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Abstract In this paper we consider the iterated G-equivariant Hilbert scheme G/N-

Hilb(N-Hilb) andprove thatG/N-Hilb(N-Hilb(C3)) is a crepant resolutionofC3/G iso-

morphic to the moduli spaceMθ(Q) of θ-stable representations of the McKay quiverQ

for certain stability condition θ. We provide several explicit examples to illustrate this

construction.We also consider the problem of whenG/N-Hilb(N-Hilb) is isomorphic to

G-Hilb showing the fact that these spaces are most of the times different.

1. Introduction

Let X be a nonsingular quasi-projective complex 3-fold, and let G⊂AutX be a

finite subgroup such that the stabilizer subgroup of any point x ∈X acts on the

tangent space TxX as a subgroup of SL(TxX). Let G-Hilb(X) be the fine moduli

space of G-clusters, and let Z be the universal subscheme. We have the following

celebrated theorem of Bridgeland, King, and Reid [BKR, Theorem 1.2].

THEOREM 1.1 ([BKR])

We have that Y =G-Hilb(X) is irreducible and f : Y →X/G is a crepant reso-

lution. Furthermore, Φ : Db(CohY )−→Db(CohGX) is an equivalence of derived

categories where Φ is the Fourier–Mukai transform with kernel OZ .

Our framework is the following: let G⊂ SL(3,C) be finite, and let N �G be a

normal subgroup. First consider the action of N on C3, and take the crepant

resolution Y :=N -Hilb(C3). Next act with G/N on Y to obtain G/N -Hilb(Y ):

G/N -Hilb(Y )

Y/(G/N)

Y =N -Hilb(C3)

C3/N

C3

C3/G

π1τ1π2τ2

φ1φ2
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As an immediate consequence of Theorem 1.1 we have the following corollary.

COROLLARY 1.2

G/N -Hilb(N -Hilb(C3)) is a crepant resolution of C3/G.

A similar construction was considered before by the second author in [Ito1] and

[Ito2] in the case of trihedrals subgroups in SL(3,C). The trihedral group is

a non-Abelian finite subgroup generated by diagonal matrices and the matrix

T :=
(

0 1 0
0 0 1
1 0 0

)
. In this case, G = N � T is a semidirect product. Then in Ito’s

construction, we require that T =G/N act on the crepant resolution Y of C3/N

symmetrically on the exceptional locus. Therefore, this construction gives the

G/N -Hilb(N -Hilb(C3)) when Y =N -Hilb(C3).

This construction can be extended in a natural way to obtain crepant res-

olutions of C3/G for any finite nonsimple group G ⊂ SL(3,C) (see [YY] for a

classification of such groups). In general, if we consider the sequence of nor-

mal subgroups Ni of the form N0 := G, N1 := N � G, N2 � N0/N1, . . . ,Ni �(
· · · ((G/N1)/N2) · · ·

)
/Ni−1 for i ≥ 1 and Ni is normal in G, the iterated equi-

variant Hilbert scheme

Ni-Hilb
(
Ni−1-Hilb(· · · (N1-Hilb(C3)) · · ·

)
described in this paper is crepant. In particular it is always possible to find such

a crepant resolution with Ni Abelian for all i.

Denote by Irr(G) the set of irreducible representations of G, and let (Q,R) be

the McKay quiver of G with relations R. For d= (dim(ρ))ρ∈Irr(G) and any generic

θ in the space of stability conditions Θ we can defineMθ,d(Q,R) to be the moduli

space of θ-stable representations of Q satisfying the relations R. Moreover, there

exists a chamber decomposition of Θ such that the geometric invariant theory

(GIT) quotient Mθ,d(Q,R) is constant for all θ in any given (open) chamber C.

Thus, we also denote this moduli space simply by MC . Thus we may also denote

this moduli space simply by MC . The methods in [BKR] can be applied to prove

that τ :MC −→ C3/G is a crepant resolution and ΦC :D(MC) −→ DG(C3) is

an equivalence of categories (see [CI, Section 2]).

For these moduli spaces, the problem of whether every (projective) crepant

resolution of C3/G is a moduli of representations of the McKay quiver was treated

by Craw and Ishii [CI, Theorem 1.1] in the case of Abelian group actions.

THEOREM 1.3 ([CI])

For a finite Abelian subgroup A⊂ SL(3,C) let Y →C3/A be a projective crepant

resolution. Then Y ∼=MC for some chamber C ⊂Θ.

Then Craw and Ishii proposed the following conjecture.
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CONJECTURE 1.4

For a finite subgroup G⊂ SL(3,C) let Y →C3/G be a projective crepant resolu-

tion. Then Y ∼=MC for some chamber C ⊂Θ.

In this paper we show that the projective crepant resolution G/N -Hilb(N -

Hilb(C3)) is a fine moduli space for a particular chamber C ⊂Θ as follows.

THEOREM 1.5 (= 2.7)

Let G⊂ SL(3,C) be finite, and let N�G be a normal subgroup. The crepant reso-

lution G/N -Hilb(N -Hilb(C3)) is isomorphic to a moduli space of G-constellations

MC for some chamber C ⊂Θ.

Thus our main result shows that the conjecture holds for the family G/N -

Hilb(N -Hilb(C3)) of crepant resolutions for general G⊂ SL(3,C).
As we see in this paper, the varieties underlying the fine moduli spaces

G-Hilb(C3) and G/N -Hilb(N -Hilb(C3)) are in general nonisomorphic quasi-

projective varieties. Even when they coincide, as moduli spaces of representa-

tions of the McKay quiver almost always they belong to different chambers in

the space of stability conditions Θ, or in other words, the corresponding tauto-

logical vector bundles are not the same.

It is therefore natural to ask when the iterated Hilbert scheme G/N -

Hilb(N -Hilb(C3)) is isomorphic to G-Hilb(C3). In this paper we give a com-

plete answer for this problem when they are considered as moduli spaces, that

is, both the underlying variety and the tautological vector bundle coincide. For

the problem of when they are isomorphic as algebraic varieties, we present the

list of such cases when the group G is Abelian. For non-Abelian cases, we

prove that G/N -Hilb(N -Hilb(C3)) and G-Hilb(C3) are nonisomorphic varieties

when G is a non-Abelian small subgroup of GL(2,C) embedded in SL(3,C) and
N =G∩SL(3,C), and for some polyhedral groups G in SO(3). These results sug-

gest that the moduli spaces MC are actually varying. We summarize the results

in this direction in the following theorems.

THEOREM 1.6 (THEOREM 7.3, COROLLARY 7.4, PROPOSITION 7.5)

Let G ⊂ GL(2,C) be a finite small subgroup, and let N �= G,{1} be a normal

subgroup. Let Y :=G/N -Hilb(N -Hilb(C2)).

(i) If G ⊂ GL(2,C), then Y ∼= G-Hilb(C2) as moduli spaces if and only if

G∼= (1/rs)(1,1) and N ∼= 1
s (1,1) for some r, s≥ 2.

(ii) If G⊂ SL(2,C), then Y ∼=G-Hilb(C2) as algebraic varieties.

(iii) If G �⊂ SL(2,C) is non-Abelian and N = G ∩ SL(2,C), then Y and

G-Hilb(C2) are nonisomorphic as algebraic varieties.
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THEOREM 1.7 (THEOREMS 7.3, 7.7, COROLLARY 7.14)

Let G ⊂ SL(3,C) be a finite small subgroup, and let N �= G,{1} be a normal

subgroup. Let Y :=G/N -Hilb(N -Hilb(C3)).

(i) Y ∼= G-Hilb(C3) as moduli spaces if and only if G ∼= (1/2r)(1,1,2r − 2)

and N ∼= (1/2)(1,1,0).

(ii) If G is Abelian, then Y ∼=G-Hilb(C3) as algebraic varieties if and only

if we are in one of the following situations:

(1) G/N ∼= Z/mZ×Z/mZ for some m> 1;

(2) G ∼= (1/r)(1,1, r − 2) or G ∼= 1
r (1, r − 1,0), that is, C3/G has a unique

crepant resolution;

(3) G ∼= (1/2r)(1, a,−a − 1) with (2r, a) = 1, a2 ≡ 1 (mod 4r), and N ∼=
(1/2)(1,1,0);

(4) there is a subgroup G′ ⊂G containing N such that (G′,N) fits into either

(2) or (3) and G/G′ ∼= Z/mZ×Z/mZ for some m> 1.

(iii) If G⊂ SO(3) is of type D2n or G12 (defined in Sections 6.1, 6.3, respec-

tively) and N is the maximal Abelian subgroup, or if G is isomorphic to a non-

Abelian finite small subgroup of GL(2,C) and N = G ∩ SL(2,C), then Y and

G-Hilb(C3) are nonisomorphic as algebraic varieties.

This paper is organized as follows. In Section 2, we introduce moduli spaces

of G-constellations and find the stability for G/N -Hilb(N -Hilb(C3)) to prove

Theorem 1.5. In Section 3, we recall representations of semidirect products and

fix some notation used in examples. In Section 4, we show some examples of

G/N -Hilb(N -Hilb(C3)) when G is Abelian. The construction of crepant res-

olutions for Abelian quotient singularities are well known as toric resolutions

where one of them is G-Hilb(C3). However, if we have several choices for normal

subgroups N of G, then we have several G/N -Hilb(N -Hilb(C3)) which can be

obtained by a finite sequence of flops from G-Hilb(C3). Moreover, the actions of

G/N on N -Hilb(C3) are also interesting. In Section 5, we introduce the notion of

skeletons to compute local coordinates in examples. In Section 6, we give several

examples of G/N -Hilb(N -Hilb(C3)) when G is non-Abelian. We also describe the

G-constellations and McKay quiver with relations. In Section 7, we investigate

when G/N -Hilb(N -Hilb(C3)) is isomorphic to G-Hilb(C3) as moduli spaces and

as algebraic varieties.

2. The moduli space of G-constellations and G/N -Hilb(N -Hilb)

Recall that G-Hilb(Cn) is the moduli space of G-clusters, where a G-cluster Z
is a G-invariant subscheme Z ⊂ Cn such that H0(OZ)∼=RG, the regular repre-

sentation of G, as C[G]-modules. Thus a point y ∈G/N -Hilb(N -Hilb(Cn)) is a

G/N -cluster of N -clusters.
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2.1. A family of G-constellations
The first observation that appears is that y may not be a G-cluster. Therefore, in

order to construct the moduli space of such objects we need a generalized notion

of G-cluster called G-constellation (see [CI] and [Cra2, Chapter 5]).

DEFINITION 2.1

A G-constellation F on X is a G-equivariant coherent sheaf on X such that

H0(F)∼=RG as C[G]-modules.

Notice that a G-cluster is a G-equivariant C[x1, . . . , xn]-module OZ generated

from 1 mod IZ , which is precisely a G-constellation generated from the trivial

representation ρ0.

Equivalently, when X = Cn a G-equivariant coherent sheaf F on X is a

representation of the McKay quiver Q satisfying the relations R. This identi-

fication was first stated in [IN, Section 3] and rewritten in the language of G-

constellations in [CI, Section 2.1]. For an explicit description of the relations R

see [BSW]. Recall that the McKay quiver is the quiver with IrrG as its vertex

set, and dimCHom(ρ,V ⊗ ρ′) arrows from ρ to ρ′.

We fix the following notation in this paper. Denote by Y1 := N -Hilb(Cn),

and denote by Y2 :=G/N -Hilb(Y1). Then we have the diagram

Z2 Z1

Y2

Y1/(G/N)

Y1

Cn/N

Cn

π1τ1π2τ2

p2 q2 p1 q1

where Z1 and Z2 are the universal families for Y1 and Y2, respectively.

LEMMA 2.2

Every point in the connected component of G/N -Hilb(N -Hilb(Cn)) dominating

C3/G is a G-constellation on Cn. More precisely, there is a canonically defined

flat family of G-constellations parameterized by this connected component of

G/N -Hilb(N -Hilb(Cn)).

