a result from the Boij–Söderberg theory

of cohomology tables of vector bundles: by [4, Theorems 0.5, 6.2] there is, for

any vector bundle F on projective space, a uniquely defined homogeneous vector

bundle (i.e., a direct sum of twists of Schur functors applied to the tangent

bundle) that has, in characteristic zero, the same cohomology table as F up to

a rational multiple. The inequalities we prove are sharp for these homogeneous

bundles in characteristic zero, in a rather strong sense.

The inequalities we give strengthen those of Sidman [10] and Caviglia [2].

Those authors’ work is based on the characterization of regularity in terms of

approximate free resolutions—that is, free complexes that are resolutions away

from some low-dimensional locus. (The idea of using such approximate resolu-

tions seems to go back to the paper of Gruson, Lazarsfeld, and Peskine [9].)
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The improvement that gives us stronger bounds is the use of (approximate) free

monads instead of resolutions. These ideas are described in Section 3.

One of the most interesting tensor products of two bundles is End(F) =

F∗ ⊗F , and one of its most interesting cohomology groups is

H2(F∗ ⊗F) = Ext2(F ,F),

the obstruction space for deformations of F . The bounds on cohomology of a

tensor product allow us to give an interesting sufficient condition under which

this obstruction space is zero, so that the local deformation space of F is smooth.

It turns out that in these unobstructed cases we can actually write down complete

families of the bundles with the given cohomology that are irreducible smooth

rational varieties. This application occupies Section 6.

The bounds will be given in terms of regularity indices, which we will now

describe.

1.1. Regularity indices
Let K be a field, and let F be a coherent sheaf on Pn = Pn

K
. For k = 0, . . . , n− 1

we define the kth regularity index of F to be

regkF := inf
{
m

∣∣HjF(m− j) = 0 for all j > k
}

and the kth coregularity index to be

coregkF := sup
{
m

∣∣HjF(m− j) = 0 for all j < n− k
}
.

Thus reg0F ≤m if and only if F is m-regular in the classical sense of Castelnuovo

and Mumford. Note that regkF is always finite, but coregkF may be −∞. For

any vector bundle F and any integer m we have coregmF =− regmF∗−1, as one

sees easily by duality. We note that regkF is equal to the “cohomology range”

Rk+1(F) defined in [4, p. 883] and similarly for the coregularity.

The cohomology table of F is the collection of numbers

γ(F) =
{
hi
(
F(d)

)
:= dimKHi

(
F(d)

)}
.

We display it in a table with hi(F(d)) in the ith row (numbering from the

bottom) and the (i+d)th column (numbering from left to right), and to simplify

the picture we replace the elements that are zero by dots. As explained in our

[3], the cohomology table is also the Betti table of the Tate resolution associated

to F . In Proposition 3.3 we use this idea to re-prove and generalize an important

result about Castelnuovo–Mumford regularity. We show that if regkF =m, then

HjF(m′−j) = 0 for all j > k for everym′ >m, and similarly for the coregularity.

For example, the cohomology table of the Horrocks–Mumford bundle FHM

on P4 is the following:
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4: 100 35 4 . . . . . . . .

3: . 2 10 10 5 . . . . . .

2: . . . . . 2 . . . . .

1: . . . . . . 5 10 10 2 .

0: . . . . . . . . 4 35 100

-5 -4 -3 -2 -1 0 1 2 3 4 5

In this display, regmF is the number of the leftmost column with only dots above

row m, and coregmF is the number of the rightmost column with only dots below

row n−m. Thus, for example, reg1FHM = 1 and coreg0FHM =−5.

1.2. Banks of the cohomology river
We think of the nonzero values of the cohomology of F as forming the cohomology

river, and the regularities and coregularities as defining its banks. Our first main

result describes the banks of the cohomology river of a tensor product.

THEOREM 1.1

If F and G are vector bundles on Pn, then

regp(F ⊗G)≤ min
k+l=p

(regkF + reg� G)

and

coregp(F ⊗G)≥ 1 + max
k+l=p

(coregkF + coreg� G).