Proof

Consider the fiber product Z2 ×Y1 Z1 ⊂ Y2 × Y1 × Cn, and consider the pro-

jection p20 : Y2 × Y1 × Cn −→ Y2 × Cn onto the first and third factors. Then

p20∗(OZ2×Y1
Z1) is a G-equivariant coherent sheaf on Y2 ×Cn, flat over Y2. For a

closed point y ∈ Y2, let OW = q2∗p
∗
2Oy ⊂ Y1 be the corresponding G/N -cluster.

Then the fiber of p20∗(OZ2×Y1
Z1) over y is q1∗p

∗
1OW . Especially, if y lies over a

free orbit in Cn/G, then q1∗p
∗
1OW is the G-cluster supported by the free orbit and

it is the regular representation as a G-module. Since p20∗(OZ2×Y1
Z1) is flat over

Y2, it is a flat family of G-constellations in the connected component containing

free orbits. �
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2.2. Stability for G/N -Hilb(N -Hilb(C3))

LetΘ =ΘG := {θ ∈HomZ(R[G],Q)|θ(RG) = 0}withR[G] the representation ring.

The notion of stability by [Kin] translates into the language of G-constellations

as follows. For θ ∈Θ, a G-constellation F is θ-stable (or θ-semistable) if θ(E) =
θ(H0(E))> 0 = θ(F) (or θ(E)≥ 0) for 0� E � F . With a quiver-theoretic point

of view, if M is a representation of Q of dimension vector d = (di)i∈Q0 , then

the notion of stability for M is given as follows: let θ ∈QQ0 , and define θ(M) :=∑
θidi. Then M is θ-stable (or θ-semistable) if θ(M ′)> 0 = θ(M) (or θ(M ′)≥ 0)

for 0 �M ′ �M . More generally, θ-stability and semistability are defined for a

G-equivariant coherent sheaf F on C3 with finite support such that θ(H0(F)) = 0

in the same way.
It is known from [IN] that G-Hilb(C3) can be considered as a moduli Mθ

of θ-stable representations of the McKay quiver of G satisfying the relations, for

any stability condition θ ∈Θ satisfying θ(ρ)> 0 for every nontrivial irreducible

representation ρ of G (and hence θ(ρ0)< 0 for the trivial representation ρ0). We

call such θ a 0-generated stability.

REMARK 2.3

In general, the chamber of stability parameters defining G-Hilb is larger than the

cone defined by the inequalities above.

Let θN ∈ΘN and θG/N ∈ΘG/N be 0-generated stabilities for N and G/N , respec-

tively. (In the following argument, θN and θG/N can be arbitrary parameters in

the chambers of N -Hilb and G/N -Hilb, respectively. However, we assume they

are 0 -generated to simplify the proof of Lemma 2.5 below.)

DEFINITION 2.4

Let ρ ∈ Irr(G) and θ ∈Θ. We define

θ(ρ) :=

{
θN (ρ|N ) + ε · θG/N (ρ) if ρ ∈ Irr(G/N),

θN (ρ|N ) if ρ /∈ Irr(G/N),

where 0< ε� 1.

Note that θN ∈ ΘN can be regarded as an element of Θ by composing the

map θN : R[N ]→ Q with the restriction map R[G]→ R[N ]. The condition ρ ∈
Irr(G/N) as a representation of G means that ρ is trivial for every element in N .

It is straightforward to check that θ(RG) = 0 for the regular representation RG

as required.

LEMMA 2.5

The parameter θ defined in Lemma 2.4 is generic.

Proof

For any nonzero subrepresentation S � RG, θ(S) �= 0 by the choice of θ. This

implies that θ is generic. �
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From now on we restrict ourselves to the case G⊂ SL(3,C). Consider the functor

Φ :Db(CohG/N Y1)→Db(CohGC3)

defined by Φ(−) = Rq1∗p∗1(−). Then it is an equivalence of triangulated cate-

gories by [BKR] (see also [IU, Theorem 3.1]). Let Coh
G/N
0 (Y1) denote the Abelian

category of G/N -equivariant coherent sheaves on Y1 with zero-dimensional sup-

ports. Then Φ sends objects of CohG0 (Y1) to G-equivariant sheaves with zero-

dimensional supports and Φ is exact on CohG0 (Y1).

LEMMA 2.6

Let G⊂ SL(3,C) be a finite subgroup, and let N be a normal subgroup of G. Let

θN be a 0-generated stability parameter for N . Then for an object E ∈Coh
G/N
0 Y1,

Φ(E) ∈ CohGC3 is θN -semistable. Moreover, if F ⊆ Φ(E) is a G-equivariant

subsheaf of Φ(E) with θN (F) = 0, then there is a G/N -equivariant subsheaf F of

E such that F =Φ(F ).

Proof

Let F0 :D
b(CohGC3)→Db(CohN C3) and F1 :D

b(CohG/N Y1)→Db(CohY1) be

the forgetful functors. We have a commutative diagram

Db(CohG/N Y1)
Φ−−−−→
∼

Db(CohGC3)

F1

⏐⏐	 ⏐⏐	F0

Db(CohY1)
∼−−−−→
ΦN

Db(CohN C3)

where ΦN is the functor which is defined in the same way as Φ and is an

equivalence by [BKR]. Since F1(E) has a filtration in CohY1 whose factors

are skyscraper sheaves, ΦN (F1(E)) has a filtration in CohN C3 whose factors

are N -clusters. Since N -clusters are θN -stable, F0(Φ(E)) ∼= ΦN (F1(E)) is θN -

semistable. Now for any G-invariant subsheaf F of Φ(E), we have θN (F) =

θN (F0(F))≥ 0 by the semistability of F0(Φ(E)), which shows that Φ(E) is θN -

semistable.

Suppose F ⊆ Φ(E) is a G-invariant subsheaf with θN (F) = 0. Then F is

also θN -semistable by the definition of semistability for a G-equivariant coher-

ent sheaf. Moreover, F0(Φ(E)) is also θN -semistable as an N -equivariant coher-

ent sheaf as in the previous paragraph, and hence so is F0(F). Consider the

Jordan–Hölder filtrations on the θN -semistable N -equivariant coherent sheaves

F0(Φ(E)), F0(F), and F0(Φ(E)/F ), respectively, whose factors are θN -stable.

Since the Jordan–Hölder factors of F0(Φ(E)) are N -clusters, those of F0(F)
(
and

F0(Φ(E)/F ))
)
are also N -clusters by the Jordan–Hölder theorem for semistable

sheaves. Note that N -clusters are of the form ΦN (Oy) for y ∈ Y1. Therefore, there

is a filtration

0 = G0 ⊂ G1 ⊂ · · · ⊂ Gl = F0(F)
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such that Gi/Gi−1
∼=Φ(Oyi) for some yi ∈ Y1. Since the equivalence ΦN induces

an isomorphism

Hom
(
Oy, F1(E)/G

)∼=Hom
(
ΦN (Oy), F0(Φ(E))/ΦN (G)

)
for any closed point y ∈ Y1 and any subsheaf G ⊂ F1(E), induction on i shows

that there is a unique subsheaf Gi ⊂ F1(E) such that ΦN (Gi) = Gi for each i.

Especially, G := Gl is a unique subsheaf of F1(E) such that F0(F) = ΦN (G).

G must be preserved by the action of G/N by its uniqueness, which shows that

G is of the form F1(F ) for a G/N -invariant subsheaf F ⊆E. �

THEOREM 2.7

Let θ ∈Θ be as in Definition 2.4. Let G⊂ SL(3,C) be a finite subgroup, and let

N be a normal subgroup of G. Then

G/N -Hilb
(
N -Hilb(C3)

)∼=MC

for the chamber C ⊂Θ which contains θ.

Proof

G/N -Hilb(N -Hilb(C3)) parameterizes a family of G-constellations of the form

Φ(OW ) where W ⊂ Y1 is a G/N -cluster. Take a G-invariant subsheaf F of

Φ(OW ). If θN (F)> 0, then we have θ(F)> 0 by the assumption ε� 1 and we

may assume θN (F) = 0. In this case, there is a G/N -invariant subsheaf F ⊆OW

such that F = Φ(F ) by Lemma 2.6. Note that we have τ1∗F ∼= (π1∗F)N by the

definition of Φ, which implies that the number of copies of an irreducible rep-

resentation of G/N appearing in H0(F ) is the same as that in H0(F), proving

θ(F) = εθG/N (F ) > 0. Thus we obtain the θ-stability of Φ(OW ), and hence Φ

induces a morphism f :G/N -Hilb(N -Hilb(C3))→MC . Now since G⊂ SL(3,C),
both are crepant resolutions of C3/G, so f is an isomorphism. �

REMARK 2.8

In the above proof, we can replace θN by an arbitrary G/N -invariant generic

stability parameter for N -constellations. Especially, we have similar results for

iterated constuctions such as “Hilb of Hilb of Hilb.”

Note that to let θG/N be general, we have to construct the moduli space

of θ-stable G-constellations on a quasi-projective variety with G-action, which

could be done by patching local constructions.

3. Representations of semidirect products

We recall representations of semidirect products from [Ser, Section 8.2] to com-

pute several examples in Section 6. We also use the same notation for an Abelian

group G with a subgroup N in Section 4. Let G be a finite group obtained

as the semidirect product N � H of subgroups N and H . We assume that

the normal subgroup N is Abelian. All the examples in Section 6 are of this

form. Let Irr(N) = {σ0, . . . , σp−1} be the set of irreducible representations of N
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Table 1. Irreducible representations of G from the action of G/N into Irr(N)

σ0 Orb(σ1) . . . Orb(σk)

ρ00
ρ01

ρ0kρ10

...
... . . .

...

ρh1
1 ρ

hk
k

ρh0
0

where dim(σi) = 1, and denote by I = {0, . . . , p− 1} the set of subindices. Let us

also denote by Irr(G/N) = {τ0, . . . , τh0} the set of irreducible representations of

G/N =H with d
G/N
j := dim(τj).

The group H =G/N acts on Irr(N) as follows: H acts on N by conjugation

and thus on Irr(N) by h · σ(n) = σ(h−1nh), for h ∈H , σ ∈ Irr(N), and n ∈N .

Choose a set of representatives of the classes in IrrN under the action of G/N ,

and denote by Ĩ = {0, . . . , k} ⊆ I the corresponding subset of subindices. For any

i ∈ Ĩ consider the orbit Orb(σi) of σi under G/N of length ni. Let Gi be the

stabilizer, and let Irr(Gi) = {τ0i , . . . , τhi
i } be the set of irreducible representations

of Gi. Recall that if σi and σj are in the same orbit, then Gi and Gj are conjugate,

in particular, isomorphic. The trivial representation σ0 ∈ Irr(N) is always fixed

so that G0 =G/N and τ j0 = τj for all j.

The irreducible representations of G are obtained as follows: for every i ∈
Ĩ the representations in the orbit Orb(σi) combine to give hi + 1 irreducible

representations ρji for j = 0, . . . , hi with dim(ρji ) = ni dim(τ ji ) (see Table 1). In

other words, they are induced by the representations of N �Gi obtained as the

tensor product of the extensions of σi and τ ji to N�G. In particular, if σi is fixed

by G/N , then it give rise to h0+1 irreducible representations, each corresponding

to an irreducible representation of G/N . Note that ρ00 is the trivial representation

of G. Then ρji are all the irreducible representations of G by [Ser, Section 8.2].

REMARK 3.1

The action of G/N on Irr(N) to produce Irr(G) can be translated into the McKay

quiver N , where every vertex corresponds to an irreducible representation of N .

Then G/N acts on the set of vertices and on the set of arrows of Q, as well as

on the path algebra kQ permuting the set of primitive idempotents {ei|i ∈ I}.
We thus can construct the McKay quiver of G as the (G/N)-orbifold quiver of

the McKay quiver of N (see [Dem] for the general formulation and [NdC] for the

case of binary dihedral groups in GL(2,C)).