More generally, the inequality for regp(F ⊗G) holds for any coherent sheaves F
and G such that the support of Tor1(F ,G) has dimension at most p+2, and the

inequality for coregp(F ⊗ G) holds for any coherent sheaves F ,G such that the

support of Tor1(F ,G) has dimension at most 1.

Our second main result shows that Theorem 1.1 is sharp in a strong sense.

THEOREM 1.2

Given any pair of cohomology tables Φ,Γ of vector bundles on Pn, there exists

a pair of homogeneous vector bundles F and G on Pn
C
whose cohomology tables

are rational multiples of Φ and Γ, and such that equality holds for every p in the

formulas for regp(F ⊗G) and coregp(F ⊗G) of Theorem 1.1.

The proofs are given in Section 4.

EXAMPLE 1.3

In fact, the formulas of Theorem 1.1 seem to be sharp rather often. For example,

let π : P1 × P1 × P1 → P3 be the projection defined by the symmetric functions

as in [4]. Taking F = π∗O(4,1,−1) and G = π∗O(3,−1,−2) we get bundles with

cohomology tables
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3: 70 24 . . . . . .

2: . . 8 6 . . . .

1: . . . . 4 . . .

0: . . . . . 18 56 120

-4 -3 -2 -1 0 1 2 3

and

3: 168 84 30 . . . . .

2: . . . 12 12 6 . .

1: . . . . . . . .

0: . . . . . . 12 42

-4 -3 -2 -1 0 1 2 3

Computing the cohomology table of the tensor product in Macaulay2 (see [8]),

we get

3: 624 216 72 8 . . . .

2: . 96 140 144 96 42 . .

1: . . . . 18 36 48 .

0: . . . . . . 24 216

-4 -3 -2 -1 0 1 2 3

Inspection shows that equality is achieved here for all the bounds of Theorem 1.1.

Notice that we have, for example, H1F(−1) = 4 and H2G(−1) = 6 but that no

sheaves with these vanishing patterns can have H3(F ⊗G(−2)) �= 0.

2. Boij–Söderberg theory for vector bundles

By a homogeneous bundle on Pn we mean the result of applying a Schur functor

Sλ to the universal n-quotient bundle Q and then (possibly) tensoring with a

line bundle. Here λ = λn−1, . . . , λ0 is a partition with n parts; that is, the λi

are integers such that λn−1 ≥ · · · ≥ λ0 ≥ 0. We choose our conventions so that

Sm,0,...,0Q is the mth symmetric power of Q, while S1m,0,...,0Q is the mth exterior

power of Q. We draw the Young diagram corresponding to λ by putting λi

boxes in the ith row and right justifiying the picture; for example, the partition

(7,5,2,2,0,0) corresponds to the diagram

(where rows 0 and 1 have zero boxes!).

As Jerzy Weyman pointed out to us (see [6]), the vanishing part of Bott’s

theorem about homogeneous bundles in characteristic zero has a very simple

statement in terms of cohomology tables.



The banks of the cohomology river 135

THEOREM 2.1 (BOTT)

Let λn−1, . . . , λ0 be a partition as above, and let Q be the universal rank n quotient

bundle on Pn
C
. The cohomology table of Sλ(Q) has the form

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗

∗ ∗ ∗

∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
where the nonzero entries of the table are exactly those marked by ∗, the top

row of the Young diagram is row n− 1, and the right-hand column of the Young

diagram is column −1.

For example, we see from Theorem 2.1 that

regk Sλ(Q) =−λk.

We partially order partitions componentwise. (In terms of Young diagrams

this is the partial order by inclusion.) One of the main results of Boij–Söderberg

theory for vector bundles can be thought of as associating to any vector bun-

dle on projective space a homogeneous bundle with (in characteristic zero) the

same cohomology table, up to a rational multiple. We restrict ourselves to 0-

regular bundles for simplicity; of course we can apply the result to any bundle by

first tensoring with a sufficiently positive line bundle. The following statement

combines Theorems 0.5 and 6.2 of our paper [4].

THEOREM 2.2

The cohomology table of any bundle F with reg0F ≤ 0 can be written uniquely

as a positive rational linear combination of the (characteristic zero) cohomology

tables of a sequence of homogeneous bundles corresponding to a chain (i.e., a

totally ordered set in the componentwise order) of Young diagrams.

REMARK

One can use the Boij–Söderberg decomposition to bound the numbers in the

cohomology table of the tensor product using just the knowledge of which entries

of the cohomology table are zero and the Hilbert polynomial. But one might hope

for a still stronger principle, asserting perhaps that if the cohomology tables Φ

and Γ of bundles F and G have Boij–Söderberg decompositions

Φ =
∑

αiΦ
i, Γ=

∑
βjΓ

j ,

where Φi and Γj are the cohomology tables of the homogeneous bundles SφiQ and

SγjQ, then each entry of the cohomology table of F ⊗G would be bounded above

by the sum over i, j of αiβj times the corresponding entry of the cohomology table

of SφiQ⊗ SγjQ. This is false, as Example 1.3 shows.
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3. Linear monads and regularity indices

It is well known that the (Castelnuovo–Mumford) regularity reg0F of a coherent

sheaf F on Pn can be characterized as the smallest integer m such that F(m)

admits a linear free resolution, that is, such that there is a complex

M : · · · →OPn(−t− 1)βt+1 →OPn(−t)βt → · · · →Oβ0

Pn → 0

with homology H0(M) =F and no other homology. Our next result is a charac-

terization of this sort for all the regularity and coregularity indices.

Recall that a monad M for a sheaf F is a finite complex of sheaves

· · · →M−1 →M0 →M1 → · · ·

whose only homology is H∗(M) = H0(M)∼=F . The monad is called linear if Mi

is a direct sum of copies of O(i) for each i.

PROPOSITION 3.1

If F is a coherent sheaf on Pn, then regkF is the smallest integer m such that

F(m) admits a linear monad M with M� = 0 for all � > k, and coregkF is the

supremum of the integers m such that F(m+1) admits a linear monad M with

M� = 0 for all � <−k.

Note that for a coherent sheaf F we may have coregkF =−∞; in this case no

twist F(m) admits a linear monad with M� = 0 for all � <−k.

Proof

We prove the statement about regk, the case of coregk being similar.

Twisting by −m, the first statement will follow if we show that a coherent

sheaf F admits a linear monad M with M� = 0 for all � > k if and only if

regkF ≤ 0. The “only if” part follows from a standard argument in homological

algebra. Here is a general version whose strength we will use later.

LEMMA 3.2

Let

M : · · · →M−1 →M0 →M1 → · · ·

be a complex of sheaves, and let F i := HiM be the homology of M at the ith

term. If

Hj−t(Mt) = 0 for all t,(1)

Hj−t−1(F t) = 0 for all t > 0,(2)

Hj−t+1(F t) = 0 for all t < 0,(3)

then Hj(F0) = 0.
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Proof

Break M into the short exact sequences

0→Zi →Mi →Bi+1 → 0,

0→Bi →Zi →F i → 0

and chase the corresponding long exact sequences in cohomology. �

To complete the proof of Proposition 3.1 we must show that if regkF ≤ 0, then F
admits a linear monad with M� = 0 for all � > k. The object we need is the one

mentioned in [3, Example 8.5] and is constructed using the Beilinson–Gel’fand–

Gel’fand correspondence (BGG). Since the property we need was not spelled out

there, we review the construction and add some details.

Set W =H0OPn(1), and let E be the exterior algebra E =ΛW ∗. The coho-

mology table of a coherent sheaf F , as we have presented it, is also the Betti

table of the Tate resolution T(F), which is a minimal graded free exact complex

over E. The terms of T(F) are

Te(F) =

n⊕

i=0

HomK

(
E,HiF(e− i)

)

where HiF(e− i) is considered as a vector space concentrated in degree e− i.