Let us describe the stability parameter defined in Definition 2.4 which is shown

in Table 2. We are going to use the 0-generated stabilities for the groups N and
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Table 2. Stability condition θ in terms of θN and θG/N

σ0 Orb(σ1) . . . Orb(σk)

θN0 + εθ
G/N
0

dim(τ0
1 ) ·

∑
σi∈Orb(σ1)

θNi
dim(τ0

k ) ·
∑

σi∈Orb(σk)
θNi

d
G/N
1 θN0 + εθ

G/N
1

...
... . . .

...

dim(τh1
1 ) ·

∑
σi∈Orb(σ1)

θNi
dim(τhk

k ) ·
∑

σi∈Orb(σk)
θNi

d
G/N
h0

θN0 + εθ
G/N
h0

G/N separately, so let us denote them as follows:

θN ∈ Qp such that θNi := θN (σi)> 0 for i �= 0 and σi ∈ Irr(N),

θG/N ∈ Qh0+1 such that θ
G/N
j := θG/N (τj)> 0 for j �= 0 and τj ∈ Irr(G/N).

In particular we have
∑p−1

i=0 dNi θNi = 0 and
∑h0

i=0 d
G/N
j θ

G/N
j = 0, so that θN0 =

−
∑p−1

i=1 dNi θNi and θ
G/N
0 =−

∑h0

j=1 d
G/N
j θ

G/N
j .

4. The case G Abelian

Let G⊂ SL(3,C) be a finite Abelian subgroup, and let A�G be a normal sub-

group of G with |A|= p and |G/A|= q. After introducing the toric notation that

is needed, we describe how to calculate the triangulation of the junior simplex Δ

corresponding to Y :=G/A-Hilb(A-Hilb(C3)), and we construct explicitly every

G-constellation in Y from the A-clusters. Then we describe a method to calcu-

late the local coordinates of a moduli space of G-constellations using the McKay

quiver and finish the section describing the stability condition in the Abelian

case.

4.1. How to calculate A/N -Hilb(N -Hilb(C3))

Every element of G can be written of the form g = diag(εa1 , εa2 , εa3) where ε is an

rth primitive root of unity and 0≤ ai < r. Let L⊃ Z3 be the lattice generated by

the elements of G written in the form 1
r (a1, a2, a3), and let M := L∨ be the dual

lattice of Laurent monomials. The junior simplex is the triangle Δ⊂ LR := L⊗ZR
with vertices the standard basis e1,e2,e3. We denote by R2

Δ the affine plane

spanned by Δ and Z2
Δ := L ∩R2

Δ. Recall that Δ contains all lattice points with

a1+a2+a3 = r, ai ≥ 0, and triangulations of Δ are in one-to-one correspondence

with crepant resolutions of C3/G.

First consider the action of A on C3. In [CR] Craw and Reid give a method to

triangulate Δ into p regular triangles Δi which produces the crepant resolution

A-Hilb(C3). This triangulation shows that A-Hilb(C3) ∼=
⋃p

i=1 Yi where Yi :=

σ(Δi)∼= C3
εi,ηi,ζi

is the affine toric variety associated to the triangle Δi, and εi,

ηi, and ζi are Laurent monomials in x, y, and z.
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Figure 1. Successive triangulations of Δ for a group G of order r = 30 = 2 · 3 · 5.

The action of G/A on A-Hilb(C3) is again Abelian, so it is given by diagonal

matrices; thus it acts on every Yi separately. For every triangle Δi with i =

1, . . . , p, we form the the toric singular quotient Yi/(G/A) and take G/A-Hilb(Yi)

as crepant resolution. Therefore,

G/A-Hilb
(
A-Hilb(C3)

)
=

p⋃
i=1

G/A-Hilb(Yi).

In other words, the triangulation of Δ which gives G/A-Hilb(A-Hilb(C3)) is

produced in two steps. First, calculate A-Hilb(C3) according to [CR] to obtain

Δ=
⋃p

i=1Δi. Second, triangulate every Δi into q regular triangles with the same

method according to the Z/q-action of G/A into Yi to produce Δ =
⋃
Δij for

i= 1, . . . , p, j = 1, . . . , q. Obviously, the same process of successive triangulations

can be done as many times as nontrivial normal subgroups we have in a filtration

of G (see Figure 1).

We now look at how G/A-Hilb(A-Hilb(C3)) can be constructed explicitly as

moduli of G-constellations. As an A-constellation, a point F ∈A-Hilb(C3) is an

A-equivariant coherent sheaf on C3 such that H0(F)∼=C[A]∼=
⊕

σ∈Irr(A) σ, and

F ∼=OZ for some A-cluster Z. Therefore, locally at U ⊂A-Hilb(C3) we can take

a basis Γ := {λσ | σ ∈ Irr(A), λσ is σ-semi-invariant} of H0(F) to be an A-graph.

That is, λσ is a monomial in C[x, y, z], and if xiyjzk ∈ Γ, then xi′yj
′
zk

′ ∈ Γ for

any i′ ≤ i, j′ ≤ j and k′ ≤ k (see [Nak]). We call Γ the building block for U .

It is also known from [Nak] that U = σ(Δi)∼= C3
a,b,c where a= fσ

λσ
, b= fσ′

λσ′
,

and c = fσ′′
λσ′′

are Laurent monomials in x, y, and z, where fσ , fσ′ , and fσ′′

are σ-, σ′-, and σ′′-semi-invariants, respectively. Then, an open set V = σ(Δij)⊂
G/N -Hilb(U) is determined by a (G/N)-graph Ω := {ωτ | τ ∈ Irr(G/N)} ∼=
C[G/N ] where ωτ are now monomials in C[a, b, c]. Thus, a point Z ∈ V as a

G-equivariant module can be written in the form

Z =
{
ωτΓ | τ ∈ Irr(G/N)

}
=
{
ωτλσ | τ ∈ Irr(G/N), σ ∈ Irr(N)

}∼=C[G].

In other words, the resulting G-constellations arising from the open set U are

obtained by multiplying the building block Γ by the q different (G/N)-graphs Ω.

EXAMPLE 4.1

Let G = 1
6 (1,2,3) =

1
2 (1,0,1)×

1
3 (1,2,0)

∼= Z/6Z. Take the normal subgroup in
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•e3

•
e1

•

• e2

z 2

x2

y

y
x : z

U1

U2

Ui εi, ηi, ζi A-graph G/A-action type on Ui

U1
x
z , z

2, y 1 z 1
3 (1,0,2)

U2
z
x , x

2, y 1 x 1
3 (1,1,1)

Figure 2. Toric fan and coordinates for (1,0,1)-Hilb(C3).

•e1

•

•

•

• e2

η
1

η
1

η
1ε 3

1

ζ
3

1

ε2
1 : ζ1

ε1 :
ζ
2
1

Uij Coordinates G/A-graph

U11
ε1
ζ2
1
, ζ31 , η1 1 ζ1 ζ21

U12
ζ2
1

ε1
,
ε21
ζ1
, η1 1 ζ1 ε1

U13 ε31,
ζ1
ε21
, η1 1 ε21 ε1

•e3

•

•

• e2
η3
2

ζ
3

2

ε 3
2

ε
2
:
ζ
2

ζ2 :
η2 ε2 : η2

Uij Coordinates G/A-graph

U21
ε2
ζ2
, η2

ζ2
, ζ32 1 ζ2 ζ22

U22
η2

ε2
, ζ2ε2 , ε

3
2 1 ε2 ε22

U23
ε2
η2
, ζ2η2

, η32 1 η2 η22

Figure 3. 1
3 (1,0,2)-Hilb(U1) and 1

3 (1,1,1)-Hilb(U2).

G to be A = 1
2 (1,0,1). The triangulation of the junior simplex Δ = Δ1 ∪ Δ2

corresponding to A-Hilb(C3) = U1 ∪ U2 and the toric coordinates are given in

Figure 2.

The action of G/A∼= 1
3 (1,2,0) on A-Hilb(C3) leaves invariant the open sets

U1 and U2, sending (ε1, η1, ζ1) �→ (ωε1, η1, ω
2ζ1) and (ε2, η2, ζ2) �→ (ωε2, ωη2, ωζ2),

respectively, where ω is a primitive cubic root of unity. Therefore, each of the

quotient open sets Ui/(G/A) contains the singularities 1
3 (1,0,2) and 1

3 (1,1,1),

respectively, which we resolve with the crepant resolutions (G/A)-Hilb(Ui) for

i= 1,2. The triangulations of Δ1 and Δ2 are shown in Figure 3.

In constructing the resolution Z/2Z-Hilb(C3) we added only one new lattice

point to Δ, namely, 1
2 (1,0,1), producing the subdivision Δ =Δ1 ∪Δ2. To con-

struct Z/3Z-Hilb(Z/2Z-Hilb(C3)) we now introduce the remaining lattice points,

namely, 1
6 (1,2,3),

1
6 (2,4,0), and

1
6 (4,2,0), and triangulate Δ1 and Δ2 according

to the algorithm in [CR]. Changing back to the coordinates x, y, and z we obtain

the fan shown in Figure 4.

For j = 1,2,3 the basis for the G-constellations of the open set U1j are

given by multiplying every basis element in the (G/A)-graphs Ω1 = {1, ζ1, ζ21},
Ω2 = {1, ζ1, ε1}, and Ω3 = {1, ε1, ε21} by the building block Γ = {1, z} coming from

the open set U1. Similarly for the open sets U2j ⊂ Z/3Z-Hilb(Z/2Z-Hilb(C3)).
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Figure 4. Toric fan for Z/3Z-Hilb(Z/2Z-Hilb(C3)).

Figure 5. Toric fan Z/2Z-Hilb(Z/3Z-Hilb(C3)) and the corresponding G-constellations.

More precisely, the G-constellations are

M11 = {1 · 1 z , ζ1 · 1 z , ζ21 · 1 z }= {1, z, y, yz, y2, y2z},

M12 = {1 · 1 z , ζ1 · 1 z , ε1 · 1 z }=
{
1, z, y, yz,

x

z
,x
}
,

M13 = {1 · 1 z , ε21 · 1 z , ε1 · 1 z }=
{
1, z,

x2

z2
,
x2

z
,
x

z
,x
}
,

M21 = {1 · 1 x , ζ2 · 1 x , ζ22 · 1 x }= {1, x, y, xy, y2, xy2},

M22 = {1 · 1 x , ε2 · 1 x , ε22 · 1 x }=
{
1, x,

z

x
, z,

z2

x2
,
z2

x

}
,

M23 = {1 · 1 x , η2 · 1 x , η22 · 1 x }= {1, x, x2, x3, x4, x5}.

Let now A= 1
3 (1,2,0) be the normal subgroup. Then A-Hilb(C3)∼= V1∪V2∪

V3 where Vi
∼= C3. The quotient group G/A∼= 1

2 (1,0,1) produces a Z/2Z-action
on every Vi for i= 1,2,3. The resolution of these singularities is translated into

the junior simplex Δ=Δ1∪Δ2∪Δ3 by adding the points 1
6 (3,0,3) and

1
6 (1,2,3),

triangulating in the only possible way as in Figure 5. All crepant resolutions of

C3/ 1
6 (1,2,3) are shown in Figure 6.
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•
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•
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•

•

•

•

•
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G-Hilb(C3)
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•

•

•

•

•

• •

•

•

•

•

•

•

Z/3Z-Hilb(Z/2Z-Hilb(C3))

Figure 6. Crepant resolutions of C3/G with G= 1
6 (1,2,3).

Table 3. Irr(G) and the stability condition θ in terms of θN and θG/N

Irr(G) =

σ0 σ1 . . . σp−1

ρ00 ρ01 . . . ρ0p−1

ρ10 ρ11 . . . ρ1p−1

...
...