We consider the elements of W ∗ as having degree −1, so the E-module ωE =

HomK(E,K) is nonzero in degrees n+1, n, . . . ,0, and HomK(E,HiF(e− i)) can

be nonzero only in degrees e− i+ n+ 1, . . . , e− i.

Now suppose that regkF ≤ 0; this means that HjF(−j) = 0 for j > k. Thus

T0F is generated in degrees ≥−k+n+1, and it follows that the graded compo-

nents of T0F are all zero below degree −k. This implies the same vanishing for

the E-submodule P = ker(T0F → T1F).

To the E-module P the BGG correspondence associates a linear free complex

L(P ) over S:

L(P ) : · · · → S ⊗ P1
∂−→ S ⊗ P0

∂−→ S ⊗ P−1 −→ · · · .

The differential ∂ is defined to be multiplication by the element

n∑

i=0

xi ⊗ ei ∈ S ⊗E,

where {xi} and {ei} are dual bases of W and W ∗. Since Pj is concentrated in

degree j, the module S ⊗ Pj is a direct sum of copies of S(−j).

It follows from BGG (see [3, Theorem 8.1]) with T′ = T(F)≥0 that the

sheafification M := L̃(P ) of L(P ) is a monad for F . The term M� is equal

to OPn(�)dimP−� . The observation above that Pj = 0 for j < −k implies that

M� = 0 for � > k, as required. �

The correspondence between the Tate resolution and the cohomology table allows

us to generalize an important fact about Castelnuovo–Mumford regularity.
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PROPOSITION 3.3

If regkF = m, then HjF(m′ − j) = 0 for all j > k and m′ ≥ m. Similarly, if

coreg�F =m, then HjF(m− j) = 0 for all j < n− k and m′ ≤m.

Proof

The given conditions with m′ =m are simply the definitions of regk and coregk. If

HjF(m′− j) �= 0 for some m′ >m and j > k, then, because the Tate resolution is

a minimal complex, no term of the resolution could map into the summand H :=

HomK(E,HjF(m′ − j)), and it follows that this module would be a submodule

of one of the syzygies in the resolution. Since H is an injective module over the

exterior algebra, it would actually be a summand. However, H is also a free

module over the exterior algebra, so this would contradict the minimality of the

Tate resolution.

Since the dual of the Tate resolution is again exact and minimal, we can

apply the same argument to the dual to get the corresponding statement about

coregularity. �

4. Proof of Theorem 1.1

We begin by proving the regularity statement. Thus we suppose that F and G
are coherent sheaves on Pn with dimTor1(F ,G)≤ p+ 2. It suffices to show that

if p= k + �, then regp(F ⊗ G) ≤ regkF + reg� G. Replacing F and G by F(−k)

and G(−�), respectively, we may assume regkF = reg� G = 0, and we must show

that for each j > p we have Hj(F ⊗G(−j)) = 0.

By Proposition 3.1, the sheaf F has a linear monad of the form

M : · · · →M−1 →M0 →M1 → · · · →Mk → 0

where Mt is a direct sum of copies of OPn(t). Since the truncated complex

M+ :M0 → · · · →Mk → 0

is locally split, we have

ker(M0 →M1)⊗G = ker(M0 ⊗G →M1 ⊗G),

and it follows that H0(M⊗G(−j)) =F ⊗G(−j).

We now apply Lemma 3.2 to the complex M⊗G(−j). Since the term Mt ⊗
G(−j) is a direct sum of copies of G(t− j), it suffices to show

Hj−tG(t− j) = 0 for all t≤ k,(4)

Hj−t−1
(
Ht(M⊗G(−j))

)
= 0 for all t > 0,(5)

Hj−t+1
(
Ht(M⊗G(−j))

)
= 0 for all t < 0.(6)

Since j > p = k + � and −t ≥ −k we have j − t > �, and (4) holds because

reg� G = 0.

To prove (5) we observe that HtM⊗G(−j) = 0 for all t > 0 simply because

M+ is locally split. It remains to prove (6). But for t < 0 and j > p the number
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j− t+1≥ p+3, so it is enough to show that dimHt(M⊗G(−j)) = dimHt(M⊗
G)≤ p+ 2.

The local splitting of M+ further implies that Z0 := ker(M0 → M1) is a

vector bundle, so

M− : · · · →M−2 →M−1 →Z0

is a locally free resolution of F . Thus for t < 0,

Ht(M⊗G) = Tor−t(F ,G).

By the rigidity of Tor (see [1]), our hypothesis that dimTor1(F ,G)≤ p+2 implies

dimTor−t(F ,G)≤ p+2 for all t < 0, completing the proof of the bound for regk.

To prove the given bound on coregularity, we may assume that coregkF =

coreg� G = 0. Imitating the proof above, we work with a linear monad for F(1),

and we need formula (6) for the case j = 0; that is, Hu(Torv(M⊗G)) = 0 for

u ≥ 2 and v ≥ 1. By the same argument as before, this will be true as long as

dimTor1(M⊗G)≤ 1, completing the proof.

5. Proof of Theorem 1.2

The statement for the coregularity follows from that for the regularity by duality,

so we restrict ourselves to the regularity formulas.

We may shift F and G and assume without loss of generality that reg0F =

reg0 G = 0. By Theorem 2.2 we can write the cohomology table Φ of F as a sum

of cohomology tables of homogeneous bundles in characteristic zero. Since reg0

of a direct sum is the maximum of reg0 of the summands, these homogeneous

bundles must in fact have reg0 ≤ 0; that is, they all have the form SλQ for some

partitions λ. Since reg0F = 0 we have at least one partition λ with with λ0 = 0

occuring. Of course, similar statements hold for the cohomology table Γ of G.
Multiplying Φ and Γ by sufficiently divisible integers, we may assume that

the Boij–Söderberg decompositions have positive integral—not just rational—

coefficients, so that they correspond to actual homogeneous bundles.

We will complete the proof of Theorem 1.2 by showing that if F is a direct

sum of homogeneous bundles

F =

v⊕

u=0

SλuQ, with λ0 ≤ · · · ≤ λv

and similarly for G, then

(∗) regp(F ⊗G) = min
k+l=p

(regkF + reg� G)

for every 0≤ p≤ n− 1. Since the inequality ≤ is part of Theorem 1.1, it suffices

to show that the left-hand side of (∗) is at least as large as the right-hand side.

Since the k-regularity index of SλQ is −λk, the minimum on the right-hand

side of (∗) is achieved by the minimal partition involved in the decomposition.

On the other hand, the pth regularity index of a direct sum is the maximum of

the pth regularity indices of the components, so it suffices to prove the inequality
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after replacing each of F and G by a single summand, corresponding to the

minimal partitions in the two decompositions; that is, we may take F = SλQ

and G = SμQ for some partitions λ and μ.

We now have

F ⊗G = SλQ⊗ SμQ=
⊕

u

SνuQ

where the set of partitions νu (which may occur with multiplicity) is determined

by the Littlewood–Richardson formula. Since the regularity indices are the neg-

atives of the parts of the partition, this translates into the following result in

representation theory.

PROPOSITION 5.1

Let V be an n-dimensional vector space over a field of characteristic zero, and

let 0≤ p≤ n− 1. There is a representation SνV appearing in SλV ⊗ SμV , such

that νp ≤maxk+l=p λk + μl.