. . .
...

ρq−1
0 ρq−1

1 . . . ρq−1
p−1

θ =

σ0 σ1 . . . σp−1

−
∑p−1

i=1 θNi − ε
∑q−1

j=1 θ
G/N
j θN1 . . . θNp−1

−
∑p−1

i=1 θNi + εθ
G/N
1 θN1 . . . θNp−1

...
...

. . .
...

−
∑p−1

i=1 θNi + εθ
G/N
q−1 θN1 . . . θNp−1

4.2. θ-stability in the Abelian case
Every irreducible representation σi ∈ Irr(N) is fixed, so all stabilizers Gi are

isomorphic to G/N . The irreducible representations of G are therefore distributed

as in Table 3. Since ni = dNi = d
G/N
j = 1 for all i= 0, . . . , p− 1, j = 0, . . . , q − 1,

we have dim(ρ) = 1 for ρ ∈ Irr(G). The stability condition θ ∈ Θ for which the

crepant resolution G/A-Hilb(A-Hilb(C3))∼=Mθ is given also in Table 3. Notice

that in this case θN0 = −
∑p−1

i=1 θNi and θ
G/N
0 = −

∑q−1
j=1 θ

G/N
i , so the fact that

0< ε� 1 implies that θ(ρk0)< 0 for all k.

EXAMPLE 4.2

Let us take the group G = 1
6 (1,2,3) and consider Z/3Z-Hilb(Z/2Z-Hilb(C3)).

The distribution of Irr(G) and the stability condition θ are shown in Figure 7

where a, b1, b2 ∈Q are positive numbers and 0< ε� 1.

The stability condition is in this case given clockwise around the McKay

quiver. By checking the subrepresentations in every affine piece we can see that

chamber C ⊂Θ is given by

θ2, θ4 < 0, θ2 + θ5 > 0, θ1 + θ4 > 0,
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Irr(G) =

ρ00 ρ01
ρ10 ρ11
ρ20 ρ21

θ :=

θ0 θ1
θ2 θ3
θ4 θ5

=

−a− ε(b1 + b2) a

−a+ εb1 a

−a+ εb2 a

Figure 7. Irr(G) and stability condition for Z/3-Hilb(Z/2-Hilb(C3)).

θ3 > 0, θ4 + θ5 > 0, θ0 + θ1 + θ3 > 0.

Thus if we take 0< ε< a/max{b1, b2}, every inequality is satisfied by θ.

5. Local coordinates

In this section, we introduce some notation and terminology to illustrate non-

Abelian examples in the next section. Let (Q,R) be a quiver with relations,

where R is a two-sided ideal in the path algebra CQ of Q. Let Q′ be a connected

quiver, and let φ :Q′ →Q be a morphism of quivers, that is, a pair of morphisms

φ0 :Q
′
0 →Q0 and φ1 :Q

′
1 →Q1 between the respective vertex and arrows sets.

For a vertex v of Q, let dv be the number of vertices in the preimage Hv :=

{φ−1(v)} ⊆Q′
0, and let CHv ∼=Cdv be the vector space with a distinguished basis

{ew | w ∈Hv}. Notice that for an arrow a ∈Q1 with the head h(a) and the tail

t(a), a linear map CHt(a) →CHh(a) is given by a matrix in Matdt(a)×dh(a)
.

To the pair (Q′, φ) we construct a representation SQ′ of dimension vector (dv)

such that for an arrow a ∈ Q1, the associated matrix in Matdt(a)×dh(a)
is given

by writing kα ∈ C, kα �= 0 at the (t(α), h(α))-entry for every α ∈ φ−1(a) ⊆ Q′
1

and 0 everywhere else. Note that SQ′ can be regarded as the direct image of

a representation of Q′ with dimension vector (1, . . . ,1) whose linear maps are

nonzero by the morphism φ.

DEFINITION 5.1

We say that (Q′, φ) is a skeleton if the representation SQ′ verifies the relations R

for a suitable choice of (kα)α∈Q′
1
∈ (C∗)Q

′
1 and the isomorphism class of SQ′ does

not depend on such a choice. By abuse of notation we also call SQ′ a skeleton.

When the quiver Q is the McKay quiver, it happens often (for instance, in every

family of examples treated in this paper) that a suitable subset U of skeletons

determines an open cover of the moduli space MC for a given C ⊂Θ. In other

words, the conditions ka �= 0 for all a ∈ Q′ determine an open set UQ′ ⊂ MC ,

and the union of such open sets for skeletons in U form an open cover. Here, the

skeleton SQ′ is the representation corresponding to the origin in the affine open

set UQ′ ⊆Cm for some m (cf. [NdCS, Section 7]).

For Abelian groups in SL(3,C), the set U is determined by the torus fixed

points (see [Ish, Section 3]). As will be shown in the examples of the following

sections, in the case of the iterated Hilbert scheme G/N -Hilb(N -Hilb(C3)) the

subset U is induced by the skeletons defining the open cover of N -Hilb(C3).
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The local coordinates of an open set UQ′ associated with a skeleton (Q′, φ)

can be obtained explicitly as follows. Fix (kα) ∈ (C∗)Q
′
1 in the definition of skele-

tons. Consider representations of Q which associate to each arrow a ∈Q1 a matrix

in Matdt(a)×dh(a)
whose (h(α), t(α))-entry is kα for α ∈ φ−1(a). These represen-

tations form an affine space whose coordinates are the remaining entries of the

matrices. If we consider only representations which satisfy the relations R, we

obtain an affine scheme UQ′ ⊆ Cm for some m which contains SQ′ as the repre-

sentation corresponding to the origin. In good cases including all the examples

in this paper, UQ′ becomes an affine open neighbourhood of SQ′ in the moduli

space of representations of (Q,R), and we can specify the entries of the matrices

which form the local coordinates around SQ′ .

Let S := C[x, y, z], and for every ρ ∈ Irr(G) consider the Cohen–Macaulay

SG-module Sρ := (S ⊗ ρ∗)G. We have the tautological bundle Rρ on the moduli

space of G-constellations whose global sections form the module Sρ. On the open

set UQ′ corresponding to a skeleton Q′, the vertices of Q′ correspond to sections of

Rρ’s over UQ′ , where we always assume the vertex over the trivial representation

ρ0 corresponds to 1. These sections can be regarded as rational sections of Sρ

over C3/G. If we take a basis u1, . . . , ud of the representation space ρ, a rational

section of Sρ over C3/G is of the form
∑d

i=1 fiu
∗
i , where fi are rational functions

in the ρ-part of C(x, y, z) and u∗
1, . . . , u

∗
d form the dual basis of ρ∗. Then such

a rational section is given by a d-tuple (f1, . . . , fd) of rational functions which

spans the representation ρ in C(x, y, z).

EXAMPLE 5.2

Let M22 =
{
1, x, zx , z,

z2

x2 ,
z2

x

}
be the G-constellation defining the open U22 ∈

Z/3Z-Hilb(Y ) where Y := Z/2Z-Hilb(C3). Let Q be the McKay quiver of G with

the usual commutativity relations deriving from xy = yx, xz = zx, and yz = zy

(see Figure 8), and consider M22 as a representation of Q. Then by choosing

the basis element at every vector space Cρ to be given by the unique element

λρ ∈M , we have x ·x= a · zx , y ·1 = b · zx , and z · z2

x2 = c ·x for some a, b, c ∈C. This

implies that a= x3

z , b= xy
z , and c= z3

x3 , which are precisely the local coordinates

of σ(Δ22). Since after change of basis any nonzero map can be chosen to be 1,

the skeleton for U22 in this case is formed by the linear maps equal to 1.

Figure 8. McKay quiver for G= 1
6 (1,2,3) and the open set U22

∼= C
3
a,b,c.
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Figure 9. Skeletons for Z/3-Hilb(Z/2-Hilb(C3)) with the corresponding G-constellations.

Table 4. Irr(D2n) for (a) n= 2m even, and (b) n= 2m+ 1 odd

σ0 {σ1, σ2m−1} {σm−1, σm+1} σm

ρ00 ρ01 · · · ρ0m−1
ρ0m

ρ10 ρ1n
(a)

σ0 {σ1, σ2m} {σm, σm+1}
ρ00 ρ01 · · · ρ0m
ρ10

(b)

The skeletons in every open set in Z/3Z-Hilb(Y ) are shown in Figure 9.

Notice that in the skeleton for Uij it is possible to find the skeletons U1,U2 ⊂ Y ,

repeated |Z/3Z|= 3 times.

6. Non-Abelian examples

6.1. Dihedral groups D2n ⊂ SO(3).
These groups are generated by

D2n :=

〈
α=

1

n
(1,−1,0), β =

⎛⎝0 1 0

1 0 0

0 0 −1

⎞⎠〉
,

and they have order 2n. The normal subgroup N := 〈α〉 has n 1-dimensional

irreducible representations σi(α) = εi where ε is an nth root of unity and i =

0, . . . , n−1. The action ofG/N = 〈β〉 ∼= Z/2Z gives the irreducible representations

of G as in Table 4 depending on the parity of n.
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The dimension vectors are 1
12 . . .2

1
1 and 1

12 . . .2, respectively. In this case,

as well as for any subgroup G⊂ SO(3), the fiber over the origin f−1(0) of any

crepant resolution f : Y → C3/G has dimension 1. The description of f−1(0) in

the case of Y =G-Hilb(C3) was first given by [GNS] (see [NdCS] for the rest of

the crepant resolutions of C3/G).

The open cover of N -Hilb(C3) is given by n open sets
⋃n

j=1Uj , covering n−1

rational curves Ei for i= 1, . . . , n− 1. The action G/N on N -Hilb(C3) identifies

Ui and Un−i+1 for i= 1, . . . , n.

If n= 2m is even, then Em is fixed by G/N having two fixed lines L+ and

L− crossing transversally the P1 covered by Um and Um+1. They give rise to E+

and E−, respectively. If n= 2m+ 1 is odd, then the open set Um+1 is fixed by

G/N and there is just one fixed line L, producing the new rational curve E.

Diagonalizing the action of G/N we see that in both cases these singularities

are of type 1
2 (1,1,0). By blowing up these singular lines it follows that the dual

graph of the fiber over the origin of the singularity is shown in Figure 10.

The fiber over the origin in G-Hilb(C3) with the degrees of the normal bun-

dles in each of the rational curves is shown in Figure 11 (see [GNS] and [NdCS]

for details). We can therefore see the difference between G/N -Hilb(N -Hilb(C3))

and G-Hilb(C3): in the case n even the graph is different, whereas in the case n

odd the difference resides in the degrees of the normal bundles. This concludes

the proof of the D2n-case in Theorem 1.7(iii).

We illustrate the construction of G/N -Hilb(N -Hilb(C3)) in this case by an

example. The general case is analogous.

•̃
E1

(−2,0)

•̃
E2

(−2,0)

•̃
E2

(−2,0)

•
Ẽm

(−1,−1)

• E+
(−2,0)

• E−
(−2,0)

· · ·

(a)

•̃
E1

(−2,0)

•̃
E2

(−2,0)

•̃
E2

(−2,0)

•̃
Em

(−1,−1)

•
E

(−2,0)

· · ·

(b)

Figure 10. Dual graph of f−1(0) for G/N-Hilb(N-Hilb(C3)) for (a) n = 2m even, and (b) n = 2m + 1

odd. The curve Ẽi denote the strict transform of Ei and the numbers denote the degree of the normal

bundle at every curve.

•
(−1,−1)

•
(−2,0)

•
(−2,0)

•
(−2,0)

• (−1,−1)

• (−1,−1)

· · ·

(a)

•
(−1,−1)

•
(−2,0)

•
(−2,0)

•
(−2,0)

•
(−3,1)

· · ·

(b)

Figure 11. Dual graph of f−1(0) for G-Hilb(C3) for (a) n= 2m even, and (b) n= 2m+ 1 odd.
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ρ00

ρ10

ρ01 ρ02

ρ03

ρ13

aA

c

C

b

B

d

D

C ′

c′

B′

b′

a′ A′

u v bC = 0, b′C′ = 0, cB = 0, c′B′ = 0,

Ca= uB,C′a′ = vB′,Ac= bu,A′c′ = b′v,
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Du= vD,ud= dv

Figure 12. The McKay quiver of D12 with relations.

Table 5. Stability condition for D12/N-Hilb(N-Hilb(C3)) with N = 1
6 (1,−1,0)

θ :=

σ0 {σ1, σ5} {σ2, σ4} σ3

−
∑5

i=1 ai − εb
a1 + a5 a2 + a4

a3

−
∑5

i=1 ai + εb a3

EXAMPLE 6.1

Let G = D12. In this case the McKay quiver with relations (Q,R) is given in

Figure 12 where the relations R provide the Morita equivalence between CQ/〈R〉
and S ∗G, and are obtained following [BSW].

In this case the stability condition given in Definition 2.4 is shown in Table 5,

where ai, b > 0 for i= 1, . . . ,5 and 0< ε� 1.

We start by considering the gluing of U1 and U2 with U5 and U6 by the action

of G/N . Since U3 and U4 contain the fixed part, we will treat them separately.

We need to consider the N -constellations at the origin of each open chart, so

after choosing a basis for every H0(gZ) for g ∈G/N consisting of N -graphs, we

obtain the G-constellations shown in Figure 13.

In the skeleton of the open sets the dots stacked vertically in the two middle

vertices of the McKay quiver denote the two linearly independent vectors e1 and

e2 in the corresponding vector space at that vertex.

With a similar calculation as in Section 5 we can calculate the local coordi-

nates to obtain

V1
∼= SpecC

[z(x3 + y3)

x3 − y3
,

xy

(x3 + y3)2
, (x3 + y3)2

]
,

V2
∼= SpecC

[z(x3 + y3)

x3 − y3
,

x2y2

(x3 + y3)2
,
(x3 + y3)2

xy

]
,

and α= x3−y3

x3+y3 .

Let us now consider the G-constellations arising from the blowup of the

fixed lines L+ and L−. In the open set U3
∼= C3

a,b,c with a = x4/y2, b = y3/x3,

and c= z, every N -cluster is given by the ideal Ia,b,c = (x4 − ay2, y3 − bx3, xy −
ab, z − c). Then the lines L± are defined by b = ±1, c = 0, which means that

the ideals defining the lines are IL± = (x4 − ay2, y3 ∓ x3, xy∓ a, z). Therefore we

can choose as basis for the N -constellations at these lines the N -graphs Γ± =

{1, x, y, x2, y2, x3 ± y3}, which are invariant under the action of G/N .
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Figure 13. G-constellations at the open sets V1 and V2.

For the line L+ we have b = 1. By the change of coordinate b+ = 1 − b =
x3−y3

x3 , we have that the action of G/N as 1
2 (1,1,0) is defined on C3

A,B,C where

A= c, B = 2−b+

b+ , C = a(b+)2. This implies that the rational curve E+ is covered

by the open sets V3
∼= C3

B2,A/B,C , V6
∼=C3

A2,B/A,C , and E+ is given by the ratio

(A : B) = (z(x3 − y3) : x3 + y3). In terms of G-constellations, the calculation

is the same as in the Abelian case, where V3 and V6 are the open cover of
1
2 (1,1,0)-Hilb(C3

A,B,C) (see Figure 14). In the case of V3, for instance, we have

the nonzero maps coming from the N -constellations Γ+ and Γ+ ·B (generated

from ρ00 and ρ10, resp.), and the extra arrow comes from the fact that (x3+y3)B =

(x3 − y3) + 4x3y3

x3−y3 , which is induced by the G/N -equivariant map Γ+ →BΓ+.

Similarly, for the line L− we have b=−1. By the change of coordinate b− =

1−b= x3+y3

x3 , the action of G/N as 1
2 (1,1,0) is defined on C3

A′,B′,C′ where A′ = c,

B′ = b−−2
b− , C ′ = a(b−)2. This implies that the rational curve E− is covered by

the open sets V4
∼=C3

B′2,A′/B′,C′ , V5
∼=C3

A′2,B′/A′,C′ , and E− is given by the ratio

(A′ :B′) = (z(x3 + y3) : x3 − y3). In terms of G-constellations, the calculation is

similar but now taking Γ− instead of Γ+ (see Figure 14).

The skeletons provide the choices of nonzero variables in the representation

space rep(Q). For example, in the case V3 we can choose c = (1,0), b = (0,1),

d= Id, C1 = 1, B = ( 11 ) and use the relations to obtain the representation space

of V3 ⊂Mθ shown in Figure 15, where K = c′(C ′ − 1). Thus V3
∼=C3

a,c′C′ where

a=
z(x3 + y3)

x3 − y3
, c′ =

(x3 + y3)2

x2y2
, and C ′ =

(x3 − y3)2

(x3 + y3)2
.
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Figure 14. G-constellations at the open sets covering the exceptional curves E+ and E−, where B = x3+y3

x3−y3

and B′ = x3−y3

x3+y3 .

6.2. D8-Hilb( 13 (1,2,0)-Hilb(C3))

Let G be the group N �G/N ⊂ SL(3,C) where N is generated by g = 1
3 (1,2,0)

and G/N ∼= D8 ⊂ SO(3) is generated by α = 1
4 (1,3,0) and β =

(
0 1 0
1 0 0
0 0 −1

)
. Let

Irr(N) = {σ0, σ1, σ2} where σi(g) = ωi for i = 0,1,2, and let ω be a primitive

cube root of unity. In this case we have Orb(σ0) = σ0 and Orb(σ1) = {σ1, σ2} with
stabilizers G0 =G/N ∼=D8 and G1 = 〈α〉 ∼= Z/4Z. Therefore IrrG0 = {τ0, τ1, τ2,
τ3, τ4} where dim(τi) = 1 for i= 0, . . . ,3 and dim(τ4) = 2. The irreducible repre-

sentations of G are shown in Table 6.



112 Ishii, Ito, and Nolla de Celis

ρ00

ρ10

ρ01 ρ02

ρ03

ρ13

zaC ′

(1,0)

(K0 )

(0,1)

( 0
K )

( 1 0
0 1 )

(K 0
0 K )

(
1
C′

)
(-c′, c′)

( 11 )

(c′C′, -c′)

a aC ′

(
0 a

aC′ 0

) (
0 a

aC′ 0

)

Figure 15. Open set V3 ⊂Mθ .

Table 6. Irreducible representations of G with their dimensions and the stability condition for

G/N-Hilb(N-Hilb(C3)) with a, b, c > 0 and 0< ε� 1

σ0 {σ1, σ2}

ρ00 ρ01

ρ10

ρ11

ρ20

ρ21

ρ30

ρ31ρ40

, d=

σ0 {σ1, σ2}

1
2

1

2

1

2

1

2
2

, θ =

σ0 {σ1, σ2}

−a− b− 5εc
a+ b

−a− b+ εc

a+ b

−a− b+ εc

a+ b

−a− b+ εc

a+ b−2a− 2b+ εc

Figure 16. The McKay quiver of G.

The McKay quiver shown in Figure 16 coincides with the McKay quiver of

D24 ⊂ SO(3) as in Section 6.1 since G∼=D24 = 〈 1
12 (1,11,0), β〉.
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The scheme N -Hilb(C3) can be covered by 3 open sets Ui for i= 1,2,3 with

the corresponding distinguished N -constellations Z1 = {1, x, x2}, Z2 = {1, x, y},
and Z3 = {1, y, y2}. By the action of G/N ∼=D8 the open set U2 is fixed while U1

and U3 are identified.

The fixed open set U2 has coordinates a= x2

y , b= y2

x , and c= z. If we denote

(+) := a2 + b2 and (−) := a2 − b2, we have that G/N -Hilb(C3
a,b,c) is covered by 5

open sets given by the following G/N constellations:

Γ1 =
{
1, a, b, (+), (−), a(+), b(+),−(+)(−)

}
,

Γ2 =
{
1, a, b, (+), (−), a(+), b(+), c

}
,

Γ3 =
{
1, a, b, (+), (−), ac,−bc, c

}
,

Γ4 =
{
1, a, b, c(−), (−), ac,−bc, c

}
,

Γ5 =
{
1, a, b, (+), c(+), ac,−bc, c

}
.

We obtain in this way the open sets Vi given by the G-constellations Γi ·Z2,

for i= 1, . . . ,5 shown in Figure 17.

In the case of the orbit {U1,U3} we have U1
∼=C3

d,e,f with coordinates d= x3,

e = y/x2, f = z, and U3
∼= C3

d′,e′,f ′ with coordinates d′ = y3, e′ = x/y2, f ′ = z.

In each of the open sets there exists a fixed line with stabilizer subgroup G1 =

〈α〉 ∼= Z/4Z. This implies that we have to consider the G1-graphs

Ω1 = {1, c, c2, c3}, Ω2 = {1, c, c2, d},

Ω3 = {1, c, d, d2}, Ω4 = {1, d, d2, d3}

in U1, and

Ω′
1 = {1, c′, c′2, c′3}, Ω′

2 = {1, c′, c′2, d′},

Ω3 = {1, c′, d′, d′2}, Ω4 = {1, d′, d′2, d′3}

in U3. The identification of U1 and U3 by β produces the open sets Ui given by

the G-constellations Ωi ·Z1 ∪Ω′
i ·Z3 for i= 1, . . . ,4 (see Figure 17).

Let Y := 1
3 (1,2,0)-Hilb(C3). Then the exceptional fiber over the origin π−1(0)

of the crepant resolution π : Y → C3/N consists of two (−2,0)-rational curves

intersecting in one point. The action of G/N interchanges these two curves, pro-

ducing in Y/(G/N) a single rational curve E with singularities of types 1
4 (1,3,0)

and D8 at 0 and ∞, respectively. The fiber φ−1(0) of the crepant resolution

φ :G/N -Hilb(Y )→C3/G is therefore given by the following dual graph:

•
E1

(−2,0)

•
E2

(−2,0)

•
E3

(−2,0)

•̃
E

(−1,−1)

•
F1

(−1,−1)

•
F2

(−2,0)

• F3

(−1,−1)

• F4

(−1,−1)

where Ei are covered by Ui for i= 1, . . . ,3, Fj are covered by Vj for j = 1, . . . ,4,

and Ẽ is the strict transform of E.
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Figure 17. G-constellations for D8-Hilb( 1
3 (1,2,0)-Hilb(C3)).

6.3. Trihedral group of order 12
Let G := G12 ⊂ SO(3) be the trihedral group of order 12 generated by N :=

〈 12 (1,1,0),
1
2 (1,0,1)〉 and T :=

(
0 1 0
0 0 1
1 0 0

)
. The Abelian normal subgroup N ∼= Z/2×

Z/2Z with Irr(N) = {σ0, σ1, σ2, σ3} induces the irreducible representations of G

as in Table 7. The McKay quiver with relations (Q,R) is given in Figure 18.
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Table 7. Irreducible representations of G with their dimensions and the stability condition for

G/N-Hilb(N-Hilb(C3)) with ai, b > 0 for i= 1,2,3 and 0< ε� 1

σ0 {σ1, σ2, σ3}
ρ00

ρ1ρ10
ρ20

, d=

σ0 {σ1, σ2, σ3}
1

31

1

, θ =

σ0 {σ1, σ2, σ3}
−
∑

ai − 2εb

a1 + a2 + a3−
∑

ai + εb

−
∑

ai + εb

ρ00

ρ1

ρ10 ρ20

a A

b

B c

C

u v

uA= vA, au= av,

uB = ωvB, bu= ωbv,

uC = ω2vC, cu= ω2cv,

Aa+ ωBb+ ω2Cc= u2,

Aa+ ω2Bb+ ωCc= v2

Figure 18. McKay quiver of G with relations.