Proof

Let

λ′ = λp, λp−1, . . . , λ0,

μ′ = μp, μp−1, . . . , μ0

be the partitions obtained by truncating λ and μ. One sees from the Littlewood–

Richardson formula as described, for example, in Fulton [7], that if a repre-

sentation corresponding to the partition ν′ occurs in Sλ′V ⊗ Sμ′V , then the

representation corresponding to the partition

ν = (λn−1 + μn−1, . . . , λp+1 + μp+1, ν
′
p, . . . , ν

′
0)

occurs in SλV ⊗ SμV . Thus we may assume from the outset that p = n− 1. If

we set g := maxk+l=n−1 λk + μl, then the termwise sum of λ with the sequence

(μ0, . . . , μn−1), which is the reverse of μ, is a sequence of numbers ≤ g. We want

to show that in the product SλV ⊗SμV there occurs a representation SνV such

that νn−1 ≤ g.

What we wish to prove can now be expressed as a statement about the

intersection ring of the Grassmannian Gr(n,n+g) of n-planes in Cn+g as follows.

Let

V = (0� V1 � · · ·� Vn+g =Cn+g)

be a complete flag in Cn+g . We write Σλ(V) for the Schubert cycle in Gr(n,n+g)

defined by

Σλ(V) =
{
W ∈Gr(n,n+ g)

∣∣ dimW ∩ Vg+i−λn−i ≥ i for 1≤ i≤ n− 1
}
,

and similarly for Σμ(V). The product of the classes [Σλ(V)] and [Σμ(V)] in the

intersection ring of Gr(n,n+ g) is the sum (with multiplicity) of the classes of

those Σν such that SνV occurs in SλV ⊗ SμV and νn−1 ≤ g. (This is explained,
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and the proof sketched, in [7, Section 9].) Thus our problem is to show that

the intersection product [Σλ(V)][Σμ(V)] is nonzero. This well-known fact can be

proved as follows.

Choose another flag

V ′ = V ′
0 � · · ·� V ′

n+g

in general position with respect to V . With the evident definition of Σμ(V ′), the

product above can be computed as the class of the set-theoretic intersection

Σλ(V)∩Σμ(V ′).

(This follows, e.g., from Kleiman’s transversality theorem.) Thus it suffices to

show that this intersection is nonempty.

Since V and V ′ are generic, the subspaces Vi∩V ′
n+g−i+1 are all 1-dimensional.

If ei is a basis vector for this space, then the conditions λi + μn−1−i ≤ g for

0≤ i≤ n− 1 imply that

W ∈Σλ(V)∩Σμ(V ′),

where

W = eg+1−λn−1 , . . . , eg+n−λ0 .

so the product of the classes of these Schubert cycles is nonzero, as required. �

6. Unobstructed families of vector bundles

Theorem 1.1 gives a criterion for the vanishing of the obstruction space Ext2(F ,

F) = 0. In this section we describe the deformations of these unobstructed bun-

dles. First we have the criterion.

COROLLARY 6.1

If F is a vector bundle on Pn with either reg0F − coreg1F ≤ 3 or reg1F −
coreg0F ≤ 3, then the obstruction space Ext2(F ,F) vanishes.

Proof

Since regkF∗ =− coregkF − 1, the assumption gives

reg1(F ⊗F∗)≤min(reg0F + reg1F∗, reg1F + reg0F∗)≤ 3− 1 = 2

by Theorem 1.1. Hence Ext2(F ,F) =H2(F ⊗F∗) = 0. �

Since replacing F by F∗ interchanges the two assumptions, we will focus on the

case reg1F − coreg0F ≤ 3 in the following. To describe all bundles satisfying this

assumption we will use Beilinson monad (see [3, Theorem 6.1]). Given a sheaf F
on projective space, the Beilinson monad

B : · · · → B−1 →B0 →B1 → · · ·
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for F has terms

Be =
⊕

j

Hj
(
F(e− j)

)
⊗Ωj−e(j − e).

B is obtained by applying the functor Ω to the Tate resolution T(F), where Ω

is the additive functor that sends the E-module ωE(i) = HomK(E,K(i)) to the

sheaf of twisted i-forms Ωi(i). The identification

Hom
(
Ωi(i),Ωj(j)

)
=Λi−jW ∗ =HomE

(
ωE(i), ωE(j)

)

provides the maps.