Figure 19. G-constellation arising from the orbit {U1,U2,U3}.

By acting first on C3
x,y,z with N we have that N -Hilb(C3) is given by 4 affine

open sets Ui, i= 1, . . . ,4. The N -constellations at each of these open sets are

Z1 = {1, x, y, xy}, Z2 = {1, y, z, yz},

Z3 = {1, x, z, xz}, Z4 = {1, x, y, z}.

The action of G/N = 〈T̄ 〉 ∼= Z/3Z identifies the open sets U1, U2 and U3,

and fixes U4, inducing the corresponding action on the N -constellations. The

orbit {U1,U2,U3} give rise to the open set V1 ⊂ G/N -Hilb(N -Hilb(C3)) shown

in Figure 19.

It follows from the same method as Section 5 that λ = R2

R0
and μ = R1

R0
,

where R0 := y2z2 + x2z2 + x2y2, R1 := y2z2 + ωx2z2 + ω2x2y2 and R2 := y2z2 +

ω2x2z2 +ωx2y2. The local coordinates of this open set are written at the end of

the section.

The remaining case is the fixed N -constellation Z4 in U4. The open set

U4
∼= C3

a,b,c has coordinates a = yz
x , b = xz

y , and c = xy
z , and we have T (a) = b,
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Figure 20. G-constellations arising from the nonisolated 1
3 (1,2,0) line.

T (b) = c, and T (c) = a. On the other hand, diagonalizing the action of T ∼= Z/3Z,
we can consider it to be of type 1

3 (1,2,0) on C3
α,β,γ with the new coordinates

α= a+ ω2b+ ωc, β = a+ ωb+ ω2c, and γ = a+ b+ c. That is,

α=
f1
f3

, β =
f2
f3

, γ =
f0
f3

where f0 := x2+y2+ z2, f1 := x2+ω2y2+ωz2, f2 := x2+ωy2+ω2z2, f3 := xyz,

and ω is a primitive cube root of unity.

The situation is therefore identical to the Abelian case, so we need to consider

the distinguished G/N -constellations in 1
3 (1,2,0)-Hilb(Cα,β,γ), namely, Γ1 = {1,

α,α2}, Γ2 = {1, α, β}, and Γ3 = {1, β, β2}. They give rise to the G-constellations

Z4 · Γi shown in Figure 20.

It can be checked that the matrices giving the open sets Vi ⊂Mθ(Q,R) are

the following:

V1: a = (1,0,0), b = (0,0,1), c = (1, c2,1), A =

(
C1+C3

−c2C1A1+c2B1C3

C1(c
2
2A1−1)

)
,

B =
(

B1
0
A1

)
, C =

(
C1
0

B1(c
2
2C1−1)

)
, u =

(
0 1 0

C3−ωC1 ω2c2C1 ω2C1+ωB1

ω2c2C3 −ω2(c22C1−1) −ω2c2C1

)
,

v =

(
0 1 0

−ω2C1+C3 ωc2C1 ωC1+ω2B1

ωc2C3 −ω(c22C1−1) −ωc2C1

)
;
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V2: a = (1,0,0), b = (B1 − b23B3,1, b3), c = (0,0,1), A =

(
b1B1+b3B3

B3−B1A1

(b1b3+1)B1B3

)
,

B =
(

B1
0
B3

)
, C =

(
1
0
A1

)
, u =

(
0 1 0

−ω2b1B1+b3B3 ωB1 ω2+ωb3B1

ωB3 −ωb3B3 −ωB1

)
,

v =

(
0 1 0

−ωb1B1+b3B3 ω2B1 ω+ω2b3B1

ω2B3 −ω2b3B3 −ω2B1

)
;

V3: a = (1,0,0), b = (0,0,1), c = (c1,1,1), A =

(
c1C1+C3

−C1A1+B1C3

C1(A1−c21)

)
,

B =
(

B1
0
A1

)
, C =

(
C1
0

B1(C1−c1)

)
, u =

(
0 1 0

C3−ωC1c1 ω2C1 ω2C1+ωB1

ω2(A1−C1c1) −ω2(C1−c1) −ω2C1

)
,

v =

(
0 1 0

C3−ω2C1c1 ωC1 ωC1+ω2B1

ω(A1−C1c1) −ω(C1−c1) −ωC1

)
;

V4: a = (1,0,0), b = (0,0,1), c = (C1 − c23C3,1, c3), A =

(
c1C1+C3

C3−C1A1

(c1c3+1)C1C3

)
,

B =
(

1
0
A1

)
, C =

(
C1
0
C3

)
, u =

(
0 1 0

−ωC2
1+ωc23C1C3+c3C3 ω2C1 ω+ω2c3C1

ω2C3 −ω2c3C3 −ω2C1

)
,

v =

(
0 1 0

−ω2C2
1+ω2c23C1C3+c3C3 ωC1 ω2+ωc3C1

ωC3 −ωc3C3 −ωC1

)
.

As in Section 5, by using the McKay quiver as the quiver between the Cohen–

Macaulay modules Sρ we can compute the local coordinates at every open set

obtaining

V1 = C3
B1,c2,C1

=C[−f1R0/R2,−
√
3f3/R0,−f2R0/R1],

V2 = C3
b3,B1,B3

=C[−R1/(
√
3f2f3),

√
3f1f3/R2,

√
3f2

2 f3/R2],

V3 = C3
B1,c1,C1

=C[−
√
3f1f3/R2,−R0/(

√
3f3),

√
3f2f3/R1],

V4 = C3
c3,C1,C3

=C[R2/(
√
3f1f3),

√
3f2f3/R1,

√
3f2

1 f3/R1].

Moreover, the gluing between the different open sets is given as follows:

V4 � (c3,C1,C3)←→ (−c−1
3 ,C1 − c23C3,C1) ∈ V3,

V1 � (B1, c2,C1)←→ (B1c2, c
−1
2 , c2C1) ∈ V3,

V2 � (b3,B1,B3)←→ (−B1,B1 − b23B3,−b−1
3 ) ∈ V3.

Hence, the fibers of the origin of the quotient space are three rational curves

meeting at a point. The dual graph with the appropriate degrees of the normal

bundles is the following:

• •

•

(−2,−0) (−2,0)

(−1,−1)

In this case the chamber C ⊂Θ, for which G/N -Hilb(N -Hilb(C3))∼=MC is

given by the inequalities θ1 + θ3 > 0, θ2 + θ3 > 0, and θ1 + θ2 + θ3 < 0. On the

other hand, the fiber over zero in G-Hilb(C3) is given by the dual graph
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• • •
(−1,−1) (−3,1) (−1,−1)

and the chamber C ′ for G-Hilb(C3)∼=MC′ is given by θi > 0 for i �= 0 (see [NdCS]

for details). This concludes the proof of the case G12 in Theorem 1.7(iii).

7. When does Hilb of Hilb coincide with Hilb?

In this section we study the relation between G-Hilb and G/N -Hilb(N -Hilb).

Since both can be constructed as moduli spaces of representations of the McKay

quiver, we may ask when they are isomorphic as moduli spaces (i.e., their tau-

tological bundles coincide) and if not, when their underlying algebraic varieties

are isomorphic. We answer these questions in many cases.

Considering them as moduli spaces we have G-Hilb ∼=MC and G/N -Hilb(N -

Hilb) ∼= MC′ for chambers C,C ′ ⊂ Θ, where C is the chamber containing the

zero-generated stability and C ′ is the chamber containing the parameter in Defi-

nition 2.4. Then the problem in this case is to determine which groups G admit a

normal subgroup N such that C =C ′. We give a complete answer to this question

in the cases G⊂GL(2,C) and G⊂ SL(3,C) in Theorem 7.3.

As algebraic varieties, in dimension 2 and for G⊂ SL(2,C), there is nothing

to prove since both of them are minimal resolutions of C2/G and thus isomorphic.

For non-Abelian subgroups in GL(2,C) we treat the case when N =G∩SL(2,C)
and conclude that they are nonisomorphic (see Proposition 7.5). For G⊂ SL(3,C)
we give a complete answer when the group G is Abelian by using the method

of Craw and Reid [CR] to obtain the triangulation of the junior simplex Δ

which corresponds to G-Hilb(C3). As we saw in Section 4 the triangulation for

G/N -Hilb(N -Hilb(C3)) is given by using the Craw–Reid method in two steps,

first for N and then for G/N . Comparing both triangulations we are able to

describe in Theorem 7.7 all possible configurations for G and N for which there

is an isomorphism of varieties over C3/G.

We finish treating some non-Abelian small subgroups G⊂ SL(3,C) for which
G-Hilb(C3) is not isomorphic to G/N -Hilb(N -Hilb(C3)), in particular, finite sub-

groups of SO(3) of types D2n and G12 with N being the maximal normal sub-

group, and non-Abelian intransitive subgroups with N =G∩ SL(2,C).

7.1. As moduli spaces
Let G ⊂ GL(n,C), assuming either n = 3 and G ⊂ SL(3,C) or n = 2 and G ⊂
GL(2,C) small. Let N be a normal subgroup in G. With the same notation as in

Section 2, let Y1 :=N -Hilb(Cn) and Y2 :=G/N -Hilb(Y1) with universal families

Z1 and Z2, respectively, and denote by U := p20∗(OZ1×Y1
Z2) the flat family over

Y2 of G-constellations by the projection p20 : Y2 × Y1 ×Cn −→ Y2 ×Cn.
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LEMMA 7.1

Put X1 = Cn/N and X2 = Y1/(G/N). Then, Z1 is the reduced part of the fiber

product Y1 ×X1 C
n and Z2 is the reduced part of Y2 ×X2 Y1.

Proof

It is sufficient to prove the latter statement. Here, Z2 is obviously a closed sub-

scheme of Y2 ×X2 Y1, and the morphism Z2 → Y2 ×X2 Y1 is an isomorphism over

the generic point of Y2. Now OZ2 , regarded as an OY2 -module via the finite mor-

phism p2, is locally free and therefore is the quotient of OY2×X2
Y1 by the torsion

part, which must be the nilradical. �

As we know, G-Hilb(Cn) ∼= MC and Y2
∼= MC′ are both resolutions of Cn/G

isomorphic to a moduli space of G-constellations for some chambers C,C ′ ⊂Θ.

Then,

C =C ′ ⇐⇒ ∃ a closed subscheme Z ⊂ Y2 ×Cn

such that U ∼=OZ in Coh(Y2 ×Cn)

⇐⇒ φ :Z2 ×Y1 Z1 −→ Y2 ×Cn is a closed immersion

=⇒ φ is injective on the C-valued points.

If we denote by Y
G/N
1 the fixed locus of the action of G/N into Y1, we obtain

the following sufficient condition for Y2 and G-Hilb(Cn) being nonisomorphic as

moduli spaces.

LEMMA 7.2

If τ−1
1 (0)� Y

G/N
1 , then C �=C ′.

Proof

Assume y, g(y) ∈ τ−1
1 (0) ⊂ Y1 are two distinct points for some g ∈ G/N . Then

there exists a (G/N)-cluster W ∈ Y2 such that y, g(y) ∈ Supp(W ). Then (W,y),

(W,g(y)) ∈ Z2 and (y,0), (g(y),0) ∈ Z1, which implies that (W,y,0), (W,g(y),0) ∈
Z2 ×Y1 Z1 are two distinct points. But then φ(W,y,0) = φ(W,g(y),0) = (W,0),

so φ is not injective. �

As the following theorem shows, in dimensions 2 and 3 the cases when G/N -

Hilb(N -Hilb) and G-Hilb coincide as moduli spaces are very few.

THEOREM 7.3

(i) Let G ⊂ GL(2,C) be a finite small subgroup, and let N �= G,{1} be a

normal subgroup in G. Then

C =C ′ ⇐⇒ G∼= 1

rs
(1,1) and N ∼= 1

s
(1,1).
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(ii) Let G ⊂ SL(3,C) be a finite subgroup, and let N �= G,{1} be a normal

subgroup in G. Then,

C =C ′ ⇐⇒ G∼= 1

2r
(1,1,2r− 2) and N ∼= 1

2
(1,1,0).

Proof

We begin by proving (ii). Recall that if N �G⊂ SL(3,C), then dimY
G/N
1 ≤ 1.

Therefore if C = C ′, then by Lemma 7.2 we must have dim(τ−1
1 (0))≤ 1. More-

over, since the τ−1(0) is connected it must consist of a single curve. Indeed, if

we have more than one curve in τ−1(0) fixed by G/N , then at any intersection

point of two curves a 2-dimensional subspace of the tangent space is fixed; thus

dimY
G/N
1 > 1, a contradiction. Especially, the Grothendieck group of coherent

sheaves on Y1 whose supports are contained in τ−1(0) is of rank two.

Therefore N ∼= Z/2Z as in [IN], and we can suppose it to be isomorphic to
1
2 (1,1,0). Then N -Hilb(C3) ∼= U1 ∪ U2 where U1

∼= C3
x2,z, yx

, U2
∼= C3

y2,z, xy
, and

τ−1(0) = E ∼= P1 with coordinates x : y. After extending the action of G/N on

C[x, y, z]N naturally into C(x, y, z)N , we have that G/N fixes E if g(xy ) =
x
y for

all g ∈ G/N . In other words, g as an element of G can be written in the form(
ε 0 a
0 ε b
0 0 εn−2

)
with a, b ∈ C and ε a primitive nth root of unity. But the group N

is normal in G, so g must commute with any element in N . This implies that

a = b = 0, and since G contains 1
2 (1,1,0) as a subgroup, n has to be an even

number. Thus G∼= 1
2r (1,1,2r− 2) for some r > 1.

Conversely, if the group is of the form G∼= 1
2r (1,1,2r−2) and N ∼= 1

2 (1,1,0),

then by the construction of G-constellations in the Abelian case of Section 4,

we see that the elements ωτ for τ ∈ Irr(G/N) are not Laurent monomials. More

precisely, for U1 we have ωτ0 = 1, ωτ1 = x2 and for U2 we have ωτ0 = 1, ωτ1 = y2,

so there are no Laurent monomials in the G-constellations Z of G/N -Hilb(N -

Hilb(C3)). This means that they are precisely the G-graphs of G-Hilb(C3); thus

the chambers are the same.

The proof of (i) follows the same argument. If C = C ′, then by Lemma 7.2

we have τ−1(0) ⊂ Y
G/N
1 . Since τ−1(0) is a chain of rational curves, then

dim(Y
G/N
1 ) = 1, which in particular implies that G/N is not small. As in the

proof of (ii) we have that τ−1(0) must consists of a single rational curve; thus we

may assume N to be isomorphic 1
s (1,1) for some s≥ 2. The exceptional divisor

E ∼= P1 in Y1 has coordinates (x : y), and it is invariant under G/N . As before, it

follows that any g ∈G/N has to be of the form 1
n (1,1) for some n≥ 2, and since

N is a subgroup, we have n= rs for some r ≥ 2.

Conversely if G ∼= 1
rs (1,1) and N ∼= 1

s (1,1), the action of G/N in the two

affine pieces of Y1 is of type 1/rs(s,0), which is not as small as expected. (In other

words, Y1/(G/N)∼= Y1 is nonsingular.) In terms of G-constellations Y1 has two

building blocks Γ1 = {1, . . . , xs−1} and Γ2 = {1, . . . , ys−1}, and after the action of

G/N we obtain the G-constellations Z1 = {1, . . . , xrs−1} and Z2 = {1, . . . , yrs−1},
so the chambers coincide. �
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As an immediate consequence, for any finite subgroup G ⊂ SL(2,C) they are

never the same moduli space.

COROLLARY 7.4

Let G⊂ SL(2,C) be a finite subgroup. Then C �=C ′.

Proof

If G is in SL(2,C), then rs = 2; thus either r = 1 or s = 1, which contradicts

N �=G,{1}, and we are done. �

7.2. As varieties
In this section we treat the problem of when G-Hilb and G/N -Hilb(N -Hilb) are

isomorphic as algebraic varieties. We start with the dimension 2 case.

7.2.1. G/N -Hilb(N -Hilb(C2))

Let G be a finite subgroup of SL(2,C). It is well known that the minimal res-

olution of C2/G is unique. Therefore, since both G-Hilb(C2) and G/N -Hilb(N -

Hilb(C2)) are minimal they are isomorphic.

Now let G be a finite small subgroup of GL(2,C), and take N =G∩SL(2,C).
In this particular case we have the following result, which proves Theorem 1.6(iii).

PROPOSITION 7.5

Let G⊂GL(2,C) be a finite non-Abelian subgroup such that G �⊆ SL(2,C), and
let N =G ∩ SL(2,C). Then G/N -Hilb(N -Hilb(C2)) is not a minimal resolution

of C2/G.

Proof

In this proof, we use the notation Y1 =N -Hilb(C2), X2 = Y1/(G/N), and Y2 =

G/N -Hilb(Y1). Then τ1 : Y1 → C2/N is a crepant resolution, and Y2 is the min-

imal resolution of X2. Let {Ei}= {E0,E1, . . .} be the exceptional curves on Y1.

Since G is non-Abelian, we may assume that E0 intersects three other exceptional

curves, E1, E2, and E3. We denote by Ēi the images of Ei in X2 and by i′ the

G/N -orbit of i. Since Y1 is a crepant resolution, we have KY1 ≡ 0. Therefore, if ei
denotes the ramification index of τ1 along Ei, we have KX2 ≡−

∑
i′
(
1− 1

ei

)
Ēi.

Now since the action of G/N fixes every point on E0, we see e0 = |G/N | and
e1 = e2 = e3 = 1. The canonical bundle of Y2 is written

KY2 ≡−
∑
i′

(
1− 1

ei

)
Ẽi +

∑
j

ajFj

where Ẽi is the proper transform of Ēi and {Fj} are the exceptional curves of

τ2 with discrepancies aj . Since −1< aj ≤ 0, it follows that

KY2 · Ẽ1 =−
(
1− 1

e0

)
+

∑
Fj∩Ẽ1 
=∅

aj < 0,

which shows that KY2 is not nef. �



122 Ishii, Ito, and Nolla de Celis

•

•

•

•

•

•

•
•

•

•

•
•

e3 e2

e1

•

•

•

•

•

•

•

•

•

•

•
•

•

e3 e2

e1

(a) (b)

Figure 21. Types of regular triangles: (a) corner triangle and (b) meeting of champions

7.2.2. Finite Abelian subgroups in SL(3,C)
In this section we assume that G ⊂ SL(3,C) is a finite Abelian subgroup. We

use the same notation as in Section 4. We start by recalling the properties of

the triangulation of the junior simplex Δ constructed by Craw and Reid in [CR]

corresponding to G-Hilb(C3) that we need. By abusing the notation, in what

follows we identify G-Hilb(C3) with its corresponding triangulation of Δ given

by [CR].

A regular triangle of side r in Δ is a lattice triangle with r + 1 points on

each edge. In G-Hilb(C3) every regular triangle of side r is triangulated with the

regular tesselation, which is done by drawing r − 1 parallel lines to the sides of

the regular triangle, obtaining r2 regular triangles of side 1. There are only two

types of regular triangles appearing in G-Hilb(C3), namely, the corner triangle

and the meeting of champions, both shown in Figure 21.

In particular, the sides of a regular triangle always extend to one of the

vertices ei. From the construction we can deduce the following properties that

we use repeatedly in the rest of the section.

PROPOSITION 7.6

Consider the triangulation of Δ corresponding to G-Hilb(C3). Then, we have the

following.

(i) Any line contained in Δ either passes through one of the vertices ei for

i= 1,2,3 or is contained in a regular triangle.

(ii) The valency of a vertex v in Δ is either 3, 4, 5, or 6.

Proof

Part (i) follows from the construction of the triangulation of Δ, and part (ii)

forms [CR, Corollary 1.4]. �

THEOREM 7.7

Let G be a finite nonsimple Abelian subgroup of SL(3,C), and let N be a normal

subgroup of G, with N �=G,{1}. Then
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(1) G/N -Hilb
(
N -Hilb(C3)

)∼=G-Hilb(C3)

as algebraic varieties if and only if we are in one of the following situations:

(1) G/N ∼= Z/mZ×Z/mZ for some m> 1;

(2) G∼= 1
r (1,1, r−2) or G∼= 1

r (1, r−1,0); that is, C3/G has a unique crepant

resolution;

(3) G∼= 1
2r (1, a,−a−1) with (2r, a) = 1, a2 ≡ 1 (mod 4r), and N ∼= 1

2 (1,1,0);

(4) there is a subgroup G′ ⊂G containing N such that (G′,N) fits into either

(2) or (3) and G/G′ ∼= Z/mZ×Z/mZ for some m> 1.

The proof of the theorem is deduced from Lemmas 7.8–7.12. The first lemma

shows the biggest family of Abelian groups for which we have an isomorphism

of varieties and constitutes case (1) in Theorem 7.7. The rest of the cases are in

some sense sporadic modulo case (4).

LEMMA 7.8

If G/N ∼= Z/mZ × Z/mZ, then G/N -Hilb(N -Hilb(C3)) ∼= G-Hilb(C3) as vari-

eties.

Proof

Assume G/N ∼= Z/mZ× Z/mZ. Let L⊃ L′ ⊃ Z3 be the toric lattices for C3/G

and C3/N , respectively. Then the assumption implies L/L′ ∼= Z/mZ × Z/mZ.
Since L and L′ are generated by elements on the junior simplex, we have decom-

positions L= L0⊕Ze1 and L′ = L′
0⊕Ze1, where L0 = L∩R2

Δ and L′
0 = L′∩R2

Δ.

Then we have L0/L
′
0
∼= Z/mZ×Z/mZ for the two-dimensional lattices L0 ⊃

L′
0, which implies L0 = (1/m)L′

0. So the Newton polygon for G at e1 is 1/m

times that for G′; thus the triangulations are the same by [CR]. �

The following lemma justifies case (4) in Theorem 7.7 and allows us to obtain

isomorphism as varieties between Y2 and G-Hilb(C3) by combining cases (1), (2),

and (3).

LEMMA 7.9

Suppose that there exists a surjection φ :G/N � Z/mZ×Z/mZ for some m> 1,

and let G′ be the pullback of Ker(φ) to G. Then equation (1) holds for the pair

(G,N) if and only if it holds for (G′,N).

Proof

If there exists a sequence of normal subgroups G�G′ �N and G/G′ ∼= Z/mZ×
Z/mZ, then we can construct G/N -Hilb(N -Hilb(C3)) in three steps:

G/G′-Hilb
(
G′/N -Hilb(N -Hilb(C3))

)
,

so by Lemma 7.8 we can take G′ instead of G. �
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Therefore from now on we assume that no such surjection exists, which means

that G/N is cyclic.

LEMMA 7.10

IfG/N -Hilb(N -Hilb(C3))∼=G-Hilb(C3), then there is no regular triangle of side≥
2 in N -Hilb(C3).

Proof

Let T be a regular triangle in Δ of side ≥ 2, where Δ is triangulated for

N -Hilb(C3). Then T is triangulated by the regular tesselation, and there always

exists a triangle Δi ⊂Δ which does not contain any of the vertices of T . Now

consider the action of G/N on N -Hilb(C3) and the corresponding triangulation

on Δi. Since any side of T extends to some vertex ei, by Proposition 7.6(i)

any line of the triangulation for G-Hilb(C3) inside Δi must be parallel to some

side of Δi. This implies that the action of G/N into Δi has to be of the form

Z/mZ×Z/mZ, so that Δi is triangulated again with the regular tesselation. But

then G/N ∼= Z/m×Z/mZ, which contradicts our assumption. �

LEMMA 7.11

The triangulation of Δ corresponding to N -Hilb(C3) contains only regular trian-

gles of side 1 if and only if N ∼= 1
r (1,1, r− 2), 1

r (1, r− 1,0), or 1
7 (1,2,4).