THEOREM 6.2

Let F be a vector bundle with reg1F − coreg0F ≤ 3 twisted such that reg1F = 2.

Consider A = T0F and B = T1F . There is nonempty Zariski open subset U ⊂
HomE(A,B) such that the kernel

Fϕ = ker
(
Ω(ϕ) : ΩA→ΩB

)

is a vector bundle with the same Chern classes and rank as F .

Proof

By assumption the cohomology of F is nonzero in the range indicated by the

boxes in the following picture:

∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗

The Beilinson monad of F depends only the terms in the range indicated by a

∗, since all other terms are zero or are sent to zero. In particular, Ω(T(F)) is a

two-term complex

0→ΩA→ΩB → 0.

Since it is an open condition for ϕ to define a monad 0→ΩA→ΩB → 0 and the

set of ϕ is nonempty by the existence of F , the result follows. �

Recall from [4] that a vector bundle F on Pn has natural cohomology in the

sense of Hartshorne and Hirschowitz if, for each d ∈ Z, at most one of the groups

HiF(d) is nonzero. The bundles F is called supernatural if, in addition, the

polynomial function χ(F(d)) has n distinct integral roots.

COROLLARY 6.3

Let F be a vector bundle with reg1F−coreg0F ≤ 3 normalized (by tensoring with

a line bundle) so that reg1F = 2, and assume that F has natural cohomology.
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Every vector bundle with natural cohomology with the same rank, Chern classes,

regularity, and coregularity indices arises as

Fϕ = ker
(
Ω(ϕ) : ΩA→ΩB

)

for some ϕ ∈ U . In particular, these vector bundles form an irreducible unira-

tional family.

Proof

The cohomology table of any of these bundles is determined by the Hilbert poly-

nomial d → χ(F(d)), since for each twist at most two terms could be nonzero

due to the narrow cohomology river, and because we have natural cohomology.

So they all have the same cohomology table, and all arise from some ϕ ∈ U . �

Note that these bundles are not necessarily stable. For example, we could have

a direct sums of bundles with different slopes in these families. Thus we do not

speak of a moduli space.

Corollary 6.3 does not settle the existence problem for such bundles. However,

it provides a computational criterion. A bundle with the desired unobstructed

natural cohomology table exists if and only if a general map ϕ ∈ U yields such

a bundle. Boij–Söderberg theory characterizes the cohomology tables that can

occur, up to a rational multiple. Given an integral cohomology table γ satisfying

the numerical condition of Corollary 6.3 such that some multiple of γ is the

cohomology table of a bundle, we conjecture that there is a number c0(γ) such

that cγ is the cohomology table of a bundle if and only if c ≥ c0(γ), as in the

following example.

EXAMPLE 6.4

The table γ,

4: 56 15 . . . .

3: . . 2 . . .

2: . . . 1 . .

1: . . . . . .

0: . . . . 8 35

-2 -1 0 1 2 3

“looks like” the cohomology table of a rank 4 vector bundle on P4, but it is not!

This is because for any two 2-forms (η1, η2) ∈
⊕2

1Λ
2W ∗ ⊂ E2 the kernel of the

wedge product ker
(
Λ2W ∗ →

⊕2
1Λ

4W ∗) is nonzero.

Indeed, ηi ∈ Λ2Vi for some 4-dimensional subspace Vi ⊂W ∗, and the annihi-

lator of ηi has codimension one in Λ2Vi. Thus the intersection ann(ηi)∩Λ2(V1 ∩
V2) has codimension at most 1 in the 3-dimensional space Λ2(V1 ∩ V2), and the

intersection ann(η1)∩ ann(η2) is at least 1-dimensional.

However, experiments with Macaulay2 (see [8]) convince us that every mul-

tiple cγ with c≥ 2 does occur as the cohomology table of a bundle.
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