Proof

Notice that there are only regular triangles of side 1 if and only if there exists a

unique crepant resolution of C3/N , namely, N -Hilb(C3). Indeed, if every regular

triangle in the triangulation of Δ is of side 1, then Proposition 7.6(i) implies

that every line goes to one of the ei’s, and there is no parallelogram in this

triangulation. Therefore, there is no flop from N -Hilb(C3). Conversely, if there

exists a unique crepant resolution there is no parallelogram in the triangulation

of Δ; in particular, there is no regular triangle of side bigger than 1.

Finally, notice that the Abelian groups for which there exist a unique crepant

resolution are 1
r (1,1, r− 2), 1

r (1, r− 1,0), or 1
7 (1,2,4). This follows from the fact

that either all points are contained in a line or N ∼= 1
7 (1,2,4); otherwise we would

have 4 points in Δ with not 3 of them aligned, hence a flop. �

From the three possibilities for N in Lemma 7.11 we can exclude the case

N ∼= 1
7 (1,2,4). Indeed, let Δ =

⋃7
i=1Δi be the triangulation corresponding to

N -Hilb(C3). Then, on the regular triangle with vertices 1
7 (1,2,4),

1
7 (2,4,1), and

1
7 (4,1,2) in the middle of Δ, the next triangulation created by the action of

G/N has to be a regular triangle again (otherwise it would contradict Proposi-

tion 7.6(i)), so we are again in the case of Lemma 7.8.

Now consider the case N ∼= 1
r (1,1, r − 2). Then every lattice point Pj ∈ Δ

distinct from the vertices ei for i= 1,2,3, are on a line L passing through e3. If

we consider the triangulation induced by G/N , by Proposition 7.6(i) there are
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Figure 22

no new lines going out any of the points Pj unless r = 2 or 3. Therefore, either

G/N ∼= 1
s (1,1, s− 2), so that every new point is again on the line L and G is of

type 1
n (1,1, n− 2), or N ∼= 1

3 (1,1,1), or N ∼= 1
2 (1,1,0), or we are in the case of

Lemma 7.9.

Similarly, if N ∼= 1
r (1, r− 1,0), then either G/N ∼= 1

s (1, s− 1,0) for some s|r
or N ∼= 1

2 (1,1,0). In any case, we are either in case (2) of Theorem 7.7 or N has

order 2 or 3.

Let N ∼= 1
3 (1,1,1), and let P be the point in the center of the triangulation

Δ =
⋃3

i=1Δi of N -Hilb(C3) where the 3 lines Li from the vertices ei meet (i=

1,2,3). Now consider the second triangulation produced by G/N . Because of the

“meeting of champions” only one of the lines Li can be extended, so that the

final valency of P is at most 4.

If the valency is 3, then every Δi has a basic triangle around P . Since the

areas of the basic triangles are the same, it follows that the three vectors at P

have the same length, and since two of them form a basis of the two-dimensional

lattice Z2
Δ, we can conclude that G/N ∼= Z/mZ×Z/mZ as in Lemma 7.8. If the

valency is 4, then at least 2 of the Δi’s must have a regular triangle around P ,

which must be of the same side since they share a generator of the lattice (see

Figure 22).

But then there exists a subgroup G′ ∼= 1
3r (1,1,3r − 2) such that G/G′ ∼=

Z/mZ × Z/mZ with m > 1. Indeed, let M be the middle point of e1 and e2.

Then every regular triangle inside the triangle e1PM has e1 as a vertex and the

other two vertices lie on the segment PM . Moreover, these regular triangles have

the same area. Then we can see that there is a subgroup G′ ∼= 1
3r (1,1,3r − 2)

such that these regular triangles for G are basic triangles for G′. If these regular

triangles are divided into m2 basic triangles, then G/G′ ∼= Z/mZ×Z/mZ.
In the case N ∼= 1

2 (1,1,0) we have the following lemma, which gives case (3)

in Theorem 7.7 and finishes the proof.

LEMMA 7.12

Let N ∼= 1
2 (1,1,0) and Y2 :=G/N -Hilb(N -Hilb(C3)). Then

Y2
∼=G-Hilb(C3)⇐⇒G∼= 1

2r
(1, a,−a− 1) with a2 ≡ 1 (mod 4r).
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Figure 23. The two possible regular tesselations around P = 1
2 (1,1,0) and the generators v1, v2 of the

lattice Z
2
Δ.

Proof

Let Δ=Δ1∪Δ2 be the triangulation for N -Hilb(C3), and let P := 1
2 (1,1,0) ∈Δ.

Suppose that we have the isomorphism as varieties. After the action of G/N on

Δ, by Proposition 7.6(i) the triangles Δi must contain regular triangles around P .

The sides of the regular triangles must pass through some vertex ei, so there are

two possible configurations (see Figure 23).

Notice that any line passing through the point P must go to one of the

vertices ei for i= 1,2,3 (otherwise, the sides of two regular triangles would inter-

sect), and in particular there exists the diagonal line L := e3P . Then the vectors

v1, v2 are sides of a basic triangle; therefore they form a basis of the 2-dimensional

lattice Z2
Δ.

This implies that the lattice is symmetric with respect to the diagonal line

L, and in particular the regular triangles around P have the same side. Then

it follows that the continued fraction 2r
a at the vertex e3 has to be symmetric

with respect to the middle entry, and the boundary of the Newton polygon must

contain a lattice point in L. This implies that the expansion of 2r
2r−a is also

symmetric. Thus if xiyj ∈ (Z2
Δ)

∨, then xjyi ∈ (Z2
Δ)

∨ for any i and j. In other

words, we have the condition a2 ≡ 1 (mod 2r) in order to have such a symmetric

Newton polygon. In addition, the vectors v1 and v2 being a basis of Z2
Δ imply

that a2 ≡ 1 (mod 4r), so the groups G we are looking for are precisely G ∼=
1
2r (1, a,−a− 1) with a2 ≡ 1 (mod 2n).

Conversely, if the group is of the form G∼= 1
2r (1, a,−a− 1) with a2 ≡ 1 (mod

4r), then {v1, v2} and {v1,−v2} form a basis of the lattice of Δ. It follows that the

line L has to be part of the triangulation, and again the distribution of points

along Δ is symmetric with respect to L, with regular triangles in Δ1 and Δ2

around P . The continued fractions at the vertices e1 and e2 are the same, and

the one for the vertex e3 is symmetric with respect to the middle term, so by the

Craw–Reid method the triangulation of G-Hilb(C3) and G/N -Hilb(N -Hilb(C3))

are the same, and the result follows. �

EXAMPLE 7.13

In this example we show a group G with two subgroups; with one of them there
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θ :=

θ0 θ1
θ2 θ3
θ4 θ5

=

−a− ε(b1 + b2) a

−a+ εb1 a

−a+ εb2 a

Figure 24. Stability condition for Z/3-Hilb(Z/2-Hilb(C3)).
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•U1

U2
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•

U11

U12

U13

U21

U22

U23

U11 {1, y, y2, y3, y4, y5}
U12 {1, y, y2, y3, z, yz}
U13 {1, y, z, yz, z2, y2}
U21 {1, x, x2, x3, x4, x5}
U22 {1, x, x2, x3, z, xz}
U23 {1, y, z, xz, z2, xz2}

Figure 25. Fan for Z/3-Hilb(Z/2-Hilb(C3)) and the corresponding G-constellations.

is an isomorphism as moduli spaces (hence as varieties) between G-Hilb(C3) and

G/N -Hilb(Y1) and with the other an isomorphism as varieties but in a different

chamber. The stability condition is shown in Figure 24.

Let G= 1
6 (1,1,4). By taking N = 1

2 (1,1,0), let Y1 :=N -Hilb(C3). Then we

have an isomorphism G-Hilb(C3)∼=G/N -Hilb(Y1) as moduli spaces of represen-

tations of the McKay quiver.

The crepant resolution Y1 is covered by U1
∼= C3

y2,z,x/y and U2
∼= C3

x2,z,y/x,

and τ−1
1 (0) consists of the single P1 joining the two toric fixed points with coor-

dinates (x : y). In every open set the action of G/N is isomorphic to 1
3 (1,2,0),

and we have that τ−1
1 (0) = Y

G/N
1 . The corresponding G-constellations are shown

in Figure 25. The chamber C for G-Hilb(C3) is given by the inequalities

θ3 > 0, θ5 > 0, θ2 + θ3 > 0, θ4 + θ5 > 0,

θ1 + θ3 + θ5 > 0, θ0 < 0, θ0 + θ4 < 0.

For G/N -Hilb(N -Hilb(C3)), according to Definition 2.4 the stability is given

in Figure 24 where a, b ∈Q and 0< ε� 1, which is contained in C.

Now take N = 1
3 (1,1,1). Then we have that G-Hilb(C3) ∼= G/N -Hilb(N -

Hilb(C3)) are isomorphic as varieties but in different chambers. In this case

N -Hilb(C3) has 3 open sets

V1
∼=C3

y3, zy , xy
, V2

∼=C3
x3, zx , yx

, V3
∼=C3

y
z ,

x
z ,z3 ,

and G/N ∼= 1
2 (1,1,0) in every open set. Then we obtain the distinguished G-

constellations shown below. In this case the stability condition is given in Fig-

ure 26, where in particular we have θ3 < 0, so the chamber is different than C.

7.2.3. Some non-Abelian subgroups of SL(3,C)
In this section we present some non-Abelian subgroups G⊂ SL(3,C) for which

G/N -Hilb(N -Hilb(C3)) and G-Hilb(C3) are nonisomorphic, proving Theorem

1.7(iii).
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θ :=
θ0 θ1 θ2
θ3 θ4 θ5

=
−a1 − a2 − εb a1 a2
−a1 − a2 + εb a1 a2

Figure 26. Stability condition for Z/2-Hilb(Z/3-Hilb(C3)).
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•
V1 V3

V2

•
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•

V11

V12

V31

V21

V22

V33

V11 {1, y, y2, y3, y4, y5}
V12 {1, y, y2, zy , z, yz}
V21 {1, x, x2, x3, x4, x5}
V22 {1, x, x2, zx , z, xz}
V31 {1, z, z2, xz , x, xz}
V32 {1, z, z2, yz , y, yz}

Figure 27. Fan for Z/2-Hilb(Z/3-Hilb(C3)) and the corresponding G-constellations.

By the calculations presented in Section 6 we know that if G ⊂ SO(3) is

of type D2n or G12 and N is the maximal Abelian subgroup of G, then the

fibre over 0 ∈ C3/G is different in both spaces. Therefore we conclude that

G/N -Hilb(N -Hilb(C3)) is not isomorphic to G-Hilb(C3).

Now consider G ⊂ GL(2,C) to be a small non-Abelian subgroup, and let

N = G ∩ SL(2,C). Then we can embed G into SL(3,C) to form a non-Abelian

intransitive subgroup (cf. type B in [YY]), and we obtain the following result as

a consequence of Proposition 7.5.

COROLLARY 7.14

If G ⊂ SL(3,C) is a non-Abelian small intransitive subgroup and N = G ∩
SL(2,C), then G/N -Hilb(N -Hilb(C3)) is not isomorphic to G-Hilb(C3).

Proof

Both sides are crepant resolutions of C3/G, and the proper transforms of C2/G⊂
C3/G to them are G/N -Hilb(N -Hilb(C2)) and G-Hilb(C2), respectively. The

former is not a minimal resolution by Proposition 7.5, but the latter is minimal.

This implies that the two crepant resolutions are different. �
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